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Summary 
 
This study explores the potential of real-time prediction of elastic properties based on drilling dynamics. As drilling 
is susceptible to many factors that are beyond our control, physics-based deterministic models struggle to solve 
this problem. Instead, we propose a data-driven approach to predict formation properties using surface drilling 
parameters and near-bit vibrations. The general approach is implemented using a dataset from the first field trial of 
the DrillCAM system. We use machine learning in the form of modified stagewise regression to assess the 
importance of input parameters and establish a robust predictor for sonic logs. We found that the highest predictive 
power belongs to RMS amplitude of axial vibrations in the 35-170 Hz range, rate of drill-bit penetration and mean 
specific drilling energy. We conclude that downhole accelerometers augmented with conventional surface drilling 
rig sensors can synthesise elastic logs for the entire borehole at a fraction of the cost of conventional well logs. 
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 Introduction 

Efficient drilling requires accurate knowledge of the subsurface mechanical properties. Drilling 

programs often rely on wireline sonic logs from offset wells, whereas the ideal scenario utilizes sonic 

log at the drill bit. Logging-while-drilling (LWD) is expensive and usually applied only in reservoir 

sections, meaning the overburden often lacks any geophysical measurements. At the same time, 

parameters that are measured to control drilling might be used to predict the elastic properties, because 

drill bit penetration through a rock is naturally related to the rock stiffness. If successful, such a 

relationship would also synthesise sonic logs for characterization of the shallow and lateral segments of 

boreholes, where logs are often not acquired for technical or economic reasons. 

Traditionally, one attempts to build such models for rate of penetration (ROP) based on a set of 

laboratory experiments (e.g., Hareland and Nygaard, 2007). Unfortunately, ROP-models are prone to 

errors, because drilling dynamics for real wells is far more complicated than in the controlled laboratory 

environment. Measurements of near-bit vibrations (NBV) may become the key to disentangle signal 

from crushing rock and drillstring-related noise. Attempts to extract formation properties from drillbit 

vibrations have been active for more than fifty years. Naville et al. (1996) proposed a simple empirical 

equation that predicts acoustic impedance from ROP, drillstring revolutions per minute (RPM) and 

energy of axial vibrations (RMSg). Yang (2019) classifies the lithology while drilling based on time-

frequency decomposition of NBV. Waltman and Laking (2018) invert for the elastic mouduli by 

modelling NBV as acoustic emissions from a continuous sequence of micro-earthquakes. We argue that 

such universal relationships may not capture the broad range of instrumentation, drilling regimes and 

lithology variations that may result in similar values of drilling parameters and NBV.  

A more viable approach uses “local regression algorithms” trained on offset wells with similar 

subsurface and drilling programs. The data-driven predictors would rely on relationships observed in 

the data rather than on a simple physics-based hypothesis. This is a natural setup for application of 

machine learning algorithms, which may derive robust predictive models even when the physics behind 

the observed data is obscure (see examples from genetics, pharmacology, etc., in Hastie et al., 2013). In 

the following sections we illustrate this idea using data from a recent field trial of the DrillCAM system 

(Bakulin et al., 2019). 

Downhole dataset from DrillCAM trial 

The field data were acquired in a deviated section of a producing well (Figure 1a) drilled with a 8.5” 

PDC bit. NBV were recorded by a downhole three-component accelerometer  placed above the bit 

(Figure 1b). Here we focus only on the axial component aligned with the drillstring. The sampling 

frequency of the accelerometer is 1.5 kHz with dynamic of ±200g. Typically, lower frequencies and 

high-intensity signals correspond to inefficient drilling regimes (Macpherson et al., 2015). Figure 1c-d 

show an interval that includes normal drilling and fully-developed stick-slip where the drill bit  becomes 

periodically stuck in the surrounding rocks until rotational energy accumulates enough to release the bit. 

We |found that the spectrum of the axial NBV contains three distinct intervals: low 0.1-35Hz (g1), middle 

35-170Hz (g2) and high 170-500Hz (g3). Low frequencies are dominated by signals induced by drill-bit 

rotation and drillstring movement; the middle range contains signals from the drill-bit-rock interaction; 

the high-frequency range is dominated by eigenmodes of the drillstring and bottomhole assembly 

vibrations. In the following, we analyze only RMS average in the moving 30 s windows within the three 

frequency bands: RMSg1, RMSg2 and RMSg3, respectively. 

In addition to the NBV, the data set includes surface drilling parameters and wireline logs 

(gamma ray [GR] and compressional VP and shear-wave VS velocities). The borehole 

intersects lithologically different intervals: carbonates, sandstones, anhydrites. For our data 

set, R-squared for acoustic impedance predicted according to the approach from Naville et al. 

(1996) is only R2 = 0.2, highlighting the difficulty in finding a universal ad-hoc correlation. 

We aim to develop a single predictor for the entire interval using machine learning, despite 

significant scatter of the velocities (see VS values in Figure 1a) in the interval. 
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Figure 1 Layout and data from first trial of DrillCAM system: (a) borehole trajectory color-coded with 

VS values in the studied deviated section; (b) photo of a PDC drill bit along with a downhole 

accelerometer deployed on drill sub; (c) a fragment of axial accelerometer record that contains an 

interval of normal drilling indicated by green box zoomed in (d) and fully-developed stick-slip indicated 

by red box zoomed in (e). 

