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Summary

Tube or Stoneley waves are known to interact strongly at 

low frequencies with poroelastic formations provided that 

flow is not restricted at the borehole-formation interface. 

Increased permeability leads to increased attenuation and 

decreased velocity of the tube wave. Such mechanism has 

been explored previously for characterizing fractures and 

permeable formations in open-hole acoustic logging. In this 

study we focus on the reflection response of low-frequency 

tube waves from various finite-size poroelastic structures. 

First, we examine a model of a thin reservoir and 

demonstrate good applicability of the approximate 1D 

effective wavenumber approach to describe the interaction 

of tube waves with porous formations. We confirm that 

higher permeability leads to higher reflection coefficient. 

Then we analyze a model of idealized (disk-shaped) 

perforations inside a poroelastic layer and show that it has 

higher reflectivity compared to washout zones of the same 

geometry but with no-flow conditions at the interface.

Introduction

Tube waves represent easily excitable and very abundant 

seismic signals that are often acknowledged as the biggest 

source of noise on borehole recordings. The interaction of 

higher-frequency tube waves (or Stoneley waves) with 

porous permeable formations during acoustic logging can 

be utilized to characterize fractures and permeable zones 

intersecting open boreholes (Winkler et al., 1989; Tang and 

Cheng, 1993; Kostek et al., 1998). In cased boreholes tube 

waves can be used for evaluating quality and parameters of 

hydraulic fractures (Medlin and Schmitt, 1994; Paige et el., 

1995). To better understand these phenomena, White 

(1983) proposed an approximate 1D approach that provides 

simple analytic description of reflection and transmission 

of tube waves. Tezuka et al. (1997) demonstrated the 

validity of the 1D approach for modeling low-frequency 

tube waves in open boreholes surrounded by elastic 

formations. In this study we investigate how well the 1-D 

approach performs in the case of poroelastic layers and 

extend this approach to describe the reflection response of 

idealized disk-shaped perforations. Such a study is a first 

step towards quantitative interpretation of tube-wave 

responses for formation and fracture properties in cased 

perforated boreholes (Medlin and Schmitt, 1994; Paige et 

el., 1995).

Figure 1:  Model of fluid-filled borehole intersecting a porous zone 

in an elastic formation. 

1D effective wavenumber approach 

This study focuses on the theoretical analysis of the 

interaction of tube (Stoneley) waves, propagating along a 

fluid-filled borehole, with elastic and poroelastic layers 

embedded between two elastic formations (Figure 1). We 

adopt the 1D approach originally proposed by White (1983) 

and generalized by Tang and Cheng (1993). This 

formulation is quite general and no restrictions are placed 

on the nature of the borehole structures, except for radial 

symmetry. The theory is able to treat the tube-wave 

interaction with different borehole structures such as a  

elastic layers, permeable porous layers as well as diameter 

changes (washouts). In each homogeneous zone 

propagation is described by a 1D wave equation with 

constant effective wavenumber that depends on the 

properties of the surrounding formation as well as borehole 

parameters. To obtain the amplitudes of upgoing and 

downgoing waves, mass-balance boundary conditions are 

set at each interface, in particular, continuity of the fluid 

pressure and of the fluid displacement.

In the low-frequency regime, reflection and transmission 

coefficients from a single layer of any type are given by:
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where L is the layer thickness, 
1k  is the axial Stoneley 

wavenumber in the two half-spaces and 
2k  is the axial 

Stoneley wavenumber in the layer. These expressions are 
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Tube-wave reflection from a porous layer with perforation 

valid for a layer of any type as the rheology of the medium 

is absorbed by the effective wavenumber (Tang and Cheng, 

1993). That is why we call this approach "effective 

wavenumber approach". 

Stoneley wave propagation in the permeable zone is 

characterized by the effective wavenumber 2k :
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 where 
1K  and 

0K  are modified Bessel functions of the 

second kind of the order one and zero,  is the borehole 

radius,  is the dynamic permeability,  

2

1

f fc
D

 is the pore fluid diffusivity,  is the 

porosity,
f

 is the pore fluid density, fc  represents 

acoustic velocity of the pore fluid and  is a correction for 

the pore matrix compressibility (Chang et al., 1988). ek  is 

the wavenumber of the tube wave in an equivalent elastic 

formation given by
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,           (4) 

with fK being the fluid bulk modulus and  formation 

shear rigidity.

