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Summary 

 
We evaluate the feasibility of predicting seismic velocities 

based on drilling dynamics. In practice, drilling is often 

inefficient, resulting in the drilling dynamics losing 

correspondence with the mechanical energy required to 

penetrate a rock mass. Based on real data for a 1400 ft 

interval intersecting carbonate, clastic, and anhydrite 

formations, we show that downhole accelerometers provide 

sufficient information to distinguish the effects associated 

with the “drillstring noise” and rock properties. To this end, 

we modified the forward stagewise regression to provide a 

quantitative measure of the importance of various 

measurements while drilling. The three most critical features 

were found to be the intensity of axial vibrations (RMS of 

the accelerations in the 35-170 Hz range), mean specific 

mechanical energy (related to the drilling efficiency), and 

the rate of drill-bit penetration. The final regression equation 

provides much better goodness-of-fit for the challenging 

geological conditions compared to existing methods.  

 

Introduction 

 

Drilling efficiency is a crucial concern for hydrocarbon 

recovery because extra time and/or incidents mitigation 

often incur high costs. Accurate knowledge of the 

mechanical properties of the subsurface is necessary to find 

the appropriate equipment and drilling parameters for a 

given formation. Usually, the mechanical model relies on the 

sonic logs from adjacent wells. For a nonreservoir part of the 

section, these logs are very limited and are typically only run 

in appraisal wells located tens of kilometers apart. 

Extrapolation of such sparse data may easily fail due to the 

spatial variability of geology.  

 

To facilitate timely decision-making at the rig, one needs to 

update the estimated properties as the drill bit penetrates the 

rocks. The formation stiffness has to be estimated in real-

time from indirect measurements while drilling (MWD), as 

sonic logging while drilling (LWD) is not widely used. Any 

type of LWD, in general, is rarely available outside the target 

formation, so petrophysical correlations between gamma ray 

(GR) or other nonelastic measurements provide only limited 

coverage along boreholes. Instead, we propose a 

methodology that relies on the relationship between the 

dynamics of drill-bit penetration through rocks and their 

stiffness.  

 

In a controlled laboratory environment, the rate of 

penetration (ROP) reflects the rock stiffness (e.g., Teale, 

1965). In the field, drilling may easily become inefficient 

with its dynamics having little to do with the mechanical 

energy required to penetrate a rock mass. For this reason, 

ROP-based models calibrated in a laboratory (e.g., Hareland 

and Nygaard, 2007) can be inaccurate and are often 

applicable only within a narrow range of drilling parameters. 

Near-bit vibrations (NBV) may provide sufficient 

information to distinguish the signal from crushing rock and 

drillstring-related noise. We believe that the physics may be 

too complex to have a universal analytical model relating the 

drilling parameters, NBV, and elastic moduli of the rock. In 

contrast, local regressions can gain reliable predictive power 

when trained on a sufficient number of existing wells with 

similar drilling programs. Machine learning algorithms have 

proven successful when applied to processes with obscure 

physics behind the observed data, like biomedical sciences 

and physical chemistry (e.g., Hastie et al., 2013). Here, we 

study the feasibility of applying machine learning algorithms 

to the identified problem using field data from a recent field 

trial of the DrillCAM system (Bakulin et al., 2019).  

 

Dataset from the first DrillCAM trial 

 

The DrillCAM project focuses on the research and 

development for a system that integrates geophysical 

measurements while drilling into real-time positioning of the 

drill and prediction of formation properties near and ahead 

of the bit. For the first field trial, data was acquired in a 

deviated section (inclination ranging from 10o to 70o) drilled 

by an 8.5” polycrystalline diamond compact (PDC) bit 

through high-contrast carbonate, clastic and anhydrite 

intervals. NBV were recorded at the drill sub by 3C 

accelerometers with sampling of 1.5 kHz and dynamic range 

±200g. In this study, we focus on analysis of the axial (along 

the drillstring) component of the vibrations shown in Figure 

1a. The spectrogram has a clear striped texture in both 

vertical and horizontal directions. The former one occurs due 

to changing dynamics of the drilling process, e.g., time 

intervals corresponding to the drillstring augmentation (the 

kinks in the bit-depth curve) are blank and intervals of the 

inefficient drilling feature frequent bursts of energy.  

 

The horizontal bands correspond to the resonances that occur 

due to interference of the signals in various components of 

the drillstring, such as the bottomhole assembly, and 

periodic rotation of the drill bit (see Figure 1b). A rigorous 

classification of the major controlling factors within 
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different frequency ranges is challenging. Typically, lower 

frequencies and high-intensity signals correspond to 

inefficient drilling regimes (Macpherson et al., 2015). The 

eigenmodes up to 40 Hz correspond to multiples of 

revolutions per minute (RPM). Seismic-while-drilling 

literature offers several phenomenological models to 

estimate the bandwidth of seismic emission from the 

interaction of the PDC bit with rock (e.g., Poletto and 

Miranda, 2004) that predict maximum frequency around 120 

Hz for the used drilling parameters. High-frequency 

vibrations  are likely related to the drillstring characteristics. 

