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Abstract 
Traditional tomographic methods do not consider the uncertainties associated with near-surface 
velocities and static corrections and provide a deterministic solution to the estimation problem. 
However, these uncertainties significantly affect structural mapping and interpretation of seismic 
imaging results. On the other hand, Bayesian first-arrival tomography provides multiple 
near-surface models that fit observed traveltimes equally well and enable the study of potential 
solution distributions. We demonstrate this approach on a complex synthetic near-surface 
model, representative of arid environments, to quantify associated velocity and statics 
uncertainties. We evaluate two different parameterizations for subsurface velocities in the context 
of near-surface Bayesian tomography: Voronoi tessellation with natural neighbor interpolation 
and the more conventional Delaunay triangulation with linear interpolation. Our analysis shows 
that the Voronoi cell parameterization with natural neighbor interpolation is more appropriate 
for this problem. Finally, the new approach is applied to compare two alternative acquisition 
geometries comprising conventional surface receivers and surface receivers augmented with 
vertical receiver arrays. The results demonstrate that adding vertical receiver arrays to 
conventional surface receivers can significantly reduce the near-surface velocity uncertainty and 
thus increases the accuracy of the seismic imaging results. Furthermore, the study shows that 
Bayesian tomography can be used as a tool for evaluating different source and receiver geometries 
during the acquisition design stage. 
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structural imaging of target horizons requires very accurate 
near-surface velocities and corresponding long-wavelength 
static corrections. One of the main instruments for near- 
surface velocity reconstruction is a first-arrival traveltime to- 
mography that relies on arrival times of diving or refracted 
waves (Zhang & Toksöz 1998 ). The obtained tomography 
model can be used to compute static corrections or directly 
embedded into a depth velocity model for seismic migration. 

D
ow

nloaded from
 https://academ

ic.oup.com
/jge/article/20/4/751/7205503 by guest on 08 O

ctober 2023
1. Introduction 

Complex near-surface geology is one of the biggest chal-
lenges for land seismic data processing and interpretation
(Robinson and Al-Husseini, 1982 ; Keho & Kelamis 2012 ).
The accuracy of seismic imaging results strongly depends on
the near-surface velocity models (Nosjean et al. 2017 ), espe-
cially when mapping low-relief structures with typical verti-

cal closures of < 60 m (or ∼30 ms). In such cases, reliable 
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n industry practice, seismic tomography is typically con-
ucted deterministically, resulting in a single velocity model
ighly dependent on the initial model and various user-
efined parameters such as regularization or smoothing. As a
esult, the uncertainty associated with the estimated solution
s not evaluated. At the same time, seismic uncertainty is a
ritical factor in quantifying different exploration risks (Osy-
ov et al. 2013 ; Bakulin et al. 2017 ; Nosjean et al. 2017 ). 
Estimating uncertainty in near-surface tomography is

