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Summary 
 
We investigate the influence of finite-length fluid-filled 
fracture on a tube wave propagation in a borehole using 
approximate low-frequency formalism. Previous approach 
provides description of reflection/transmission on an 
infinite fracture. Here we propose elegant way to treat the 
effect of the fracture tips and present combined approach 
that handles interaction of tube wave with fracture of an 
arbitrary finite length. New formalism is verified by 
comparison with a finite difference computations.  
 
Introduction 
 
Tube (Stoneley) waves in boreholes are used for 
characterizing formation properties and hydraulic 
properties of fluid-filled fractures and permeable zones 
intersecting wellbores. At low frequencies there is a well-
known approximate formalism describing 
reflection/transmision of tube waves on layer boundaries, 
infinite fluid-filled fractures and small-diameter washouts. 
However for fractures or washouts of finite size one can 
only use numerical methods such as finite difference that  
  

 

Figure 1. (a) Model geometry. (b)–(d) Simple representation of the 
wave propagation sequence. 

 
are time-consuming and do not provide physical insights. 
Here, we extend existing formalism to analyze 
reflection/transmission of tube waves on a circular fluid-
filled fracture/washout of an arbitrary finite size. We break 
the problem into three tasks. First, conversion of tube 
waves into guided waves is modeled using method of 
Kostek et al. (1998). Second, we derive new analytical 
solution for reflection of diverging guided slow wave from 

a fracture tip using 2D approximation. Finally, we derive 
conversion coefficient describing transformation of 
imploding guided into tube waves in a borehole. 
Combining three solutions, we obtain simple analytical 
representation of a total wavefield in the borehole as a 
superposition of upgoing and downgoing tube waves 
generated at the fracture intersection and borne by 
incoming guided waves and their multiples. New solution 
is in good agreement with finite difference computations.  
 
Propagation and interaction of low-frequency tube waves 
with borehole structures can be described by approximate 
analytical methods that provide great physical insight. 
While such methods can handle small-diameter washouts 
and infinite fractures (Kostek et al., 1998), they can not 
cope with structures of arbitrary finite dimensions even in 
case of a radial symmetry.  
 
Here we extend low-frequency formalism to handle tube-
wave interaction with circular fractures/washouts of a final 
radius by breaking the wavefield into the sum of individual 
reverberations in the fracture and borehole and compare the 
results with finite-difference computations.  
 

 
Theory  
 
Let us consider a wellbore of a radius a intersected by a 
circular fracture with radius b and thickness h (Figure 1a). 
Propagation of tube waves from a source in a borehole can 
be decomposed into the following steps:  
1) incident tube wave from the source interacts with the 
fracture resulting in reflected and transmitted tube waves as  
well as converted guided wave in the fracture (Figure 1b). 
Conversion coefficient Qtg  quantifies amplitude of guided 
wave excited by unit-amplitude tube wave; 2) Exploding 
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Tube waves from a horizontal fluid-filled fracture of a finite radius 

guided wave in the fracture reflects from the fracture tip 
with reflection coefficient Rtip and generates an imploding 
guided wave approaching the borehole (Figure 1c); 3) 
When imploding guided wave reaches the borehole it 
reflects from the fracture mouth with reflection coefficient 
Rmth. The same imploding guided wave impinges onto the 
borehole in a radially symmetric fashion and generates 
converted up- and downgoing tube waves in the borehole 
(Figure 1d).  
 
As a result the wavefield inside the fracture can be 
represented as a following sum of standing (exploding and 
imploding) guided waves -0.3cm  
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where 
(1 2)
0H ,

 is Hankel functions, 
GWr Vk ω=  is a 

wavenumber of guided wave, ω is a radial frequency and 
VGW(ω) is phase velocity of the slow (symmetric) guided 
wave in the layer studied by Krauklis (1962) and by 
Ferraziini and Aki (1987). Temporal dependence eiωt is 
understood but omitted in all equations. Analyzing figure 1 
and equation (2), one can see that the first exploding wave  
(Ge

(1)) is generated by a tube-to-guided wave transmission 
with a conversion coefficient Qtg. Amplitude of the first 
imploding wave (Gi