Eventually, we analyze RMS energy in a 30 s windows for 

three frequency ranges of the axial NBV (Figure 1b): low 

0.1-35Hz (g1), middle 35-150Hz (g2), and high 170-500Hz 

(g3).  

 

 

The 1400 ft test interval has wireline sonic (VP and VS) and 

density  logs that we use as ground truth for training a 

regression model. Besides NBV measurements, the set of 

input MWD logs is supplemented by the drilling parameters 

recorded by sensors deployed at the drilling rig: ROP, RPM, 

weight on bit (WOB), and torque (TOR). A wireline GR log 

that was run after the well completion serves as a proxy to 

LWD GR. Eventually, we would like to have a single 

predictor for the entire interval regardless of the wide spread 

in the velocities between the carbonate, clastic, and 

anhydrite formations. 

 

Existing approaches 

 

The idea to infer rock stiffness from drilling dynamics is not 

new and has several proposed methods that range from 

physics-based to purely data-driven. Waltman and Laking 

(2018) model the NBV as seismic emission from the drill-

bit teeth grinding rocks. Yang (2019) identifies the type of 

rock using a wavelet analysis of the NBV. Both methods 

focus on the exclusive use of vibrations alone. We argue that 

one should augment the vibrations with drilling parameters 

to account for the influence of the drilling regime. In such a 

manner, Naville et al. (1996) propose a universal heuristic 

approach to the prediction of the elastic properties called 

SNAPLOG. The authors introduce a new parameter, the 

Pseudo-Impedance (PI):  

 

 PI =
𝑅𝑀𝑆𝑎𝑐𝑐

RPM×ROP
, (1) 

 
where RMSacc denotes a window estimate of the RMS 

average of the axial accelerometer in the entire frequency 

range. PI is expected to be equal to the acoustic impedance 

of the penetrated rock mass (AI = 𝜌 ∙ 𝑉P). One issue with 

such a simple ad-hoc equation is that it lacks the flexibility 

to incorporate the vast range of instrumentation types,  

drilling regimes and lithology variations that may result in 

similar values of RPM, ROP, and NBV energy. For our data 

set, R-squared between the PI and AI is only R2=0.2. 

 

Evaluation of the importance of the parameters 

 

As indicated in the introduction, we anticipate that data-

driven regression techniques may provide more robust 

predictions when offset wells have sufficient amount of 

training data. The first step has to do with selection of an 

appropriate group of machine learning algorithms for a 

particular dataset. Essentially, we need two interconnected 

components: (1) a set of the predictive features 

(combinations of the MWD parameters that are used as 

input), and (2) a functional form of the relationship (e.g., 

multilinear regression, neural network etc.). The DrillCAM 

 

Figure 1: Spectral composition of the near-bit vibrations recorded during the first DrillCAM test. The data shown corresponds to the studied 
interval that has sonic logs. The time-frequency distribution of energy has a clear striped pattern (a), where the horizontal bright bands indicate 

resonance frequencies in the drillstring and forced oscillations by the periodic oscillations of the drillbit. Eventually, we segment the spectrum into 

three bands shown in (b): low 0.1-35Hz (g1), middle 35-150Hz (g2), and high 170-500Hz (g3). 

 

  

a) b) 
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dataset is relatively small, hence we need a technique that 

allows for clear interpretation of the results to avoid 

overfitting and fine-tune the training algorithms. Therefore, 

we avoid the use of neural networks, that operate as a black 

box, since they are quite sensitive to the composition of the 

input data and details of the network architecture (e.g., Gan 

et al., 2019). Instead, we stick to stepwise nonlinear 

regression. This algorithm gradually increases the 

complexity of a polynomial function to improve the 

goodness-of-fit to the data (R-squared for this study). The 

selection of predictive features is necessarily intuitive 

because we need to compile a set of parameters that might 

be useful without explicit instruction on how to do so. For 

this study, we put together various combinations of the 

drilling indicators that were proposed in specialized 

literature.  

 

Eventually, the features may be split into three groups: 

 Surface drilling parameters: ROP, RPM, TOR, and 

WOB; 

 Characteristics of the drilling efficiency such as 

mechanical energy spent on drilling: Mean 

Specific Energy (MSE) and reduced MSE (Sq) 

defined as (Armenta, 2008): 

 

{
MSE =

WOB

𝐴𝐵
+

120×π×RPM×TOR

𝐴𝐵×ROP

𝑆𝑞 = 4√π
WOB×RPM

√𝐴𝐵×ROP
.