ssential in accurately mapping subsurface structures and re-
ucing exploration risks. One approach is to conduct mul-
iple tomographic runs with different parameters, providing
reliminary insights into solution variability (Wang 2003 ;
ey et al. 2013 ; Silvestrov et al. 2023 ). However, a more rig-
rous and comprehensive approach is through a Bayesian
ramework, resulting in a vast collection of models that fit ob-
erved traveltimes equally wel l and al low for calculating vari-
us solution statistics (Rawlinson et al. 2014 ). Such a method
nables a more accurate estimation of uncertainties and helps
ecision-making in exploration activities. A variety of meth-
ds have been used previously to obtain probabilistic solu-
ions for the tomographic problem. These methods include
amiltonian Monte Carlo (Fichtner et al. 2019 ), variational
nference techniques (Zhang & Curtis 2020 ) and reversible-
ump Markov Chain Monte Carlo (rj-MCMC) (Bodin et al.
012 ; Egorov et al. 2020 ). Among these, the rj-MCMC
ethod has been extensively employed to analyze different
eld datasets in the context of global seismology (Bodin &
ambridge 2009 ; Galetti et al. 2015 ; Ryberg & Haberland
018 ). This method involves defining velocities on a set of
odes where their positions are also treated as unknowns. As
 result, the tomographic engine conducts inversion simul-
aneously for the values of velocities and node locations. To
ake the algorithm computationally feasible, the number of
odes in this method is typically much smaller than in con-
entional ray-based tomography with regular grids. As a re-
ult, velocity values must be estimated using interpolation
nd extrapolation methods based on a chosen parameteriza-
ion away from these nodes. 
The original formulation of the Bayesian tomography
ith rj-MCMC uses Voronoi tessellation as a parameter-
zation method and implies a nearest-neighbor interpola-
ion. This approach results in a velocity field represented
s a piecewise-constant function, often failing to provide
eologically feasible models. Several other parameteriza-
ions were suggested for Bayesian tomography to more ac-
urately describe subsurface velocities. For example, Bel-
adj et al. ( 2018 ) invoke Johnson–Mehl tessellation, which
lso results in piecewise-constant velocities but with more
omplex shapes of cell boundaries. The authors also in-
roduced a Gaussian kernel-based parameterization, which
ields smoother models. However, both parameterizations
equire additional per-node parameters, such as cell implan-
752 
ation times for the former and Gaussian kernels widths
or the latter, leading to a more complex inversion process.
awkins et al. ( 2019 ) examined two parameterizations that
se Delaunay triangulation and either linear or Clough–
ocher interpolation. Both methods yielded smooth velocity
odels and reduced parameterization-induced errors when
he true velocity was smooth. Egorov et al. ( 2021 ) suggested
n alternative parameterization based on Voronoi cells but
tilizing the natural neighbor interpolation (Sibson 1981 ),
nd demonstrated its benefits through a simplified near-
surface model example. 

One of the possible applications of the Bayesian tomogra-
hy framework is to investigate how different source/receiver
onfigurations affect the accuracy and uncertainty of tomog-
aphy results (Egorov et al. 2022 ; Watts et al. 2023 ). To re-
uce the near-surface uncertainty in complex areas, a viable
ption is to employ a combined acquisition geometry that
onsists of surface sensors and vertical receiver arrays. Dis-
ributed acoustic sensing (DAS) can be used to easily imple-
ent such a survey with a single continuous fiber-optic ca-
le connecting multiple vertical arrays or upholes. This sur-
ey method is called smart DAS uphole acquisition and has
een studied by Bakulin et al. ( 2017 , 2018 ). The method al-
ows for the simultaneous recording of surface data and ver-
ical data from the same shots. As a result, such a dataset con-
ains additional transmitted/refracted raypaths and delivers
raveltimes at multiple buried receivers inside the near sur-
ace at many different angles. This results in rich i l lumination
overage for depth imaging and accurate near-surface charac-
erization. The smart DAS uphole acquisition technique also
mproves velocity estimation accuracy through deterministic
rst-arrival tomography (Alshuhail et al. 2019 ). Egorov et al.
 2022 ) utilized Bayesian tomography to conduct an initial as-
essment of the precision and certainty enhancements made
ossible by DAS vertical receiver arrays. 
Building on the prior research by Egorov et al. ( 2020 ,

021 , 2022 ), we perform a more rigorous investigation of
he application of Bayesian first-arrival tomography for near-
surface characterization in the exploration context. First, we
pply the method to a synthetic dataset generated from a re-
listic SEAM Ar id model (Or istaglio 2012 ; Bakulin & Silve-
trov 2021 ), representing near-surface challenges in a desert
nvironment. We evaluate the performance of a conventional
inear interpolation method using Delaunay triangles for the
elocity model and compare it with an alternative natural
eighbor interpolation technique based on Voronoi cells.
he latter approach yields better results than the former. Sub-
equently, we apply the Bayesian approach to investigate the
ffect of vertical arrays on reducing velocity estimation uncer-
ainty. Finally, we incorporate this uncertainty into the seis-
ic processing workflow and evaluate the accuracy of long-
avelength static corrections, thereby analyzing their impact
n imaging and mapping deep low-relief structures. 
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2. Method 

