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Summary 
 
The accuracy of seismic structural interpretation strongly 
depends on the velocity model used for the imaging, 
particularly on the near-surface velocities. In the standard 
processing workflows used in exploration geophysics, the 
near-surface velocities are obtained by deterministic first 
arrival tomography, which limits the options for structural 
uncertainty estimation. We demonstrate the benefits of 
hierarchical transdimensional Bayesian first arrival 
tomography on an exploration-scale 2D scenario. Such a 
tomography yields multiple models of the near-surface that 
fit the observed traveltimes. In addition to the velocity 
uncertainty, we analyze the static corrections associated with 
these velocities to obtain an estimated structural uncertainty 
for two different seismic acquisition geometries. 
 
Introduction 
 
Complex near-surface geology is one of the most 
challenging issues for land seismic data processing and 
interpretation (Robinson and Al-Husseini, 1982). The 
accuracy of seismic imaging strongly depends on the 
accuracy of the near-surface velocity model (Bakulin et al., 
2017). One of the main instruments for the near-surface 
velocity reconstruction is the refraction traveltime 
tomography, which relies on the arrival times of 
diving/refracted waves (Zhang and Toksöz, 1998). This 
model is then either used for the computation of static 
corrections or directly embedded into the velocity model for 
seismic migration from topography. 
 
Seismic tomography is often conducted in a deterministic 
manner, yielding a single velocity model, which depends on 
the user-defined parameters (e.g., regularization 
coefficients) and does not provide any direct estimates of 
uncertainty. There are numerous ways to estimate the 
uncertainty of tomography, which are often applied in the 
seismological community (Rawlinson et al., 2014) and less 
often in oil and gas exploration (Osypov et al., 2013). One 
of the options is the Bayesian framework, which allows one 
to obtain numerous models that fit the observed traveltimes 
and compute various statistics from these models. Such 
techniques have been applied to seismological datasets for 
different subsurface models and survey geometries (Bodin et 
al., 2012; Ryberg and Haberland, 2018). Here, we apply 2D 
Bayesian first arrival tomography for near-surface velocity 
estimation in a seismic exploration scenario, specifically to 
imaging low-relief structures in the presence of complex 
near surface (Bakulin et al., 2017). In addition to evaluating 
the velocity uncertainty, we attempt to propagate this 

uncertainty through the seismic processing workflow by 
estimating the errors of static corrections. Low-relief 
structures typically have vertical closures of less than 30 ms, 
and the correct structural imaging, in this case, requires the 
near-surface velocities and long-wavelength static 
corrections to be estimated with high accuracy. 
 
Method 
 
We apply a 2D hierarchical reversible-jump Markov Chain 
Monte Carlo (rj-MCMC) method by Bodin et al. (2012). We 
parameterize the subsurface by N unstructured points, each 
of the points is defined by the velocity value vi and 
coordinates xi and zi, all of which are the parameters updated 
by the algorithm. The velocity model in the whole domain is 
computed from this set of points by linear interpolation 
within triangles. Traditionally, Voronoi tessellation has been 
used for this purpose; however, linear interpolation within 
triangles was found to be more effective for smooth velocity 
models and refraction geometry by Ryberg and Haberland 
(2018). Two additional parameters are the number of points 
in the model N (a small number in comparison to the number 
of regular grid cells) and the standard deviation of picking 
noise σn, which is also estimated in the hierarchical Bayesian 
framework. Here, we assume that the picking errors have 
Gaussian distribution and are uncorrelated. 
 
We use multiple noninteracting Markov chains. Each chain 
gets an initial model from the priors. We use wide priors: we 
allow the velocities to change from 1,000 to 8,000 m/s and 
the number of parameters from 21 to 241. At each step of the 
chain, either a new position or velocity is proposed for one 
of the points, or the birth/death of one of the points happens, 
or σn changes. The new model is then accepted or rejected 
by comparing its traveltime misfit to the misfit of the current 
model. For the comparison, a version of Metropolis-
Hastings acceptance criterion modified for the reversible-
jump method (Green, 1995) is used. The criterion sometimes 
may accept a model with the larger misfit, which results in a 
random-walk like behavior of the chain and allows the chain 
to continue sampling from the posterior model distribution 
instead of converging to a single model. After collecting 
enough chains, we analyze the accepted models and estimate 
the velocity uncertainty by computing the average, various 
moments (e.g., standard deviation) or by directly looking at 
velocity distributions for each of the points in the subsurface. 
We compute the traveltimes with an eikonal solver. We do a 
full eikonal computation at every step of the algorithm, in 
contrast to Bodin et al. (2012), who use inner and outer 
loops, computing rays in the outer loop and updating the 
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Bayesian tomography for near-surface 

model with fixed rays in the inner loop. This takes extra time 
but allows us to avoid the tuning of the inner loop length. 
 
To get an estimate of the uncertainty of static corrections 
associated with the velocity uncertainty, we calculate static 
corrections from each of the near-surface velocity models 
sampled by the rj-MCMC and analyze their influence on a 
low-relief structure with the closure of 30 ms. 
 
