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Summary 
 
At low frequencies tube or Stoneley waves represent a 
dominant arrival propagating along boreholes. They can be 
excited by the source in a well or by external source due to 
conversion from other wave types. Tube wave experiences 
reflection at the bed boundaries, borehole diameter changes 
and fractures or permeable zones. It was proven in previous 
studies that 1D effective wavenumber approach provides 
simple and accurate low-frequency description of tube-
wave propagation in open boreholes surrounded by radially 
homogeneous formation. Tube waves become even more 
dominant in cased boreholes, but casing further modifies 
wave propagation and reflection/transmission phenomena. 
In this study we apply 1D effective wavenumber approach 
to radially inhomogeneous media and demonstrate that it 
still provides excellent description of low-frequency tube-
wave propagation. In particular, we focus on three models 
representative of cased boreholes: reflection from 
geological interfaces behind casing, reflection from 
corroded casing section and reflection from idealized disk-
shaped perforation in cased hole.  In all three cases 
frequency-dependent reflection coefficient obtained by 1D 
effective method and by finite-difference computations 
show excellent agreement. 
 
Introduction 
 

Tube (Stoneley) waves are useful for characterizing 
near-wellbore space since they are sensitive to borehole 
diameter changes, variations in elastic properties and 
permeability of the surrounding formations. In open-hole 
acoustic logging higher-frequency tube waves are used to 
detect and characterize fractures as well as to obtain a 
permeability profile (Winkler et al., 1989; Krauklis and 
Krauklis, 2005). In cased boreholes low-frequency tube-
wave reflections can be used for estimation of quality and 
parameters of hydraulic fractures (Medlin and Schmitt, 
1994; Paige et el., 1995) as well as other purposes.  We are 
interested in the latter applications for cased boreholes 
where surrounding media is radially inhomogeneous 
(casing, cement, formation). Currently only numerical 
finite-difference methods can handle the 
reflection/transmission problem for such systems. Finite-
difference method provides little physical insight into the 
problem. Approximate methods are useful for gaining 
better understanding of the problem of tube-wave 
reflections in cased boreholes.  In this study we utilize 1D 
effective wavenumber approach suggested by White (1983) 
and extended by Tang and Cheng (1993). This approach 

was originally developed for low-frequency tube waves in 
radially homogeneous formations and was verified 
numerically for an open hole surrounded by elastic (Tezuka 
et al, 1997) and poroelastic formations (Bakulin et al., 
2005).  Here we extend this approach to radially 
inhomogeneous media with particular focus to cased 
boreholes. 

 
1D effective wavenumber approach 
 
Original formulation of 1D approach by White (1983) and 
later generalization by Tang and Cheng (1993) assumed 
radial homogeneity of the media surrounding the fluid 
column. This was appropriate to describe open-hole 
acoustic logging. While change in diameter (washout) 
could be treated, no radial layering was assumed beyond 
the fluid-formation interface. Our interest lies in analyzing 
interaction of tube waves with borehole structures in cased 
wells. Casing (and cement) represents another radial layer 
with very distinct parameters that substantially alters the 
properties of the tube wave (velocity, dispersion, 
attenuation) and ultimately modifies the reflection and 
transmission phenomena in an unknown manner. It seems 
that only numerical methods, like finite-difference, can 
correctly handle these interactions. Nevertheless, presence 
of elastic or poroelastic radial layering without additional 
fluid layers still supports only one propagating tube wave 
albeit with modified properties. Thus, it appears reasonable 
to assume that at least at low frequencies extension of 1D 
approach should still be applicable. Let us verify this 
hypothesis by means of a series of numerical tests. 
 
First, let us review the basics of 1D effective wavenumber 
approach (Tang and Cheng, 1993; Bakulin et al, 2005). In 
each homogeneous zone tube-wave propagation is 
described by a 1D wave equation with constant effective 
wavenumber that depends on the properties of the 
surrounding formation as well as geometrical borehole 
parameters and frequency. To obtain the amplitudes of 
upgoing and downgoing waves, mass-balance boundary 
conditions are set at each interface, in particular, continuity 
of the fluid pressure and of the fluid flow. Reflection and 
transmission coefficients from a single layer of any type are 
given by:  
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Tube-wave reflections in cased boreholes 

where L is the layer thickness, k1 is the axial Stoneley 
wavenumber in the two half-spaces and k2 is the axial 
Stoneley wavenumber in the layer. These expressions are 
valid for a layer of any type as the rheology of the medium 
is absorbed by the effective wavenumber (Tang and Cheng, 
1993). That is why we call this approach "effective 
wavenumber approach". Although equations (1) are 
obtained for homogeneous formation, we may apply them 
without modification for radially inhomogeneous 
formation, provided that Stoneley wavenumber is now 
computed for multi-layered model at hand. For simplicity 
in this study we assume radially layered model with three 
layers: fluid, casing and formation.  In this case effective 
wavenumber k as a function of frequency is calculated 
numerically from set of equations representing boundary 
conditions and assuming full bond between casing and 
formation. Once effective wavenumbers are established for 
each vertically homogeneous zone, equations (1) are used 
to compute the reflection coefficient as a function of 
frequency and compare them with the corresponding 
quantities found from finite difference modeling. Small 
tube-wave dispersion in cased boreholes allowed us to use 
frequency-independent velocities in  all numerical 
examples below since computations with and without 
frequency dependence of the wavenumber are almost 
identical Material parameters for all models are 
summarized in Table 1. 
 