We utilize a 2D hierarchical reversible-jump Markov Chain
Monte Carlo (rj-MCMC) technique proposed by Bodin et al.
( 2012 ). The method is based on Bayes’ theorem, which links
p ( m | d ) , the posterior probability of the model m given the
data d , with prior knowledge p ( m ) and the likelihood func-
tion p ( d |m ) (Wang 2016 ): 

p ( m | d ) ∝ p ( d |m ) ⋅ p ( m ) . (1)

The likelihood defines how well the model fits the data. We
use the Gaussian likelihood (Tarantola 2005 ; Bodin et al.
2012 ): 

p ( d |m ) = 

1 √ 

( 2 𝜋) M ||C e 
||

⋅ exp 
{ 

− 

1 
2 
(
[ g ( m ) − d ] T C 

− 1 
e [ g ( m ) − d ] 

)} 

. 

(2)

For the described problem, d is the vector of measured trav-
eltimes of length M , g( m ) are the traveltimes computed for
the model m and C e is the covariancematrix of the data noise.
If the noise is assumed to be Gaussian and uncorrelated, this
matrix can be replaced by a diagonal matrix, C e = 𝜎

2 
n I , where

𝜎n is the standard deviation of arrival picking error and I is the
identity matrix. 

We parameterize the subsurface by N unstructured nodes.
Each of the nodes is defined by the coordinates x i and z i and
the velocity value v ( x i , z i ) , all of which are the parameters
updated by the algorithm. The velocity model in the whole
domain is computed from this set of nodes by a chosen pa-
rameterization algorithm. Traditionally, Voronoi parameter-
ization has been used for this purpose, where the velocities
between the nodes are interpolated by the nearest-neighbor
algorithm. An alternative parameterization involves comput-
ing a Delaunay triangulation from the nodes’ coordinates and
interpolating the speed linearly within the triangles, which
is effective for smooth velocity models and refraction ge-
ometry (Ryberg & Haberland 2018 ). As an alternative, we
propose parameterizing the considered problem using a dis-
crete version of the natural neighbor algorithm. The natural
neighbor is an interpolation technique proposed by Sibson
( 1981 ), which produces smooth interpolant functions with-
out requiring additional user-defined parameters. The natu-
ral neighbor method computes the interpolant velocity func-
tion ̂v at an arbitrary location ( x, z ) as follows: 

v̂ ( x, z ) = 

N ∑
i = 1 

w i ( x, z ) v ( x i , z i ) ; w i ( x, z ) 

= u i ( x, z ) 
/ N ∑

i = 1 
u i ( x, z ) . (3)
753
Here, w i ( x, z ) are the weights computed from the areas u i .
Such areas define the extent to which one Voronoi cell (corre-
sponding to x in the tessellation { ( x i , z i ) , ( x, z ) } N 

i = 1 ) borr ows
from the Voronoi cells of the original { ( x i , z i ) } N 

i = 1 tessella-
tion. Note that we do not compute these weights geometri-
cally but use a more effective scatter approach proposed by
Park et al. ( 2006 ). The scatter approach is a numerically ef-
fective way of calculating the interpolant velocity in equation
( 3 ), which increases a computation speedup by looping over
the tessellation cells { ( x i , z i ) } instead of output grid locations
{ ( x, z ) } . Models provided by natural neighbor interpolation
are smooth and do not require additional input parameters.
They contain no overshoots or undershoots, meaning that
the velocity values in the model are always between the mini-
mum and maximum velocities at the nodes, controlled by the
priors. Finally, in contrast to linear interpolation based on the
Delaunay parameterization (Ryberg & Haberland 2018 ), the
natural neighbor parameterization seamlessly extrapolate ve-
locity values away from the nodes and does not require extra
conditioning or addition of the nodes on the model bound-
aries. 