Nonlinear predictor for the DrillCAM dataset 

Firstly, we establish a set of predictive features – observable parameters and their combinations that 

may be directly related to the seismic properties. We think that a machine learning algorithm might learn 

sophisticated relationships between the observed response to drill bit penetration through rock at a given 

drilling regime and level of drilling efficiency. Eventually, the features may be split into three groups: 

a) Surface drilling parameters: ROP, RPM, torque (TOR), weight-on-bit (WOB) and bit area (AB);

b) Quantities related to drilling efficiency such as surface energy spent on drilling (mean specific

energy [MSE]) (Armenta, 2008) and  and reduced MSE ( Sq) defined as:

{
MSE =

WOB

𝐴𝐵
+

120×π×RPM×TOR

𝐴𝐵×ROP

𝑆𝑞 = 4√π
WOB×RPM

√𝐴𝐵×ROP
.

(1) 

c) Physical measurements at the bit-rock interface: GR and RMSg1, RMSg2 and RMSg3.

We operate with logarithms of the features (a)-(c) and their inverse values. 

Deviated section: 10o-70o

length 1500ft

a) b)

c)

Accelerometer 
location

d)

e)
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 Even for a linear combination of the predicitve features and their products, we have 231 parameters that 

need to be calibrated to a 1300 ft long section of the sonic log. The regression algorithm is likely to 

overfit the data absorbing the errors, instead of learning the relationships. That is why commonly-used 

artificial neural networks may not be suitable for our task, as they provide very limited insight into the 

information value of each input parameter (e.g., Gan et al., 2019). In real situations, with limited training 

data and in the absence of a sufficiently powerful test set to fine-tune neural networks, such approaches 

may produce unreliable predictions. Instead, we opt forusing more robust algorithms that have well-

established tools for interpretation of the results and parameters optimization.  

Ideally, we would like to find the most “informative features.” This search implies training 2231 

regressions, which is computationally intractable. Instead, we implement a forward stagewise regression 

algorithm (Hastie et al., 2013) that sequentially include/exclude terms that improve accuracy of the 

regression. Usually, the accuracy reaches a limiting value with just a few terms and the rest may be 

disregarded. Figure 2a presents an example of the training procedure. The train/test data represent 

continuous randomly distributed segments, otherwise naturally correlated sonic samples would result in 

an overly optimistic prediction error. The training repeats for many different realizations of randomly 

generated divisions of the sonic log.  

Figure 2 Training of the stagewise regression. The VS log is randomly divided into continuous train/test 

segments (a); the training repeats for multiple divisions to estimate the importance of each predictive 

feature (b) and average prediction error of the regression (c). 

We introduce importance of a feature as the total training error for all final regressions that included this 

feature. Hence, the importance measures popularity of a feature in good regressions. Figure 2b shows 

that the optimal subset definitely includes log(RMSg2) and log(MSE)/log(Sq). The final run of stagewise 

regression uses the entire data set for training and begins with a combination of the two most important 

features. As a result, the predictor for shear-wave velocity VS has the form: 

𝑉𝑆 = 𝐷 + 𝐴 ∙ 𝑅𝑀𝑆𝑔2 + 𝐵 ∙
log(𝑀𝑆𝐸)

log(𝑆𝑞)
+ 𝐶 ∙ log(𝑅𝑂𝑃) (2) 

where A, B, C and D are constants found from training. 

The synthetic VS matches real measurements with R2
 = 0.6, whereas wihtout NBV achievable accuracy 

drops to R2
 = 0.1. Figure 3 shows that intervals of different VS manifest themselves in distinct appearance 

of the axial vibrations: low velocities correspond to low intensity accelerations, abrupt changes cause 

bursts of energy on the accelerometers. Also, intervals of poor correlation are associated with intervals 

of high MSE indicating inefficient drilling. 

Conclusions 

We evaluated the feasibility of predicting formation elastic properties at the bit (VS) using downhole 

accelerometers and surface drilling dynamic data. We employed a suite of machine learning tools to 

explore relationships between the rock stiffness, drilling parameters and near-bit vibrations from a first 
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 field trial of the DrillCAM system. We discovered that the highest predictive power belongs to RMS 

amplitude of axial vibrations in the 35-170 Hz range; rate of drill-bit penetration and mean specific 

drilling energy. If the first quantity is transmitted in real time using MWD or wired pipe, then combined 

with other quantities available at the surface, real-time prediction of synthetic acoustic logs at the bit 

becomes feasible while drilling. The synthetic VS log matches real wireline log measurements with R2
 = 

0.6, whereas without the NBV achievable accuracy drops to R2
 = 0.1. We conclude that downhole 

accelerometers augmented with surface drilling rig sensors can synthesise elastic logs at a fraction of 

the cost of conventional well logs. Such information is particularly helpful in the overburden that is 

often not logged or horizontal reservoir sections without acoustic LWD. 

Figure 4 Comparison of the true (blue) and synthetic VS logs (red) computed according to equation 2. 

Autocorrelation Sequence (ACS) of axial accelerometer at given measured depth is shown in the 

background. Transparent red segments indicate intervals of inefficient drilling with anomalous MSE. 
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