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SUMMARY
We present algorithm and code that solves the dispersion equation for cylindrically layered media
consisting of arbitrary number of solid elastic and fluid layers. The algorithm is based on the spectral
method which discretises the underlying wave equations with the help of spectral differentiation matrices
and solves the corresponding equations as an generalized eigenvalue problem. For a given frequency the
eigenvalues correspond to the wavenumbers of different modes. The advantage of this technique is that it
is easy to implement especially for cases where traditional root-finding methods are strongly limited or
hard to realize, i.e. for  attenuative, anisotropic and poroelastic media.  We illustrate the application of the
new approach using models of  a free solid bar and a fluid-filled cylinder. These dispersion curves are in
good agreement with analytical  results, which confirms the accuracy of the new method.



Introduction
Modelling different wave modes propagating along a cylindrical borehole is important for
understanding and quantitative interpretation of borehole sonic and seismic measurements. All
these modes are strongly frequency dependent. Traditionally, mode dispersion was studied by
finding roots of analytical dispersion equations. This method has a long history. By the end of
the 19th century Ludwig Pochhammer and Charles Chree (e.g. Pochhammer, 1876) had already
independently investigated the wave propagation along an elastic cylindrical bar. For the case
of a fluid-filled borehole, with appropriate boundary conditions, analytical solutions were given
by Biot (1952) and Del Grosso and McGill (1968). The case of a hollow cylinder either empty
or filled with a fluid for different tube wall thicknesses, was studied e.g. by Gazis (1959) and
Rubinow and Keller (1971).
The root finding technique is a direct analytical and hence the most natural method for analysis
of the dispersion. However this method becomes difficult to implement when the numbers of
cylindrical layers and modes become large and when inelastic effects need to be taken into
account, as separation of different roots becomes challenging.
An alternative approach to modelling wave propagation in circular structures was recently
introduced by Adamou and Craster (2004) based on spectral methods. The problem is solved
by numerical interpolation using spectral differentiation matrices (DMs). The advantage of
this approach is that it is much faster and easier to implement then conventional root-finding
methods, especially for attenuative, poroelastic or anisotropic structures.
In this paper we introduce the spectral method approach for longitudinal wave propagation in
circular cylindrical structures, and compare the results with the known analytical solutions for
two simple cases: a free solid bar and a fluid-filled hollow cylinder.

Methodology
We introduce the spectral method using the easiest case of longitudinal wave propagation in a
free solid bar. Figure 1 displays the geometry and the displacement field. We use cylindrical co-
ordinates (r,θ ,z). As longitudinal (axysimmetric) wave propagation in a cylinder is independent
of θ , the particle motion occurs solely in the r− z plane where the displacement ur is parallel
to the r-axis and uz to the z-axis. The bar is a homogeneous, isotropic, elastic body with P- and
S-wave velocity (vp,vs) and density ρ .
The equations describing such a system are known as the Pochhammer-Chree-equations

Figure 1: Geometry of a free solid bar, displaying the coordinate system which reduces to (r,z)
and the displacement field (ur,uz) for axisymmetric wave propagation
(Pochhammer, 1876) which are presented in detail by Kolsky (1963) and Bancroft (1941). The
equations of motion in polar coordinates are
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where the field variables are, ∆, which is the dilatation and ω̄θ , a component of the rotation,
both in cylindrical coordinates. ω is the angular frequency and kz the axial wavenumber.
Stress-free boundary conditions are assumed at r = a which means σrr|r=a = σrz|r=a = 0, where
σrr is the normal stress in radial direction and σrz is the radial shear stress acting in z direction.
These abovementioned authors describe the classical approach of root-finding which yields the
frequency equation detM(ω,kz) = 0. The roots of this equation yield the dispersion relation
ω(kz). Since wave solutions in cylindrical coordinates contain various Bessel functions, it is
often quite difficult to find and separate various roots. This gets more complicated in the case
of leaky modes or lossy structures where solutions of the dispersion relation should be found in
the complex plane.
The spectral method bypasses these difficulties and solves the underlying Helmholtz equations
numerically. For elastic wave propagation this was first implemented by Adamou and Craster
(2004) who investigated circumferential waves in an elastic annulus (motion independent of
r and z see Fig. 1). In this study we extend the spectral method to axisymmetric longitudinal
models.
The initial idea by Adamou and Craster (2004) is to use spectral DM’s to discretise the wave
equations and boundary conditions. Then they can be solved as a matrix eigenvalue problem.
The resulting eigenvalues correspond to a wavenumber kz for a given frequency ω or vice
versa. In the following section we illustrate the process of discretisation for the case of the free
solid bar using equation (1). Extension to the case of arbitrary n-layered fluid-solid media is
straightforward.