(1)) has an additional multiplier Rtip and 
so on and so forth. Multiple guided wave of the order n  

can be represented as 
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Likewise pressure wavefield in a borehole above the 
fracture Pu

bor and below the fracture Pl
bor are given by the 

following sums  
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where 
TWT Vk ω= , VTW(ω) - phase velocity of the tube 

wave. Pressure field Pu
bor

 consists of a unit-amplitude 
downgoing incident tube wave, reflected (upgoing) tube 
wave from the fracture mouth and infinite number of 
upgoing converted tube waves generated each time when 

standing guided wave in the fluid layer hits the fracture 
mouth. Here conversion coefficient Qgt describes single act 
of guided-to-tube wave transfer. Likewise, below the 
fracture, pressure in the borehole consists of transmitted 
tube wave and infinite number of downgoing converted 
tube waves. It is straightforward to see that the first 
member of the series (T(1)) is borne by first returning 
guided wave that reflects once from the fracture tip, while 
second (T(2)) is borne by a guided wave reflected twice 
from the tip and so on.  
 
Equations (1)–(4) represent total wavefield inside the 
borehole and fracture as an infinite sum of elementary 
waves. In practice recording time is finite and therefore 
only few initial members of the sum need to be computed 
to predict the response. Also note that each additional 
reflection reduces the amplitude of subsequent term and 
therefore contribution of higher-order terms becomes 
smaller and smaller.  
 
Conversion and reflection coefficients needed to apply 
equations (1)–(3) can be established in simple analytical 
form provided borehole diameter and fracture thickness are 
small compared to wavelength of tube or guided waves. 
Kostek et al. (1998) provided analytic solution for tube-
wave reflection and transmission coefficients R(ω) and  
T(ω) as well as for conversion coefficient Qtg(ω) using a 
model of an infinite fracture. These expressions are simple 
functions of wavenumber of tube waves kT wavenumber kr 
of guided wave, fracture thickness h and borehole radius a 
(Figure 1a). In this study, we derive expressions for 
reflection from the tip Rtip and mouth Rmth and conversion 
coefficient Qgt and compare approximate solutions (1)-(4) 
with finite-difference computations.  
 
Reflection of a cylindrically exploding guided wave 
from the tip of a circular fracture  
 
Using the fact that the fracture is very thin relative to the 
wavelength of the slow guided wave, we approximate wave 
propagation by 2D plane model of fluid-filled circular disk 
surrounded by elastic medium (Figure 2a). We assume 
continuity of radial stress component [trr]=0 and 
displacement [ur]=0 at the fracture tip (r=b) and keep 
phase velocity VGW(ω) of an original problem with thin 
fluid layer. Under these assumptions pressure field inside 
fluid disk from a point source at the center can be found as 
superposition of Hankel function (direct wave from the 
source) and Bessel function (standing waves inside the 
disk). Standing-wave contribution can be expanded as an 
infinite series that physically describes reverberation of 
exploding and imploding cylindrical waves. Exploding 
wave from the source reflects off the fluid-solid boundary, 
focuses back at the source, then diverges again and repeat 
this cycle infinite number of times. First term of the series 
represents desired reflection Rtip describing single act of 
reflection of a guided wave from a fracture tip  
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Tube waves from a horizontal fluid-filled fracture of a finite radius 
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where 
( )
1

( )
0

( )

(
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r
VGW

r
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H b

r H b
a r

ω

ω= , = , ; Vp, Vs and ρs- 

formation compressional and shear velocity and density, ρfl 
- density of the fluid. 
 
Conversion of guided wave into tube wave  
 
Conversion coefficient Qgt describes amplitude of tube 
wave generated by an imploding cylindrical guided wave of 
a unit amplitude that symmetrically impinges on a borehole 
(Figure 1d). Krauklis and Krauklis (1995) solved similar 
conversion problem without radial symmetry and took into 
account additional diffracted waves. Here we neglect all the 
waves except guided wave in the fracture and tube wave in 
the borehole and hence employ approach similar to Kostek 
et al. (1998).  
 
