
                                                                                                                                
                                                                                                                      

76th EAGE Conference & Exhibition 2014 
Amsterdam RAI, The Netherlands, 16-19 June 2014 

 

We G105 07
Combining Discontinuous Galerkin with Finite
Differences to Simulate Seismic Waves in
Presence of Free-surface Topograph
V.V. Lisitsa* (Institute of Petroleum Geology & Geophysics SB RAS), V.
Tcheverda (Institute of Petroleum Geology & Geophysics SB RAS), A.
Bakulin (EXPEC ARC, Geophysics Technology, Saudi Aramco) & V. Ettienne
(EXPEC ARC, Geophysics Technology, Saudi Aramco)

SUMMARY
We present an original algorithm for numerical simulation of seismic wave propagation in models with
complex topography along a free surface and other near-surface complexities. Conventional methods such
as finite-difference seismic modeling either generate many artifacts or require an extremely fine
discretization grid that is computationally expensive. The new approach combines discontinuous Galerkin
in the complex near-surface part of the model with conventional rectangular finite-difference modeling for
the deeper, less complex part. Using a triangular mesh in the near surface allows more accurate description
of topography without artifacts or excessive discretization, while additional computation costs are
minimized by only applying it to shallow portions of the subsurface models.
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Introduction 

Simulation of seismic wave propagation is typically performed by various finite-difference (FD) 
schemes, because these methods combine high efficiency, low computational cost, universality and 
acceptable accuracy (Virieux et al., 2011). However, the presence of high-contrast interfaces and 
especially a free surface may seriously reduce the accuracy of simulations. This is mostly associated 
with the stair-step approximation of dipping interfaces caused by rectangular gridding used for FD. 
This stair-step approximation leads to diffractions, which can be particularly strong when surface 
waves interact with the interfaces. In this case the converted body waves may be as strong as those 
emitted by the main source, i.e. secondary sources appear in the model. This effect is clearly seen in 
Figure 1.  

a 

 
b 

Figure 1 (a) A model with low-dip angle of the free surface and associated wavefield, generated by 
the finite differences; (b) zoomed upper part (black rectangle in a) of the model indicates presence of 
two “steps” in the approximation of the free surface. White star indicates source position.   
In contrast, finite-element (FE) methods can be used for simulation of wave propagation on 
unstructured tetrahedral (triangular) grids. In this case, interfaces are approximated with higher 
smoothness and diffractions become negligible. However, use of FE and in particular the 
discontinuous Galerkin (DG) method (Etienne et al. 2010) considered in this paper, significantly 
increases the computational intensity of the simulation if used for the entire model. In addition, grid 
generation becomes time-consuming and tedious.  
 
This paper presents a hybrid algorithm that combines DG with standard staggered-grid scheme 
(SSGS) for finite differences (Virieux, 1986).  In our case DG is only used in the near surface thus 
allowing proper approximation and treatment of the free surface whereas the deeper portion of the 
model is computed with SSGS preserving the low computational cost of the simulation.  

Description of the algorithm 

Let us assume a free surface )(xzz fsfs  , introduce an artificial interface (it has no connection with 

any of the physical interfaces) DGzz  and generate a triangular grid inside this area (Figure 2). 

Formulation of the DG method (Etienne et al., 2010) for the velocity-stress divergence-free 
formulation of elastic wave equation becomes 
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where u  and  are the velocity vector and the stress tensor respectively, whereas   is the mass 

density, S is the elastic compliance tensor, matrices jB  are composed of zeroes and ones and can be 
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found, for example in Lisitsa et al. (2012). Functions  and  are trial functions, which we consider 

to be polynomials of degree l within the cell kV and zeros otherwise. kmS  is the edge of the cell shared 

with the mth neighbour (see Figure 3), }{ f  – denotes the mean of the f at the interface, ][ f - means 

a jump across the interface and, 



2

1j
j

j
kmkm BnB , where kmn is the vector of the outer normal. 