In addition to the velocities at the nodes and node coor-
dinates, we also need to estimate the number of nodes in the
model N (a small number compared to the number of reg-
ular grid cells) and the standard deviation of picking noise
𝜎n . To improve the convergence of the Markov chains, we use
the coordinate scaling as suggested by Zhang et al. ( 2018 ) for
all the compared parameterizations. We apply a scaling fac-
tor of four to the vertical coordinate when obtaining the ve-
locity grid from the nodes, which makes the grid cells along
the vertical axis artificially ‘further away’ from each other for
the interpolation algorithm. This scaling promotes horizon-
tal structures in the stochastic models. 

We use multiple noninteracting Markov chains. Each
chain gets an initial model from the priors. We use wide uni-
form prior distributions for velocity, 𝜎n and N . We allow
the velocities to change from 700 to 8000 m s − 1 , 𝜎n from
0.1 to 100 ms, and N from 11 to 901. At each step of the
chain, either a new position or velocity is proposed for one
of the nodes, or the birth/death of one of the nodes happens,
or 𝜎n changes. The new model is then accepted or rejected
by comparing its probability to the probability of the cur-
rent model. A version of the Metropolis–Hastings acceptance
cr iter ion modified for the reversible-jump method (Green
1995 ) is used for comparison. The cr iter ion sometimes may
accept a model with the larger misfit, which results in a chain’s
random-wal k-li ke behavior and allows the chain to continue
sampling from the posterior model distribution instead of
converging to a single model. It is important to note that
we use log-likelihoods and log-probabilities for practical cal-
culations and comparisons to avoid the issues of numerical
overflow. 
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Figure 1. Vertical sections of true (a) and smoothed (b) 2D SEAM Arid velocity model used in the study. Part (a) also displays the datum (288 m) used 
for statics computation and the locations of 300 m deep vertical arrays used in the inversion. 

Figure 2. Examples of the first-arrival picks (red) on common-shot seismic gathers (CSG) from the surface and buried data: (a) surface CSG without 
shingling, (b) surface CSG with shingling and (c) buried array CSG. 
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After collecting enough chains, we analyze the accepted
odels and estimate the velocity uncertainty by comput-

ng the mean, various moments (e.g. standard deviation), or
y directly looking at velocity distributions for each of the
ocations in the subsurface. Finally, we compute the trav-
ltimes with an eikonal solver. We do a complete eikonal
omputation at every step of the algorithm, in contrast to
he approximation by Bodin et al. ( 2012 ), who used in-
er and outer loops, computed rays in the outer loop and
pdated the model with fixed rays in the inner loop. Ac-
urate recomputation takes extra time but allows us to
void tuning the inner loop length. Galetti et al. ( 2015 ) ap-
lied a similar algorithm modification. They demonstrated
754 
hat recomputing the rays for each model produces differ-
nt estimated uncertainties compared to the approximate
ethod. 
Fundamental restrictions of traveltime tomography also

eed to be considered when obtaining velocity estimates. For
xample, it is well-known that refraction first-arrival tomog-
aphy with surface sources and receivers struggles in the pres-
nce of internal low-velocity layers when the so-called ‘shin-
ling’ phenomenon occurs. In that case, early arrivals become
iscontinuous, forming several branches referred to as ‘shin-
les’ (Knox 1967 ; Shen et al. 2012 ). First, ‘shingling’ makes
he arrivals harder to pick. Second, traditional eikonal solvers
annot model the correct traveltimes after the first discon-



Journal of Geophysics and Engineering (2023) 20 , 751–762 Silvestrov et al . 

Figure 3. Mean velocity models (a, b) and standard deviations (c, d) for linear interpolation based on Delaunay triangulation (a, c) and natural neighbor 
(b, d) interpolation based on Voronoi tessellation. Only surface data are used for inversion. 
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tinuity. Full-waveform modeling can replicate shingled early
arrivals; however, no fast modeling approaches can model
shingling in traveltimes. 