We assume that pressure field in the layer consists of only 
incident and reflected slow guided waves:  
 

(1) (2)
0 0( ) ( ) ( ) ( )frac r mth rP H k r R H k rω ω= + ,          (6) 

 
while pressure in the borehole consists of two tube waves 
propagating in the opposite directions:  
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Note that up- and downgoing converted tube waves have 
identical amplitudes because guided mode represents 
symmetrical mode with respect to the middle plane of the 
fluid layer.  
 
Analogous to Kostek et al. (1998) we impose boundary 
conditions requiring continuity of the pressure and 
continuity of the fluid mass exchanged between the 
borehole and the fracture. This allows us to obtain simple 
expressions for reflection and conversion coefficients  
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Comparison of analytical solution with finite difference 
 
Let us compare analytical solution with a finite-difference 
computation. The point pressure source is located in the 
borehole above the fracture (Figure 1a). Source has Ricker 
wavelet with a central frequency of 1000 Hz. Pressure 
wavefield is computed in the borehole fluid and inside the 
fracture. We take borehole radius a=0.1 m and fracture 
thickness also h = 0.1 m. Both wellbore and the fracture are 
filled with water (Vfl = 1500 m/s, ρfl = 1000 kg/m3), while 
formation properties are as follows: Vp = 4200 m/s, Vs = 
2500 m/s, ρs = 2400 kg/m3. 
 

 

Figure 2. (a) 2D model used for deriving reflection coefficient 
from the tip. (b) Wavefield inside the fracture with length 10 m. 
 
 
Figure 2b illustrates wavefield inside the fracture (b=10 m). 
Exploding wave originating at ∼ 10 ms represents guided 
mode converted from incident tube wave. Red response is 
computed analytically using equation (1)–(2) and 
conversion coefficient from Kostek et al (1998) while blue 
response is finite-difference numerics. Guided wave 
reflects off the fracture tip at 10 m and generates even more 
dispersive imploding guided wavepacket that converges 
towards the borehole center. Finite-difference (blue) and 
analytical (red) responses are in good agreement for all 

  371SEG/New Orleans 2006 Annual Meeting

D
ow

nl
oa

de
d 

10
/2

2/
17

 to
 1

66
.8

7.
19

9.
14

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



Tube waves from a horizontal fluid-filled fracture of a finite radius 

arrivals thus validating formula (5) for reflection 
coefficient from the fracture tip.  
 
Figure 3a shows wavefield in the borehole intersecting 
fracture with 0.36 m radius located at depth of 5 m. Note 
that waveforms of reflected and transmitted tube-wave 
packets are more complex and of longer duration compared 
to incident waveform because they represent interference of 
several tube waves with short delay time. Analytical 
response (red) was computed using only first three terms of 
infinite series (3). Analytic (red) and finite-difference 
response (blue) are in good agreement despite this 
truncation.  
 
For fracture with 10 m radius, multiple reflections from the 
tip separate in time and so do the tube waves in the 
borehole. Figure 3b shows that converted tube waves at 
about ∼ 30 ms are well predicted by first equation of (4) 
since analytical (red) and finite-difference (blue) traces 
closely track each other.  
 
Discussion and conclusions 
 
We have developed a solution to describe interaction of 
low-frequency tube waves in a borehole with a circular 
fracture/washout of arbitrary finite radius. Wavefield in the 
fracture is represented as a sum of successive 
reverberations consisting of imploding and exploding 
cylindrical guided waves bouncing between fracture tip and 
mouth. Imploding guided waves give rise to a 
corresponding set of converted tube waves in a borehole. 
We derive formulae for reflection coefficients of guided 
wave from fracture tip and mouth as well as guided-to-tube 
wave conversion coefficient. Comparison with finite-
difference numerical computation demonstrate that new 
solution with as few as three reverberations can provide 
accurate representation of the total wavefield. Since new 
solution is analytical, we can obtain better physical insight 
into tube-wave interaction with fractures/washouts of finite 
radius and analyze dependence of the response on various 
fracture, borehole and formation parameters.  
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Figure 3. Wavefield in a borehole intersected by a fracture:  
(a) fracture 0.36 m; (b) fracture 10 m. 
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