At seismic frequencies the tube wavenumber (3) becomes 

complex-valued, exhibits strong dependence on formation 

permeability and behaves very differently from its elastic 

analogue (4) [Figure 2]. The deviation from the 

impermeable case is highest at lower frequencies and 

diminishes when frequency increases. Elevated attenuation
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Figure 2: Phase slowness of tube wave 
2 /s k . The bottom 

straight line represents the slowness of an equivalent elastic layer. 

The other curves are for porous zones with varying permeability 

from 0.1 to 10 Darcy.

and decreased tube-wave velocities are used as indicators 

for characterizing permeable zones in open-hole logging 

environment (Winkler et al., 1989).

Model of a thin reservoir

Let us examine the accuracy of the effective wavenumber 

approach for the case of poroelastic formations. Such 

comparisons have been previously reported for irregular 

open boreholes surrounded by elastic formations (Tezuka et 

al., 1997) and fluid-filled fractures (Kostek et al., 1998). In 

both cases the effective wavenumber approach was shown 

to be in good agreement with direct computation of the 

wavefields by numerical methods.  We are not aware of 

similar comparisons for poroelastic layers. Material 

parameters are listed in Table 1.

Parameters Forma-

tion

Fluid Porous 

layer

Bulk modulus K (GPa) 25.139 2.25

Shear modulus µ (GPa) 16.875   

Density  (kg m3) 2700 1000  

Grain bulk modulus Kg (GPa)   37 

Grain shear modulus µ g (GPa)   44 

Grain density g (kg m3)   3150 

Dry bulk modulus K0 (GPa)   11.452 

Shear modulus µ (GPa)   9.3368 

Porosity   0.35 

Permeability (Darcy)   0-10 

Viscosity (Pa s)  0.001  

Borehole radius (m) 0.142  0.142 

Layer thickness (m)   2.4 

Table 1:  Model parameters used in computations. 

Figure 3 (dashed lines) depicts tube-wave reflection 

coefficient as a function of frequency for the thin reservoir 

model from Table 1 computed with the effective 

wavenumber approach. Open boundary conditions are 

assumed between the borehole and the layer. Increase in 

layer permeability causes greater freedom for wellbore 

fluid to flow in and out of the poroelastic layer, leading to a 

larger reflection coefficient. Figure 3 also shows that a 

similar curves obtained with a finite-difference code jointly 

developed by Keldysh Institute of Applied Mathematics 

and Shell. Reflection coefficients were estimated by taking 

spectral ratios of incident and reflected tube waveforms. 

Good agreement between the two sets of curves is obtained 

above 80-100 Hz indicating that the effective wavenumber 

approach does capture the most important features of tube-

wave interactions with poroelastic formations. Below 100 

Hz the spectral-ratio calculations become less stable due to 

diminishing amplitudes in the input signal with 1000 Hz 

central frequency.
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Tube-wave reflection from a porous layer with perforation 

Idealized perforation model 

Given success in describing tube-wave interaction for a 

single poroelastic layer using effective wavenumber 

approach, we decided to explore more complicated models 

with multiple layers. In particular, we focus on an 

"idealized perforation model" depicted in Figure 4. While 

the geometry and material parameters in this model are 

identical to those for the single-layer model of Figure 1, the 

key distinction is that two thirds of the interface between 

wellbore and the porous layer is now closed to flow. 
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Figure 3. Amplitude of the tube-wave reflection coefficient as a 

function of frequency for a model with a single poroelastic layer 

(Figure 1 and Table 1). Dashed lines are derived with the 1D 

effective wavenumber approach, while solid lines are computed 

with a finite-difference code. The bottom curve represents 

reflection from the elastic zone between two elastic half-spaces.

Therefore fluid communication occurs only in the middle 

porous layer. Real perforation can be thought of as a small 

cylinder placed perpendicular to the borehole in a particular 

azimuth and thus it will have even more limited area of 

flow. For this reason we call our model "idealized (disk-

shaped) perforation". Also, we do not account for the extra 

rigidity caused by the presence of steel casing in real 

boreholes, although in principle this should be possible. 