Further discretization in time is applied by a leap-frog scheme. In order to couple the DG with the 
SSGS we suggest introducing a transition zone RDG zzz   where properties of the two methods 

are combined (Figure 2). In particular we use the DG on a regular rectangular grid with the trial 
functions that are constants (polynomials of degree 0).  As it follows, for example, from Ainsworth et 
al. (2006), in this case the DG coincides with the finite-difference scheme on conventional (non-
staggered) grid. This means that the problem can be split into two independent ones:  

 Coupling of DG on triangular grid with DG on rectangular grid at the interface DGzz  ; 

 Coupling of non-staggered grid scheme with the SSGS, at the interface Rzz  . 
The first problem can be solved straightforwardly because an essential property of the DG is a 
possibility of using arbitrary nonconforming grids and choosing the trial and basis functions locally, 
which is also known as hp-adaptivity. The solution of the second problem is based on the specific 
properties of the velocity-stress formulation of the finite-difference approximation to the elastic wave 
equation. The non-staggered grid scheme possesses artificial “plus-minus” modes, but the SSGS does 
not. Thus the formulae to couple the two schemes are designed in such a way that we let the true 
modes propagate through the artificial interface Rzz   with as low a reflection as possible, but 
prevent propagation of the artificial modes. The approach is analogous to coupling of Lebedev 
scheme and SSGS, presented by  Lisitsa et al. (2012). As a result, the artificial reflections (the main 
numerical error) caused by the coupling of DG and standard staggered grid schemes are as low as 

43 1010    of the incident wave, which is an acceptable level for seismic simulation.      
   
 

Figure 2 A sketch of the grids used to in hybrid 
algorithm. Different markers at the bottom 
represent the SSGS area, grey domain is the 
transition zone, green area is the DG zone. 

Figure 3 A representation of a grid cell and its 
neighbours for the DG.  

Numerical experiments 

To demonstrate capabilities of our hybrid approach we present two numerical experiments. The first 
comprises a 2D synthetic model containing significant topography variations of the free-surface 
interface as is often the case for land seismic. The subsurface is represented by homogeneous material 
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with smVP /4500 , smVS /3000 , and 3/2000 mkg . The model is 8 km long and 4 km 

deep whereas topography is represented as a sine function with 3.5 periods per 8 km (Figure 4). A 
volumetric source is located 5 m below the surface at 4000x m.  We compare simulations done 
with pure SSGS, pure DG algorithm and our hybrid approach. The spatial discretization was chosen to 
ensure 30 degrees of freedom per wavelength for DG and FD algorithms. Time stepping was also 
equal. Since DG (with polynomials of first degree) performs approximately twice as many floating-
point operations, the runtime of the DG simulation was twice as long compared to the FD modelling. 
In the hybrid approach, the DG zone occupied around 30% of the model but delivered results of 
similar accuracy as a pure DG scheme with triangulation of the entire model with a runtime that was 
only 35% slower compared to pure finite differences. Figure 5 shows snapshots simulated by the 
hybrid approach and the SSGS. We observe that that propagation of the body waves and direct 
Rayleigh waves is modelled equally well, however finite differences show significant numerical 
artifacts/diffractions caused by discretization of dipping interfaces and along topography. The same 
effect is also observable in seismograms (Figure 6).  

                a 
 
 

                        

                    b   

Figure 4 A sketch of the 
homogeneous model for the first 
experiment. 

Figure 5 Snapshots of the vertical component of the 
displacement vector computed by the hybrid algorithm (a) and 
finite differences (b). 

 
                   

                  a 

                        

                  b 

Figure 6 Vertical components of the displacement velocity computed by the hybrid algorithm (a) and 
finite differences (b). 
The second test is conducted for a more complex “realistic” 2D elastic model from Eastern Siberia 
(Figure 7). A volumetric source was located at mx 4125 , mz 110 , ten meters below the free 
surface. The seismograms generated by the hybrid algorithm are shown in Figure 8. As before, we 
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observe clear Rayleigh waves with no diffractions from stair stepping in the grid, which were 
observed on finite difference modelling with the same model (not shown here).   

Figure 7 Shear-wave velocity model used in the 
second test (blue represents air above 
topography). 

Figure 8 Vertical displacement from a point 
explosive source recorded at the free surface for 
second test.  

Conclusions 

We present a hybrid algorithm for numerical simulation of seismic wave propagation in models with 
complex topography including a free surface. The new approach is based on the combination of the 
discontinuous Galerkin method using unstructured triangular (tetrahedral) meshes overlying a regular 
finite difference grid. The DG method accurately handles complex topography, naturally allowing for 
local increases of the accuracy by using the hp-adaptivity technique.  However DG is computationally 
intensive compared with finite differences and therefore it is only used in a shallow near-surface part 
of the model. Wave propagation in the deeper part of the model is simulated by the highly efficient 
standard staggered grid finite-difference scheme, which improves computational efficiency. As a 
result our approach preserves the high accuracy of DG and efficiency of the FD simulation of seismic 
wave propagation. The current version of the algorithm targets complex topography of the free 
surface. The same approach could be extended to handle complex bathymetry and rugose salt-
sediment interfaces.     
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