In this study, we use an eikonal solver as its fast com-
putation of traveltimes enables Bayesian tomography in the
first place. Several strategies can be used when picking shin-
gling. The most obvious option is to disregard the algorithm
shortcomings and invert all the picked traveltimes, including
shingled branches. This approach may be acceptable when
the shingling is not severe. Another option is to invert only
the first ‘shingle’ and disregard the picked traveltimes after
the first discontinuity, thus building a velocity model only
down to the first velocity inversion. Alternatively, one may
755
invert only the last ‘shingle’, effectively replacing the upper
part of the section with a different structure. Finally, other
approaches exist to picking in severe shingling, e.g. picking
a consistent velocity gradient that merges with a deep re-
fractor (Diggins & Hampson 2021 ). Here, we follow the
simplest strategy and keep all the picks in the tomography:
this allows for a simplified automatic picking workflow with-
out manual editing, at least for the synthetic dataset used.
While it is theoretically possible to design an algorithm aware
of such modeling errors (Meles et al. 2022 ) or change the
problem to waveform inversion, such approaches remain too
costly for practical applications. Therefore, we focus on a
more straightforward approach based on an eikonal solver
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Figure 4. A comparison of picked and computed traveltimes in the mean velocity model for linear (a) and natural neighbor (b) interpolations. 
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nd demonstrate that it could be helpful in practical applica-
ions in models with velocity inversions. 
After Bayesian tomography, we compute static correc-

ions from each near-surface velocity model sampled by the
j-MCMC, analyze their variation and estimate associated
tructural uncertainty for a selected low-relief structure of
nterest. 

. Results 

.1. Data overview 

sing the section from the SEAM Arid velocity model (fig- 
re 1 a) (Oristaglio 2012 ; Bakulin & Silvestrov 2021 ), we cre-
te the 2D acoustic synthetic dataset to evaluate the Bayesian
omography algorithm. The model contains complexities
ypical of arid environments with multiple velocity inver-
756 
ions. The model includes alternating high and low-velocity
ayers (carbonates vs. sands/shales) and an additional low-
elocity zone in the central part of the model correspond-
ng to a karst field. First, we model the seismic gathers with
50 m shot spacing and 25 m surface receiver spacing. Then,
o estimate the impact of vertical receiver arrays, we add
hem to the acquisition with 500 m lateral spacing and 6.25
 receiver spacing along the vertical arrays. The maximum
epth of the arrays is 300 m, and their geometry is shown in
gure 1 a. Fi gure 1 b shows a smoothed version of this veloc-
ty model, provided for visual comparison with tomography
esults obtained next. The smoothing took place in the slow-
ess domain, and the standard deviation of the Gaussian used
or smoothing was chosen so that this model is visually com-
arable to the velocity models reconstructed by tomography.
We pick first arrivals using a threshold-based algorithm on

ommon-shot gathers with the surface (figure 2 a and b) and
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Figure 5. A comparison of several stochastic velocity models from the linear (left) and natural neighbor (right) parameterizations. 

Figure 6. Histograms of traveltime errors computed using mean models 
for linear (red) and natural neighbor (blue) parameterizations. 
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buried receivers (figure 2 c). We use 2000 m as a maximum
lateral offset for picking on surface data and 1000 m maxi-
mum lateral offset for the buried array data. These traveltimes
picked on the synthetic data are input traveltimes to the to-
mography algorithm. 

3.2. Velocity uncertainty 

First, we run two tomography experiments for the surface
seismic acquisition to compare the linear interpolation based
on Delaunay triangulation and natural neighbor interpola-
tions based on Voronoi cells. We compare the mean of ve-
locity models, their standard deviations (figure 3 ), travel-
times in the mean model (figure 4 ) and the stochastic ve-
locity models (figure 5 ). One can observe that the standard
deviations of the velocities identified by the linear interpola-
tion are higher than the natural neighbor interpolation show-
757
ing that the solution is less certain. Such behavior is likely
due to the treatment of the model edges at the surface or be-
cause the chains have not fully converged in this case. The
mean velocity model for the natural neighbor interpolation
has a lower root-mean-square traveltime misfit (7 ms for nat-
ural neighbor vs. 14 ms for linear interpolation), showing that
such a mean model is more accurate. This can also be ob-
served by comparing the computed and picked traveltimes
in Figure 4 . The histograms of the traveltime errors in the
mean models shown in Figure 6 demonstrate overall lower er-
rors of the natural neighbor parameterization. The histogram
for the linear case also displays skewed behavior in the direc-
tion of negative errors, which suggests that this mean model
provides overall larger traveltimes (slower velocities) com-
pared to the ground truth. All of this indicates that the natural
neighbor scheme possesses a lower ‘parameterization error’
(Hawkins et al. 2019 ). Figure 5 shows the stochastic mod-
els for the tested parameterizations. The boundaries between
the triangles in the linear parameterization can be observed
in the stochastic models. Also, while the stochastic models
in figure 5 osci l late strongly (particularly at depth, where ray
coverage is diminishing), they all provide a similar fit and
possess identical traveltimes. The traveltime misfit plots for
all the accepted samples in the chains are shown in figure 7
for both parameterization types. These plots suggest quicker
and more stable convergence for the case of natural neighbor
parametrization. 