Differentiation matrices
In order to solve the Helmholtz equation (1) numerically we use DM’s to represent the dif-
ferential operator Lvp . Consider a function f (x) evaluated at N interpolation points, which is
represented in a vector f of length N. This interpolated function f is connected to its mth deriva-
tive f(m) through the following equation
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This means that an approximation of the m-th derivative of f can be calculated by multiplying
f with the N ×N matrix D(m), which represents the DM. The DM’s are calculated by using
Chebyshev polynomials. The N interpolation points, which are, in our case, along the radius r
of the cylinder, are the N roots of the Chebyshev polynomial of the N-th order. The Chebyshev
DM’s are calculated using the recursive formula for the derivatives of Chebyshev polynomials.
The advantage of this approach is that the the derivatives of the polynomials can be computed
exactly.
The interpolated r vector and the calculated DM’s are now used to represent the differential
operator Lvp in form of a N×N matrix
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In the same way matrix representations for all equations of motion and boundary conditions are
constructed.



Formulation of the eigenvalue problem
In order to solve the now numerically interpolated equations as an eigenvalue problem they have
to be combined in one matrix equation. First the equations of motion Lvp and Lvs are combined
in the 2N×2N matrix

P =
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)
. (5)

The stress components σrr and σrz are grouped in a matrix of the same size
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where each component is separated in terms of the field variables ∆ and ω̄θ .
The last step is to combine the boundary conditions with the equations of motion in an
appropriate way. As the problem is solved for a hollow cylinder with a very small inner
radius which is a limiting case for a solid cylinder, we have to consider inner and outer
boundary conditions. This means that the elements of S representing the interpolation points
of the inner and outer boundary (1, N, N + 1 and 2N) replace the corresponding rows in the P
matrix which is now referred to as P̃. The eigenvalue problem can now be formulated in the form

P̃u = k2
z Qu , (7)

where the stress-free boundary conditions are set inside the matrix Q. This is a generalized
eigenvalue problem and can be solved using the MATLAB routine eig(P̃,Q) for instance.
This approach can be straightforwardly extended to n cylindrical fluid and solid layers. All
matrices have to be computed for the properties of the certain layers and combined in a now
bigger matrix P. In the case of welded boundaries the displacements have to be continuous and
these have to be computed and applied to the appropriate rows of matrix P̃.

Dispersion curves for a solid bar and a fluid-filled cylinder
Let us illustrate the results produced by this approach in the form of dispersion curves
(Fig. 2). To compare with previous results obtained by root-finding techniques, we used models
presented by Kolsky (1963) and Del Grosso and McGill (1968). In Fig. 2a the dispersion
curves for a free solid bar are computed with the parameters shown in the picture. These
curves reproduce precisely the dispersion curves shown in Kolsky (1963, Fig.14) which are
calculated analytically using root-finding techniques. The second example (Fig. 2b) is the
simplest two-layer model: a fluid-filled hollow cylinder. The dispersion curves were originally
calculated by Del Grosso and McGill (1968). Again we were able to reproduce these results
accurately using the spectral method. Note that in this case there exist two fundamental modes
starting from a zero frequency: first one (ET0) is commonly referred to as a tube wave or
Stoneley wave, whereas second (ET1) is an analog of a (longitudinal) plate wave. The mode
ET1 only weakly depends on the fluid properties and disappears when the thickness of the
cylinder wall increases to infinity or the outer boundary of the cylinder becomes rigid (Rn).

Conclusions
We extended and implemented the spectral method for propagation of axisymmetric longitu-
dinal modes in a cylindrical bar. The method was also generalized to N-layered cylindrical
fluid-solid structures. The advantage of this approach is, that in contrast to traditional methods,
it is easier to implement, especially for cases where root-finding becomes complicated. For
cylindrical geometries the spectral method is a good alternative as the produced results are
accurate and the computational time is very short. The method is well-suited for extension to
anisotropic, attenuative and poroelastic structures.
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Figure 2: a) Dispersion curves of a free solid bar. x-axis: wavenumber-radius product, y-
axis: phase velocity cp = ω/kz normalized by the bar velocity c2

0 = E/ρ where E is the
Young’s modulus (compare with Kolsky, 1963, Chap. 3 pp.54); b) Dispersion curves for a hol-
low cylinder filled with non-viscous fluid. Thickness of the cylinder wall: 1/8m; velocities:
vp = 3765m/s,vs = 2012m/s; density 8500kg/m3; Modes ETn in elastic tube with stress-free
outer boundary are shown in red, whereas mode Rn for pipe with rigid outer boundary are shown
in blue. Phase velocity cp is normalized by Rayleigh velocity (cr) (compare with Del Grosso
and McGill, 1968)

.
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