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SUMMARY
Tube or Stoneley wave is known to strongly interact at low frequencies with poroelastic
formations provided that flow is not restricted at the borehole-formation interface. Increased
permeability leads to increased attenuation and decreased velocity of the tube wave. In this
study we focus on reflection of low-frequency tube waves from various finite-size poroelastic
structures. First, we examine a model of a thin reservoir and demonstrate good applicability
of the approximate 1D effective wavenumber approach to describe interaction of tube waves
with porous formations. We confirm that higher permeability leads to higher reflection
coefficient. Then we analyze model of an idealized (disk-shaped) perforation inside a
poroelastic layer and show that it has higher reflectivity compared to washout zone of the
same geometry but with no-flow conditions at the face.
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Introduction 
 
Low-frequency tube waves are usually considered as a biggest source of noise in borehole 
seismic surveys. In acoustic logging high-frequency tube waves (or Stoneley waves) are 
useful to characterize the propreties of fractures and permeable zones since tube waves are 
sensitive to their permeability (Winkler et al., 1989; Tang and Cheng, 1993; Kostek et al., 
1998). In cased boreholes tube waves can be used for qualitative estimation of quality and 
parameters of hydraulic fractures (Medlin and Schmitt, 1994; Paige et el., 1995). To obtain 
physical insight into the problem, White (1983) suggested a new approximate approach, based 
on 1D wave equation, that provides simple analytical description of the reflection and 
transmission of tube waves in the borehole. This 1D approach was verified using modeling of 
low-frequency tube waves in an open hole surrounded by elastic formations. In our study we 
verify this approach for poroelastic layers and extend it to describe the reflection response of 
an idealized disk-shaped perforation. Our study is a first step towards the quantitative 
interpretation of influence of formations and fracture properties in cased perforated holes on 
tube-wave propagation (Medlin and Schmitt, 1994; Paige et el., 1995). 
 
1D effective wavenumber approach 
 
This study focuses on the theoretical analysis of the interaction of tube (Stoneley) waves, 
propagating along a fluid-filled borehole, with elastic and poroelastic layers embedded 
between two elastic formations (Figure 1). We adopt the 1D approach originally proposed by 
White (1983) and generalized by Tang and Cheng (1993). This formulation is quite general 
and no restrictions are placed on the nature of the borehole structures, except for radial 
symmetry. The theory is able to treat the tube-wave interaction with different borehole 
structures such as elastic layers, permeable porous layers as well as diameter changes 
(washouts). In each homogeneous zone propagation is described by a 1D wave equation with 
constant effective wavenumber that depends on the properties of the surrounding formation as 
well as borehole parameters. To obtain the amplitudes of upgoing and downgoing waves, 
mass-balance boundary conditions are set at each interface, in particular, continuity of the 
fluid pressure and of the fluid displacement. In the low-frequency regime, reflection and 
transmission coefficients from a single layer of any type are given by: 
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where L is the layer thickness, k1  is the axial Stoneley wavenumber in the two half-spaces 
and k2  is the axial Stoneley wavenumber in the layer. These expressions are valid for a layer 
of any type as the rheology of the medium is absorbed by the effective wavenumber (Tang 
and Cheng, 1993). That is why we call this approach "effective wavenumber approach".  
Stoneley wave propagation in the permeable zone is characterized by the effective 
wavenumber k2: 
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where 1K  and 0K  are modified Bessel functions of the second kind of the order one and zero, 
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diffusivity, φ  is the porosity, fρ  is the pore fluid density, fc  represents acoustic velocity of 
the pore fluid and ξ  is a correction for the pore matrix compressibility (Chang et al., 1988). 

ek  is the wavenumber of the tube wave in an equivalent elastic formation given by 
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with fK being fluid bulk modulus and µ  formation shear rigidity.  
At seismic frequencies the tube wavenumber (3) becomes complex-valued, exhibits strong 
dependence on formation permeability and behaves very differently from its elastic analogue 
(4). The deviation from impermeable case is highest at lower frequencies and diminishes 
when frequency increases. Elevated attenuation and decreased tube-wave velocities are used 
as indicators for characterizing permeable zones in open-hole logging environment (Winkler 
et al., 1989).  
 
Model of a thin reservoir 
 
Let us examine the accuracy of the "effective wavenumber approach" for the case of 
poroelastic formations. Such comparisons have been previously reported for irregular 
borehole surrounded by elastic formations (Tezuka et al, 1997) and fluid-filled fractures 
(Kostek et al., 1998). In both cases effective wavenumber approach was shown to be in good 
agreement with direct computation of the wavefields by numerical methods.  We are not 
aware of similar comparisons for poroelastic layers. Material parameters in formation are: 
bulk modulus (K)  25.139 GPa, shear modulus (µ) 16.875 GPa, density (ρ) 2700 kg m3; in 
fluid: bulk modulus (K)  2.25 GPa, density (ρ) 1000 kg m3; in porous layer: grain bulk 
modulus (Kg ) 37 GPa, grain shear modulus (µ g ) 44 GPa, grain density (ρg) 3150 kg/m3, bulk 
modulus of dry matrix (K0) 11.452 GPa, shear modulus (µ) 9.3368 GPa, porosity 0.35, 
permeability 0-10 Darcy, viscosity 0.001 Pa s. Borehole radius is 0.142 m, layer thickness 2.4 
m. 