It is clear from the rapidly increasing velocity’s stan-
dard deviations with depth that velocity inversions and low-
velocity anomalies complicate the inverse problem solution.
Therefore, we add the first arrivals picked on the vertical re-
ceiver array data to the surface dataset to improve the veloc-
ity estimation at the deeper part of this near-surface model.
Then, based on previous results showing the super ior ity of
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Figure 7. Comparing the traveltime misfit progression for the linear (red) and natural neighbor (blue) parameterizations. The increasing sample num- 
bers represent the iterations. Observe smoother behavior and lower misfit achieved by the natural neighbor approach. The plot only displays the accepted 
elements (models) of the chains. 

Figure 8. The mean velocity model (a) and standard deviations (b) resulting from the Bayesian tomography that jointly use surface data and 300-m 

deep vertical receiver arrays as shown in figure 1 a. 

t  

i  

s  

s  

m  

a  

t  

a  

d
 

h  

v  

v  

t  

p  

f  

t  

s  

e  

i  

c  

2  

h  

a  

b  

v

D
ow

nloaded from
 https://academ

ic.oup.com
/jge/article/20/4/751/7205503 by guest on 08 O

ctober 2023
he natural neighbor interpolation, we apply it to all remain-
ng tomographic experiments. The mean velocity models and
tandard deviations corresponding to the tomography re-
ults with the added upholes are displayed in figure 8 . The
ean velocity models show a more pronounced low-velocity
nomaly at X = 5000 m (red arrow) corresponding to a kars-
ified field and a low-velocity layer that starts at ∼200 m (blue
rrow). With the addition of receivers at depth, the standard
eviation at depth decreases. 
These results demonstrate that the vertical arrays provide

igher resolution and improve the accuracy of the estimated
elocity models: the mean velocities are closer to their true
alues from the actual model, whereas the standard devia-
758 
ions are lower. Another way to confirm this is to assess the
osterior probability distribution functions (PDF) estimated
rom the tomography between three types of acquisition and
he true velocities (figures 9 and 10 ). PDFs for surface data
how a rapid uncertainty increase below the low-velocity lay-
rs and anomalies (figure 9 ). The addition of vertical arrays
mproves the velocity estimate at depth and decreases the un-
ertainty, particularly for the velocity inversion occurring at a
00 m depth for X = 3000 and X = 4700 m (figure 10 ). The
igher amount of detail provided by the tomography with
dded vertical arrays manifests itself in the increased num-
er of nodes in the models estimated by tomography with the
ertical arrays (figure 11 ). 
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Figure 9. A comparison between the true velocities versus depth (red) and the mean velocity obtained from tomography (solid green). The velocity 
errors are estimated as three standard deviations and shown as green fil l between dashed green lines. These are overlaid over the posterior probability 
density functions (PDFs, shown in grayscale colors) of velocity estimated by tomography at three lateral locations in the SEAM Arid model, using surface 
receivers only. 