Model 1: Reflection from geological interfaces behind 
casing 

 
Figure 1 depicts the first model where cased borehole 
penetrates two thin horizontal layers.  At low frequencies 
these two layers generate a composite tube-wave reflection 
that can be computed using equations similar to (1) but 
generalized to a four-layered 1D model.  Figure 2 shows a 
comparison of reflection coefficients obtained with 1D 
approach and a finite-difference code jointly developed by 
Keldysh Institute of Applied Mathematics and Shell. In the 
latter case reflection coefficients are estimated by taking 
spectral ratios of reflected and incident tube waveforms.  

 
Figure 1: Model 1: cased borehole intersects two elastic layers 
embedded between two elastic half-spaces. 

Good agreement between the two sets of curves proves that 
the effective wavenumber approach does capture the most 
important features of tube-wave interactions with 
formations in cased boreholes. When softer (plastic) casing 
is used the tube-wave reflections are larger indicating 
increased sensitivity to variations of elastic parameters 
behind the casing as it is intuitively expected, while in case 
of steel casing this sensitivity is muted due to stronger 
containment of the tube wave.   

 
Figure 2: Reflection of tube wave in Model 1 for two cases: plastic 
casing (red line) and steel casing (blue line). Solid lines indicate 
coefficients obtained numerically with finite-difference code, 
while dashed lines represent results of 1D effective wavenumber 
approach. 

 
Model 2: Reflection from corroded section of the casing 

 
This section tests the 1D effective wavenumber approach 
for the case when variation in elastic parameters occurs in 
the properties of the first elastic layer - casing. The system 
under consideration is cased borehole surrounded by 
homogeneous formation (Figure 3). Casing has a corroded 
section with 0.8 m height. Density, longitudinal and shear 
velocities of corroded section are all reduced by the same 
multiplier Q (0.2, 0.5 and 0.7) compared to the properties 
of uncorroded section. Material parameters are given in the 
table below. Figure 4 confirms excellent agreement 
between approximate reflection coefficients obtained with 
1D approach and ground truth response computed with  

 
Figure 3: Model 2: cased borehole in homogeneous elastic media; 

middle section of casing with 0.8 m height is corroded. 
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Tube-wave reflections in cased boreholes 

 
Figure 4: Reflection of tube wave from three different types of 
corroded section: the highest reflection corresponds to the 
maximum difference between parameters of casing and corroded 
region. 
 
finite-difference modeling. Notice that for reflection 
coefficient to become larger than 1%, elastic parameters of 
corroded region need to be reduced by at least factor of 
two. 
 
Model 3: Idealized perforation in cased borehole  

 
Given success in describing tube-wave interaction for cased 
borehole with constant radius, we decided to explore more 
complicated models with varying borehole diameter. In 
particular, we focus on "idealized perforation model" 
(Bakulin et al., 2005) depicted on Figure 5. While the 
material parameters in this model are identical to those for 
the corroded casing model of Figure 3 (except for corroded 
section), the key distinction is that instead of corroded 
region there is now disk-shaped perforation. Since 
formation is modeled as impermeable elastic space then 
effects related to fluid mobility between borehole and 
formation are neglected and only reflection due to 
geometric (diameter) changes are considered. Real 
perforation represents a small cylinder placed perpendicular 
to the main borehole in a particular azimuth and thus it will 
have much more limited area of fluid-formation interface. 
For this reason we call our model "idealized (disk-shaped) 
perforation". With all these limitations "idealized 
perforation model" is a useful first step since it can be 
easily treated by cylindrically symmetric approaches at 
hand: effective wavenumber scheme and radially 
symmetric elastic finite-difference code. Material 
parameters are given in the Table 1 below. Obtained 
reflection coefficients are given on Figure 6 and Figure 7 
for the case of finite-length (0.1 m) and zero-length 
perforations respectively. The latter one represents a case 
where there is only a break in the casing but radius of 
formation interface remains constant. In both cases the 
height of the perforation was 0.8 m. Again agreement is 
excellent between 1D approach and finite-difference 
numerical simulation. In case of a finite-length perforation  
(Figure 6) reflection is completely dominated by diameter 
change and is not dependent on casing parameters, whereas 

for zero-length perforation (Figure 7) steel casing leads to 
slightly higher reflection. 
 

 
Figure 5:  Model 3: Idealized model of a disk-shaped perforation 
(with no-flow at the sand face). 