Example – velocity uncertainty 
 
For this study, we use a simple 1D gradient velocity model 
with two near-surface anomalies (Figure 1a). The underlying 
grid cell size for eikonal computations is 50 x 50 m. The 
sources and receivers are located on the surface of the model 
with 200 m and 100 m spacings, respectively. We compute 
the traveltimes for this acquisition configuration. We then 
add zero-mean Gaussian noise with 5 ms standard deviation 
to these traveltimes. The hierarchical Bayesian algorithm is 
supposed to reconstruct the value of noise standard deviation 
together with the subsurface models.  
 
We run 56 rj-MCMC chains, collecting 300,000 accepted 
samples for each of the chains. Then we disregard the first 
250,000 samples as burn-in and thin the chains, picking 
every 100th accepted sample. The misfit plots for all the 
chains are displayed in Figure 2. 

 
Using the 500 models from each of the chains remaining 
after burn-in removal and thinning, we compute the average 
velocity and standard deviation (Figures 1b and 1c). An 
example of one model extracted from the chains is displayed 
in Figure 1d. The average velocity model for this case 
approximates the correct velocity model quite well. The 
standard deviation has artifacts related to the 
parameterization, but it still shows the main trends – the 
velocity error increases with depth and is large on the sides 
of the model – the areas not illuminated by the survey 
geometry. As expected, the area of the most certain velocity 
estimation is following the good ray coverage region. 
 
The Bayesian framework also allows one to examine the 
velocity distributions for each point in the model. Figure 3a-
c shows the velocity distributions for the three points 
displayed in Figure 1a with matching colors. We observe 
that the velocity uncertainty increases with depth. The 
velocity distribution for a high-velocity anomaly (blue) is 
slightly skewed with regards to the true value. 

 
Figure 2: Root-mean square traveltime misfit for all computed 
chains. Note the logarithmic scale for both axes. The first 250,000 
samples are discarded from further analysis. 

 

 
Figure 1: True velocity model (a), average model over all chains 
(b), estimated standard deviation (c) and an example stochastic 
realization from one of the chains (d). Traveltimes in seconds for 
one of the shots are displayed over the models; the true traveltimes 
contain the added Gaussian noise. The dashed line in (a) shows the 
datum used for computation of static corrections shown below. 
Crosses show the points analyzed in Figure 3; dotted ellipses on the 
standard deviation plot outline the velocity anomalies. 

 

    
Figure 3: Posterior velocity distributions for three points indicated 
in Figure 1a (a-c) and the posterior distribution of picking error 
standard deviation (d). True values are shown by vertical grey 
lines. Note that each horizontal axis spans 1000 m/s in (a-c). 
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Bayesian tomography for near-surface 

Figure 3d shows the histogram of the noise level estimated 
by the method. The maximum of the histogram is close to 
the picking error we used for the modeled traveltimes. The 
Gaussian uncorrelated noise model may be too simple for the 
real data inversion. In principle, hierarchical Bayesian 
formulation allows more sophisticated noise models. 
 
Example – the uncertainty of static corrections 
 
Using these models, we attempt to analyze the uncertainty in 
the reconstruction of a low-relief structure. We use the 
standard assumptions involved in the model of static 
corrections, such as vertical-ray approximation (Cox, 1999). 
For illustration purposes, we consider a zero-offset geometry 
and directly map the static corrections computed for each 
surface location onto the low-relief structure. We pick a low-
relief structure with the closure of 30 ms. The structure 
perturbation caused by velocity anomalies is shown as a red 
line in Figure 4a. True statics provide a perfect 
reconstruction of the reflector (green line in Figure 4a). For 
the calculation of statics, we used a flat datum at a depth of 
650 m and a suitable replacement velocity. Then, we 
calculate the static corrections using the near-surface models 
obtained by tomography. First, we compute the static 
corrections from the average velocity model over all the 
chains and display the reconstructed horizon as a blue line in 
Figure 4a. While this reconstruction preserves the 
geometrical shape of the low-relief structure, we observe 

some oscillations with a maximum deviation of 7 ms. It is 
also important to note that the quality of the reconstruction 
depends on the traveltime picking error, which is quite 
optimistic in our example. Using a higher error would lead 
to a less accurate result. 
 
To get an estimate of the error in horizon locations, we take 
all the stochastic models generated by the algorithm and 
compute the static corrections from each of these models. It 
is important to note that all the analyzed models have low 
traveltime misfits from 4.9 to 5.3 ms, which is close to the 5 
ms picking error. So, all these models are approximately 
equal in terms of probability. As some of those models are 
less smooth (e.g., Figure 1d), the associated reflector 
reconstructions may be oscillating. Dotted black lines in 
Figure 4 show a few examples of the horizon reconstruction 
with those statics. We also compute posterior probability 
density functions (PDFs) of possible horizon reconstructions 
at every point along the horizon and plot these histograms as 
a background in Figure 4a. Note that the horizon 
reconstruction obtained with the average model (blue line) 
does not always coincide with the maximum of the PDFs. 
This is related to the fact that the PDF maximum represents 
the mode of the distribution, which can differ from the 
average (in our case, the average statics over all models are 
almost equal to the statics computed from the average 
velocity). We note that below the low-velocity anomaly, the 
PDFs are less focused, and the horizon geometries obtained 