Figure 10. Same as figure 9 but for joint inversion of surface and vertical array (300 m) data. 
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Note that even in the part of the model estimated with
high accuracy according to the predicted uncertainty (very
near surface), the tomography sti l l recovers only a smooth
approximation of the actual velocity. Due to strong vertical
heterogeneity, some portions of the true velocity profiles fall
outside the estimated uncertainty ranges (figures 9 and 10 ).
This effect is not unique to our results and can be observed in
other works on transdimensional Bayesian tomography (e.g.
Huang et al. 2021 ). This is caused by the nature of the con-
sidered tomographic problem capable of inverting relatively
smooth velocity models without thin layers. Sti l l, whi le the
uncertainty estimates do not assign the true structure a high
probability, they are sti l l instrumental in assessing the results.
In particular, near-surface tomography is often used to esti-
mate static corrections. The multiple models provided by the
algorithm, which all fit the observed traveltimes equally well,
can be used to analyze these corrections and their impact on
the mapping of deep structures. We provide an example of
such an analysis in the next section. 
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3.3. Uncertainty of static corrections 

Figure 12 compares the true static corrections for the cho-
sen datum of 288 m (green line) with the static corrections
derived from the stochastic velocity models obtained by the
tomography. Static corrections corresponding to the mean
velocity models are shown as red lines. The PDFs of the stat-
ics are plotted as the background image. We estimate the un-
certainty as 99% symmetric confidence error bars taken from
the PDFs and shown as dashed red lines. The considered
datum of 288 m is below several low-velocity layers and
anomalies, so the static corrections for this datum have high
uncertainty in the case of surface acquisition (170 ms maxi-
mum uncertainty at X ≈ 1750 m in figure 12 a). However, the
true statics stay within the error bars, suggesting that the un-
certainty estimates are meaningful. Note that the mean veloc-
ity model estimated by tomography sti l l provides reasonably
accurate statics despite high uncertainty (i.e. the statics com-
puted from the mean model shown as the red line are close
to the actual statics in green). 
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Figure 11. Posterior probability density functions (PDFs) shown for the 
number of nodes in the model obtained from surface receivers only and 
from the combined acquisition with both surface receivers and vertical ar- 
rays of 300 m deep. The higher number of nodes in the latter case suggests 
that the subsurface models estimated by combined acquisition are better 
resolved with more detail. 
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Introducing the vertical arrays (figure 12 b) decreases the
ncertainty significantly (e.g. at X ≈ 1750 m, the 99% con-
dence error bars shrink from 170 to 20 ms), and the true
tatics remain within the estimated error bars almost every-
here. Note that the area of maximum uncertainty relocated
o around X ≈ 4800 m and corresponds to the low-velocity
nomaly being crossed by the datum (compare figures 12
nd 1 ). 
igure 12. The uncertainty of static corrections estimated from the stochasti
ifferent acquisition scenarios: (a) surface acquisition and (b) the simultane
00 m. The datum used for these analyses is at 288 m. 
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Considering a hypothetical low-relief structure with a ver-
ical closure of 30 ms, the 170 ms uncertainty in the long-
avelength statics solution obtained from only surface data
akes such an anticline a very risky prospect. By contrast, the

nversion of data augmented with vertical arrays possesses de-
reased uncertainty of 20 ms (less than the expected closure)
nd provides a significantly improved structure’s location and
hape. This demonstrates that the combined acquisition of
urface seismic and vertical receiver arrays can decrease the
isks when exploring for low-relief structures under a com-
lex near surface. 