 

 
Figure 6: Reflection of tube wave from perforation with 10 cm 
length for two cases: plastic casing (red line) and steel casing (blue 
line). 

 
Figure 7: Reflection of tube wave from zero-length perforation for 
two cases: plastic casing (red line) and steel casing (blue line). 
Solid lines - finite difference code; dashed lines – 1D effective 
wavenumber approach. 
 
Limitations of 1D effective wavenumber approach 
 
While previous publications (White, 1983; Tezuka et al, 
1997) implied that 1D approach always works at low 
frequencies, we discovered that it can only be applied to 
models with ratio of layer thickness h to borehole radius R 
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Tube-wave reflections in cased boreholes 

of more than two (h > 2R). To understand the underlying 
reasons let us revert to the case of open borehole in 
homogeneous elastic formation. At low frequency tube-
wave velocity is given by White (1983) as: 

⎟
⎠
⎞

⎜
⎝
⎛ +=

MB
cT

11ρ  ,                          (2) 

where r and B are fluid density and bulk modulus, M is 
formation shear modulus. If layers are introduced, then 1D 
approach assumes that velocity in each zone is still 
described by the same equation and is not distorted by layer 
boundaries. Since we can not verify this directly by 
velocity measurement in a thin layer, we perform an 
indirect quasi-static diagnostics.  For infinite borehole 
surrounded with homogeneous formation the tube-wave 
velocity is deduced from this static elasticity relationship 
(White, 1983)  

)3(0
2

=−
M
p

R
ur  

on the boundary between fluid in the borehole and elastic 
formation. Here ur  is radial displacement on the borehole 
wall, p – fluid pressure, R – borehole radius. If tube-wave 
velocity is to be described by equation (2) within each 
layer, then equation (3) should hold at each point of the 
fluid-formation boundary. However even for two elastic 
half-spaces instead of homogeneous media these conditions 
do not hold in a vicinity of a boundary between half-spaces. 
The absolute value of deviation from zero for the last 
expression (computed with finite-difference code) is 
presented on Figure 8. The model under consideration is 
thin elastic layer (0.6 m < z < 1 m) intersected with an open 
borehole (R=0.1 m, h=4R). Figure 8 shows that biggest 
deviations occur around the layer boundaries and two 
symmetric peaks overlap in the middle of the thin layer. 
Most likely mismatch of acoustic properties between fully 
bonded layers of different materials invalidate relation (3) 
near the interface. For two half-space model or this model 
with h=4R this deviation is not essential and 1D approach 
still produces reflection coefficient that is close to finite-
difference computation. When layer thickness is further  
 

 

Figure 8: Deviation (|u/R-p/2M| / max|u/R-p/2M|) from static 
formula (3) for a case of thin layer between two half-spaces. 

reduced, the deviation in the middle of the layer is 
enhanced by stronger interference of the approaching 
peaks.  For thicknesses h<2R we observe consistent and 
substantial mismatches between the 1D approach and finite 
difference responses. It is clear that formula (3) is no longer 
valid within the layer and thus equation (2) does not 
represent a tube-wave velocity inside the bed with very 
close boundaries. We can interpret that “effective” tube-
wave velocity inside the thin layer is altered and is no 
longer described by (2), thus leading to a mismatch. 
Presence of multiple closely spaced geological interfaces 
between contrasting beds can break the approximations (3) 
and (2) in an extended depth interval. Therefore 1D 
wavenumber approach can not be applied to the case of 
very thin layers (h < 2R). 
 
Conclusions 

 
We extended 1D effective wavenumber approach to treat 
the interactions of low-frequency tube waves with various 
borehole structures in a radially inhomogeneous media that 
supports single tube-wave mode. In particular, we have 
shown good agreement between responses obtained with 
1D approach and finite-difference computations in cased 
boreholes with vertical variation in properties of casing or 
formation layers. We further tested this method for simplest 
model of idealized (disk-shaped) perforation with no-flow 
boundary at the sand face. In this case change in diameter is 
additionally introduced. We also demonstrate that 1D 
approach becomes inaccurate for layers with small 
thickness (h<2R) and thus very thin layers or small 
perforations can not be treated properly. We predict that in 
case of poroelastic structures 1D effective wavenumber 
approach would also account for fluid flow effects and 
correctly describe tube-wave interaction with radially 
inhomogeneous permeable formations.  
 
 

 
P-wave 
velocity,    
VP (m/s) 

S-wave 
velocity,   
VS (m/s) 

Density 
(kg/m3) 

Elastic half-spaces 3500 2500 3400 
Casing 1 (steel) 6000 3000 7000 

Casing 2 (plastic) 2840 1480 1200 

Fluid 1500 - 1000 

Layer 1 3100 1800 2600 

Layer 2 3700 2400 3000 
Corroded  region 1 1200 600 1400 
Corroded region 2 3000 1500 3500 
Corroded region 3 4200 2100 4900 

Table 1: Model parameters 
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