 

 

 
Figure 4: (a) A low-relief structure before static corrections (red), after true static corrections (green), after static corrections generated from the 
average tomography model (blue) and three versions of reflector reconstruction computed from different low-misfit models in the chain (dotted 
black). A set of 1D histograms of possible horizon reconstruction for every X is displayed as a background; (b) same as (a), but with two wells 
added in the acquisition geometry; (c) comparison of 90% confidence intervals of reflector locations for two different types of acquisition. 
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Bayesian tomography for near-surface 

from the stochastic models (dotted black lines) tend to 
oscillate more comparing to the high-velocity anomaly. 
Such behavior can be attributed to the larger uncertainty of 
first arrival tomography problem in the presence of low-
velocity structures and velocity inversions (Liu et al., 2010); 
however, this effect is not as prominent here as we expected.  
 
Example - reducing the uncertainty by vertical arrays 
 
To study the near-surface velocities, seismic receivers can 
also be placed in shallow wells and be used in conjunction 
with the surface receivers. Smart DAS geometry used by 
Bakulin et al. (2017) is an example of such an on-demand 
acquisition geometry enhancement. Bayesian tomography 
can provide an understanding of the added value brought by 
the vertical receiver arrays in terms of the velocity 
uncertainty. To estimate the reduction of uncertainty 
provided by such acquisition, we repeat the experiment for a 
different acquisition geometry. We use the same sources, but 
we add two vertical receiver arrays directly in the centers of 
the velocity anomalies (Figure 5a). The wells have 
horizontal coordinates of 2,000 and 4,000 m; maximum 
receiver depth is equal to 650 m (the datum depth). The 
vertical arrays record all the shots in the survey. 
 
Figure 5 shows the average velocity model and the standard 
deviation for this geometry. While the average velocity is 
similar to the one obtained with surface receivers only, the 
standard deviation of the velocities is significantly lower. 
This reduction of errors is also clearly seen in Figure 4b, 
which shows the estimation of uncertainty of static 
corrections obtained using the vertical arrays in conjunction 
with the surface receivers. The increase in structural 
accuracy manifests itself in the improved reconstruction of 
the reflector (blue line in Figure 4b). The PDFs of possible 
reflector locations have narrower maxima, which more 
closely follows the true geometry of the low-relief structure. 
Analyzing the 90% confidence intervals shown in Figure 4c, 
we can observe that the vertical receiver arrays decrease the 
uncertainty below the anomalies – for example, the 90% 

confidence interval shrinks from more than 40 ms to 15 ms 
just below the low-velocity anomaly. 
 
Discussion 
 
The main drawback of the Bayesian seismic tomography is 
its computational cost. In the case of our 2D example, one 
chain runs for approximately 30 hours on one Intel Xeon 2.6 
GHz processor core. While a 3D example was demonstrated 
by Zhang et al. (2018), it is still unclear whether rj-MCMC 
tomography is feasible for exploration-scale 3D seismic, as 
the method’s complexity increases exponentially with the 
number of parameters. It was recently shown by Fichtner et 
al. (2019) that an alternative MCMC method, Hamiltonian 
Monte Carlo, may facilitate the transition to 3D. 
 
Another critical point is that we use static corrections as an 
estimate of the structural uncertainty. While still being 
widely used in practice, static corrections are a simple 
approximation. A more elaborate study would require 
conducting full-scale migrations of a synthetic dataset with 
the numerous velocity models generated by the Bayesian 
tomography and analyzing the uncertainty in the low-relief 
structure geometry on these migration results.  
 
Conclusions 
 
The Bayesian framework allows uncertainty estimation for 
the seismic tomography. We conduct a test of Bayesian first 
arrival tomography for a 2D exploration-scale near-surface 
refraction model. The tomography successfully estimates the 
reference velocity model and the velocity uncertainty at each 
point of the model. It is important to note that no initial 
model is needed for the estimation – we only used very wide 
uniform priors for the unknowns. 
 
These uncertainties are then used to estimate the error in 
static corrections and associated structural uncertainty for a 
low-relief structure with the closure of 30 ms for two 
different seismic acquisition geometries. The results of the 
tomography suggest that the receivers in the shallow wells 
significantly decrease the velocity uncertainty and, 
consequently, structural uncertainty. As the vertical receiver 
arrays, unlike conventional upholes, record all the sources in 
the survey, they decrease the velocity uncertainty not only in 
the well, but also around it. It is also important to note that 
one may use such an analysis before acquisition in order to 
pick the locations of the vertical arrays that decrease the 
uncertainty most effectively. 
 
Acknowledgments 
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Figure 5: Average velocity model over all the chains for the 
acquisition with vertical receiver arrays (a) and the estimated 
standard deviation (b). Traveltimes in seconds for one of the shots 
are displayed over the model. Acquisition geometry is shown in (a). 
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