. Discussion 

he primary limitation of Bayesian seismic tomography is
ts high computational cost. In the cases presented, a single
hain requires ∼6 hours to run on one Intel Xeon 2.6 GHz
rocessor core for surface acquisition in the aforementioned
odel. Overall, the current 2D tomography code, with op-
imized parameters, takes approximately eight hours to run
n a 32-core machine. To simplify the prediction of full-scale
D Bayesian tomography runtime, we compared the compu-
ation times of the 2D eikonal solver with the corresponding
D solver. We generated 2D and 3D near-surface models with
ypical exploration seismic dimensions of 10 km lateral ex-
ent and a maximum depth of 1 km for both models. One shot
oint computation in 2D takes ∼0.007 seconds, on average,
ased on 100 computations. However, the corresponding
c velocity models obtained through Bayesian tomography is presented for 
ous acquisition of surface seismic and vertical array data with a depth of 
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computation time for the 3D version is ∼100 times longer, at
0.73 seconds. 3D tomography requires modeling more shots
(at least an order of magnitude higher comparing to 2D)
and more complex models. The latter wi l l result in more un-
knowns required for the transdimensional method, leading to
an additional increase in computational time, which may be
the most significant factor. Estimating this factor in advance is
challenging. However, assuming it is at least another order of
magnitude, the computational complexity of 3D tomography
can be considered at least four orders of magnitude higher
than the 2D example presented. Although a 3D application
was demonstrated by Zhang et al. ( 2018 ), the feasibility of us-
ing rj-MCMC tomography for exploration-scale 3D seismic
studies is yet to be established. Fichtner et al. ( 2019 ) recently
demonstrated that an alternative MCMC method, Hamilto-
nian Monte Carlo, may improve the inference speed. 

This study is focused on estimating static corrections
that are commonly used in time processing and imaging.
Although widely used in practice, statics is a simplified ap-
proximation. A depth imaging study that aims to estimate
structural uncertainty would require conducting full-scale
migrations of a synthetic dataset with the numerous velocity
models generated by the Bayesian tomography and analyzing
the corresponding structural uncertainty. 

The use of the assumed Gaussian distribution for un-
correlated picking errors may be considered simplistic, and
further studies are necessary to determine the extent of
the model’s applicability. Likewise, incorporating first-break
picking errors and distribution (manual and auto-picking
algorithms) could enable more realistic uncertainty estima-
tion. The emergence of machine-learning-based solutions for
first-break picking (Duan & Zhang 2020 ) may facilitate fur-
ther investigations in this area. 

The parameterization and algorithms used in Bayesian in-
ference for geophysical problems can significantly affect the
results, as shown in studies by Zhang & Curtis ( 2022 ) and
Zhao et al. ( 2022 ). To avoid subjective analysis of the results,
Arnold & Curtis ( 2018 ) suggested interrogating the Bayesian
solutions to answer general questions about subsurface struc-
tures. In this study, we compare and contrast the static correc-
tion distributions obtained from different parameterizations
of the Bayesian tomography results, which can be considered
a form of interrogation. 

5. Conclusions 

We investigate the efficacy of Bayesian first-arrival tomogra-
phy for estimating near-surface velocity models in arid en-
vironments. The tomography yields a range of models that
accurately match the observed traveltimes and identifies the
velocity uncertainty at each location on the grid. The esti-
mation process does not require an initial model except for
broad prior intervals utilized to limit the unknown veloci-
761
ties. We demonstrate the benefits of combining the Voronoi
cell parameterization with the natural neighbor parameteri-
zation in modeling. Compared to the conventional Delaunay
triangulation-based linear interpolation, our method gener-
ates stochastic models that are naturally smooth, with no
overshoots or undershoots, and requires no additional pa-
rameters. Both parameterizations produce velocity estimates
that fit the data. However, in the realistic SEAM Arid model
example we demonstrated, the natural neighbor parameter-
ization provides lower velocity uncertainty than linear in-
terpolation. Furthermore, the mean velocity model in this
parameterization provides a lower traveltime misfit showing
that the results are more accurate. 

The Bayesian tomography algorithm is applied to demon-
strate the reduction in uncertainty resulting from the simulta-
neous acquisition of surface seismic data and vertical receiver
arrays. Results indicate a significant decrease in velocity un-
certainty and, consequently, the uncertainty of static correc-
tions and imaging when such arrays are used together with
surface data. The observed vertical uncertainty in two-way
travel times is reduced from 170 to 20 ms, which is critical
for delineating low-relief structures. Additional ly, unli ke con-
ventional upholes, vertical receiver arrays record offset data
from all sources in the survey, reducing imaging uncertainty
beneath and away from the array locations. The results show
that Bayesian tomography can assist in acquisition design by
identifying the optimal placement of vertical arrays for max-
imum uncertainty reduction. 

Conflict of interest statement. None declared. 
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