Figure 2 (dashed lines) depicts tube-wave reflection coefficient as a function of 
frequency for the thin  reservoir model with parameters mentioned above computed with the 
effective wavenumber approach. Open boundary conditions are assumed between the 
borehole and the layer. Increase in layer permeability causes greater freedom for wellbore 
fluid to flow in and out of the poroelastic layer, leading to a larger reflection coefficient. 
Figure 2 also shows that a similar curves obtained with a finite-difference code jointly 
developed by Keldysh Institute of Applied Mathematics and Shell. Reflection coefficients 
were estimated by taking spectral ratios of incident and reflected tube waveforms. Good 
agreement between the two sets of curves is obtained above 80-100 Hz indicating that the 
effective wavenumber approach does capture the most important features of tube-wave 
interactions with poroelastic formations. Below 100 Hz the spectral-ratio calculations become 
less stable due to diminishing amplitudes in the input signal with 1000 Hz central frequency. 
 
Idealized perforated model 
 
Given success in describing tube-wave interaction for a single poroelastic layer, we decided to 
explore more complicated models with multiple layers. In particular, we focus on "idealized 
perforation model" depicted on Figure 3. While the geometry and material parameters in this 
model are identical to those for the single-layer model of Figure 1, the key distinction is that 
two thirds of the interface between wellbore and porous layer is now closed to flow. 
Therefore fluid communication only occurs in the middle porous layer. Real perforation can 
be roghly thought of as a small cylinder placed perpendicular to the main borehole in a 
particular azimuth and thus it will have much more limited area of flow. For this reason we 
call our model "idealized (disk-shaped) perforation". Also we do not account here for the 
extra rigidity caused by the presence of steel casing in real boreholes, although in principle 
this should be possible. With all these limitations "idealized perforation model" is a useful 
first step since it can be easily treated by cylindrically symmetric approaches at hand: 
effective wavenumber scheme and radially symmetric poroelastic finite-difference code. 
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First let us examine interaction of the tube wave with a zero-length perforation ( 0w = ). 
From now on we fix the permeability of porous zone to 1 Darcy. Due to smaller area of fluid 
communication the magnitude of the reflection coefficent decreases compared to fully open 
case and lies in between curves for single poroleastic and single elastic layers (Figure 4). 
Recall that elastic layer is equivalent to sealed (unperforated) poroelastic one. Multi-layered 
structure eliminates sharp troughs that were present in cases of single elastic or poroelastic 
layer. Overall we see good sensitivity of the reflection coefficient to the relative portion of 
wellbore-layer interface open to flow. 
Idealized perforation of a finite length causes stronger reflection, since in addition to open 
flow we now have change in the borehole diameter (Figure 5). If we close the flow at the 
boundaries of the perforation, then we end up with what is conventionally called washout 
zone or enlargement in the borehole diameter examined in details by Tezuka et al (1997).  For 
this particular model the reflection coefficient from the washout zone is higher than that of 
zero-length perforation. Nevertheless, the reflection amplitude from the finite-length 
perforation is substantially larger than from the simple washout. Since geometry of the 
models with washout and finite-length perforation are identical, the difference between 
reflection curves (cyan and blue on Figure 5) represents pure effect of fluid flow into the 
porous layer via open perforation. 
 
Conclusions 
 
We have applied 1-D effective wavenumber approach to analyze interaction of low-frequency 
waves with stack of poroelastic and elastic layers. For the first time we have shown good 
agreement between responses obtained with 1-D approach and finite difference computations. 
We also extended our anlysis to cylindrically symmetric borehole irregularities inside 
poroelastic layers. In particular, we have examined the reflection response of a single 
idealized (disk-shaped) peforation inside the poroelastic layer. We have shown that cases of 
fully open to flow porous layer, fully sealed (unperforated) and partially sealed layer with 
finite-width and zero-length perforation can be distinguished for sufficuiently large 
permeabilities of the formation. For finite-length perforations changes in borehole diameter 
further increase the reflection coefficent. Yet for the same geometry the washout (no-flow) 
and perforation (open flow) can still be distinguished by their low-frequency response. For 
models at hand we observe larger reflection response for the perforation than for the washout. 
Realistic perforation geometries are 3D and therefore cannot be directly handled by 2D 
approaches. More theoretical and experimental work is needed to establish proper 3D 
description of wave interaction with realistic cylinder-shaped perforations. 
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Figure 1:  Model of fluid filled borehole
intersecting a porous zone in an elastic
formation. 

Figure 4: Reflection coefficient of the tube
wave from the perforated and unperforated
poroelastic layer. Dashed lines are derived
with 1-D effective wavenumber approach,
while solid lines are computed with finite-
difference code.  

Figure 5: Reflection coefficient of the tube
wave from a layer with a single idealized
perforation of various lengths. Dashed lines
are derived with 1-D effective wavenumber
approach, while solid lines are computed with
finite-difference code. 

Figure 2. Amplitude of the tube-wave
reflection coefficient as a function of
frequency for a model with a single
poroelastic layer (Figure 1). Dashed lines are
derived with 1-D effective wavenumber
approach, while solid lines are computed
with finite-difference code. Bottom curve
represents reflection from the elastic zone
between two elastic half-spaces. 

Figure 3:  Idealized model of a disk-shaped
perforation. All three porous layers have the
same thickness (0.8 m) and identical material
parameters. Layer 1 and 3 have closed
boundary conditions preventing flow from and
into the borehole 