Even with these limitations the "idealized perforation 

model" is a useful first step since it can be treated by the 

cylindrically symmetric approaches at hand (effective 

wavenumber scheme and radially symmetric poroelastic 

finite-difference code).

First let us examine the interaction of the tube wave with a 

zero-length perforation ( 0w ). From now on we fix the 

permeability of the porous zone to 1 Darcy. Due to the 

smaller area of fluid communication, the magnitude of the 

reflection coefficent decreases compared to the fully open 

case (Figure 1) and lies in between the curves for single 

poroelastic and single elastic layers (Figure 5). Recall that 

the elastic layer is equivalent to sealed (unperforated) 

poroelastic one. The multi-layered structure eliminates the 

sharp troughs that were present in the cases of single elastic 

or poroelastic layer. Overall we see good sensitivity of the 

Figure 4:  Idealized model of a disk-shaped perforation. All three 

porous layers have the same thickness (0.8 m) and identical 

material parameters from Table 1. Layers 1 and 3 have closed 

boundary conditions preventing flow from and into the borehole. 

Disk-shaped washout represents idealized perforation with length 

w and open boundary conditions at the ends. 

reflection coefficient to the relative portion of wellbore-

layer interface open to flow.
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Figure 5: Reflection coefficient of tube waves from perforated and 

unperforated poroelastic layers. Permeability of porous zone is 1 

Darcy. The dashed lines are derived with 1D effective 

wavenumber approach, while solid lines are computed with finite-

difference code. The zero-length idealized perforation corresponds 

to the model of Figure 4 with 0w . Elastic layer is equivalent to 

the unperforated poroelastic one and is shown for comparison. 

An idealized perforation of a finite length causes a stronger 

reflection, since in addition to open flow we now have a 

change in the borehole diameter (Figure 6). If we close the 
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Tube-wave reflection from a porous layer with perforation 

flow at the boundaries of the perforation, we end up with 

what is conventionally called a washout zone or 

enlargement in the borehole diameter examined in detail by 

Tezuka et al (1997).  For this particular model the 

reflection coefficient from the washout zone is higher than 

that of zero-length perforation. Nevertheless, the reflection 

amplitude from the finite-length perforation is substantially 

larger than from the simple washout. Since the geometry of 

the models with washouts and finite-length perforations are 

identical, the difference between the reflection curves (cyan 

and blue in Figure 6) represents purely the effect of fluid 

flow into the porous layer via the open perforation. 
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Figure 6: Reflection coefficient of tube waves from a layer with a 

single idealized perforation of various lengths. Permeability of 

porous zone is 1 Darcy. Dashed lines are derived with a 1D 

effective wavenumber approach, while solid lines are computed 

with a finite-difference code. Washout represents model identical 

to Figure 4 but with no-flow boundary conditions on the interface 

with the reservoir layer. 

Conclusions

We have applied a 1D effective wavenumber approach to 

analyze interactions of low-frequency tube waves with 

stack of poroelastic and elastic layers. For the first time we 

have shown good agreement between responses obtained 

with 1D approach and finite difference computations.

We extended our analysis to cylindrically symmetric 

borehole irregularities inside poroelastic layers. In 

particular, we have examined the reflection response of a 

single idealized (disk-shaped) perforation inside the 

poroelastic layer. We have shown that cases of fully open- 

to-flow porous layer, fully sealed (unperforated) and 

partially sealed layer with finite-width and zero-length 

perforation can be distinguished for sufficiently large 

permeabilities of the formation. For finite-length 

perforations changes in borehole diameter further increase 

the reflection coefficent. Yet for the same geometry the 

washout (no-flow) and perforation (open flow) can still be 

distinguished by their low-frequency response. For the 

models at hand we observe larger reflection response for 

the perforation than for the washout. Realistic perforation 

geometries are 3D and therefore cannot be directly handled 

by 2D approaches. More theoretical and experimental work 

is needed to establish a proper 3D description of wave 

interactions with realistic cylinder-shaped perforations. 

Development of new analytical and computational 

approaches to tube-wave interaction with realistic 3D 

structures in cased boreholes may allow quantitative 

interpretation of the responses for properties of formation 

and hydrofractures. Perforation should be understood first 

since it is basic and abundant element present in majority of 

cased-hole completions.
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