 (2) 

 

 Physical measurements at the bit-rock interface: GR 

and RMSg1, RMSg2, and RMSg3. 

 

Figure 2 illustrates the interdependence of these three 

categories of input. Figure 2a shows that MSE is inversely 

proportional to ROP which implies a simple fact – faster 

drilling occurs when the drilling regime is efficient and 

incurs less vibrations of the drillbit. Also, the intensity of 

NBV (RMSacc) does relate to rock stiffness (VS). It is, 

however, contingent on the drilling efficiency (MSE), which 

we need to compensate for in the regression equation. The 

advantage of the stepwise regression is that we may evaluate 

the importance of different input variables by their 

popularity in the final regression equations, trained on pieces 

of the data. So, we can progress from a visual analysis of the 

data to a quantitative assessment.  

 

Figure 3a illustrates the progress of the regression algorithm 

for a trial run. It begins by assigning the mean value to the 

constant term. At the next step, the algorithm finds a linear 

term that maximizes R2 – natural logarithm of RMSg2. Then, 

we may add either another linear term or a non-linear term 

that involves RMSg2. It turns out that log (MSE)/log (Sq) is 

preferred. The process stops when the improvement of the 

goodness-of-fit becomes marginal. Then, the training is 

repeated for another piece of the dataset (bootstrapped 

correlated segments of the input data) and results in a new 

set of predictive features and corresponding coefficients. 

The final run of stagewise regression uses the entire dataset 

for training and begins with a combination of the two most 

important features. As a result, the predictor for shear-wave 

velocity Vs has the form: 

 

𝑉𝑆 = 𝐷 + 𝐴 ∙ log(
RMSg2

RPM×ROP
) + 𝐵 ∙

log(𝑀𝑆𝐸)

log(𝑆𝑞)
+ 𝐶 ∙ log(𝑅𝑂𝑃), (3) 

 

where A, B, C, and D are constants found from training. 

Figure 3b,c show the accuracy of the regression. We see that 

the predicted VS agrees well with the recorded values 

(R2=0.6), with most of the errors concentrated in the last 400 

ft of the interval, where high MSE values and several caliper 

 

Figure 2: Relationships between the parameters characterizing the drilling efficiency, dynamics of the drillbit penetration, and near-bit vibrations. 

Both the vibrations and mean specific energy of drilling, increase when drilling becomes inefficient. Therefore, they are inversely proportional to 

the rate of penetration that is maximized for efficient drilling (a). The intensity of the near-bit vibration shows a clear correlation with the shear 

velocity  (b), however, the vibration energy tends to increase when drilling becomes inefficient. 

b) a) 
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logs suggest reduced credibility of both – drilling parameters 

and sonic logs. Without the NBV, achievable accuracy drops 

to R2=0.1.  

Conclusions 

 

This study is a first attempt to evaluate the potential to use 

downhole accelerometers and drilling parameters for the 

prediction of the sonic logs in real time. We modified a 

forward stepwise linear regression algorithm to gain insight 

into the relationships between the rock stiffness, drilling 

parameters, and near-bit vibrations from the first field trial 

of the DrillCAM system. The primary roles for the 

prediction of sonic velocities belong to RMS amplitude of 

axial accelerations in the 35-170 Hz range; the rate of drill-

bit penetration, and mean specific drilling energy. Without 

the accelerometers, achievable accuracy drops from R2=0.6 

to R2
 = 0.1.  

 

We found that the gamma ray log has negligible predictive 

power for the sonic velocities, which is a typical situation in 

carbonate sections. Since there is no physical link between 

the properties, we suppose that ubiquitous applications of 

neural networks to logging-while-drilling data fail in the 

studied geological conditions.  

 

If the RMS of accelerometer records can be transmitted 

while drilling, we can get a reasonably accurate proxy for the 

sonic logs at the bit. The proposed methodology can 

synthesise elastic logs at a fraction of the cost of 

conventional well logs. Such information is particularly 

helpful in the overburden that is often not logged or 

horizontal reservoir sections without wireline logs. 

 
 

 

Figure 3: The forward stepwise regression of the shear velocity with selected predictive features. The algorithm proceeds by augmenting the 

polynomial function with a term that improves goodness-of-fit the most (a). The final regression uses the entire interval of VS log and provides 
relatively good fit to the measured values (b and c) with most of the errors concentrated in the last 400 ft of the interval, where quality of the logs 

is questionable. 

a) 

c) 

b) 
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