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SUMMARY
We present algorithm and code that solves dispersion equation for
cylindrically layered media consisting of arbitrary number of solid
elastic and fluid layers. The algorithm is based on the spectral method
which discretises the underlying wave equations with the help of
spectral differentiation matrices and solves the corresponding equa-
tions as an generalized eigenvalue problem. For a given frequency the
eigenvalues correspond to the wavenumbers of different modes. The
advantage of this technique is that it is easy to implement especially
for cases where traditional root-finding methods are strongly limited
or hard to realize, i.e. for attenuative, anisotropic and poroelastic
media. We illustrate the application of the new approach using models
of a free solid bar and a fluid-filled cylinder. The computed dispersion
curves are in good agreement with analytical results, which confirms
the accuracy of the new method.

INTRODUCTION
Modelling different wave modes propagating along a cylindrical bore-
hole is important for understanding and quantitative interpretation of
borehole sonic and seismic measurements. All these modes are strongly
frequency dependent. Traditionally, mode dispersion was studied by
finding roots of analytical dispersion equations. This method has a
long history. At the end of the 19th century Ludwig Pochhammer
and Charles Chree (e.g. Pochhammer, 1876) independently investi-
gated the wave propagation along an elastic cylindrical bar. The dis-
persion curves for a free cylinder were computed much later by Ban-
croft (1941) and Davies (1948). For the case of a fluid-filled borehole,
with appropriate boundary conditions, analytical solutions were given
by Biot (1952) and Del Grosso and McGill (1968). The case of a hol-
low cylinder either empty or filled with a fluid for different tube wall
thicknesses, was studied e.g. by Gazis (1959) and Rubinow and Keller
(1971).

Root-finding is a direct analytical technique and hence the most nat-
ural method for analysis of the dispersion. However this method be-
comes difficult to implement when the numbers of cylindrical layers
and modes become large and when inelastic effects need to be taken
into account, as separation of different roots becomes challenging.

An alternative approach to modelling wave propagation in circular
structures was recently introduced by Adamou and Craster (2004) based
on spectral methods. The problem is solved by numerical interpolation
using spectral differentiation matrices (DMs). The advantage of this
approach is that it is much faster and easier to implement then conven-
tional root-finding methods, especially for attenuative, poroelastic or
anisotropic structures.

In this paper we introduce the spectral method approach for longitu-
dinal wave propagation along the axis of a free circular cylinder. The
results are compared with the known analytical solutions from Davies
(1948). The approach is then extended to n cylindrical solid and fluid
layers. We illustrate the results with the model of a fluid filled tube,
which are compared to the results from A. Sidorov (St. Petersburg,
State University, Russia) root-finding program based on the parame-
ters used by Del Grosso and McGill (1968). Finally particle displace-
ment profiles,which result from the eigenvectors, are computed. The
results for the free cylinder are illustrated and discussed for various
frequencies.

THE UNDERLYING EQUATIONS
We introduce the spectral method using the easiest case of longitudi-
nal wave propagation in a free solid bar. Fig. 1 displays the geometry

and the displacement field. We use cylindrical coordinates (r,θ ,z). As
longitudinal (axisymmetric) wave propagation in a cylinder is inde-
pendent of θ , the particle motion occurs solely in the r−z plane where
the displacement ur is parallel to the r-axis and uz to the z-axis. We
consider the propagation of a infinite train of sinusoidal waves along
the z-axis of the cylinder which is a harmonic function of z and t of the
form

ur = Uei(kzz+ωt) ,

uz = Wei(kzz+ωt) , (1)

where ω is the angular frequency and kz the angular axial wavenumber.
U and W are the amplitudes which are functions of r and θ . From
eqs. 1 it follows that ∂ur/∂ t = iωur and ∂uz/∂ z = ikzuz etc. The bar
is a homogeneous, isotropic, elastic body with P- and S-wave velocity
(vp,vs) and density ρ .

6

Longitudinal waves in a cylindrical bar

⇒ cylindrical bar vibrating in the r-z plane:
⇒ longitudinal-waves

θ r

z

uz

ur

displacement uθ vanishes

a

Figure 1: Geometry of a free solid bar, displaying the coordinate sys-
tem which reduces to (r,z) and the displacement field (ur,uz) for ax-
isymmetric wave propagation.

The equations describing such a system are known as the Pochhammer-
Chree-equations (Pochhammer, 1876) which are presented in detail by
Kolsky (1963) and Bancroft (1941). The equations of motion in polar
coordinates using displacement potentials are

(
∂ 2

∂ r2 +
1
r

∂

∂ r
+

ω2

v2
p︸ ︷︷ ︸

Lvp

)
φ = k2

z φ , (2)

(
∂ 2

∂ r2 +
1
r

∂

∂ r
− 1

r2 +
ω2

v2
s︸ ︷︷ ︸

Lvp

)
ψθ = k2

z ψθ , (3)

where the scalar potential is φ and ψθ is the θ component of the vec-
torial potential. The stress-strain relations for axial-symmetric modes
are

σrr = λ∆+2G
∂ur

∂ r
, (4)

σrz = G
(

ikzur +
∂uz

∂ r

)
, (5)
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Spectral Method

where ∆ is the dilatation in cylindrical r− z coordinates. λ and G are
the Lame parameter. Stress-free boundary conditions are assumed at
r = a which means σrr|r=a = σrz|r=a = 0. σrr is the normal stress in
radial direction and σrz is the radial shear stress acting in z direction.

In order to complete the set of equations the displacements ur in r-
direction and uz in z-direction are defined in ω − kz domain as

ur = − ∂φ

∂ r
− ikzψθ , (6)

uz = ikzφ +
1
r

∂ (rψθ )
∂ r

. (7)

These equations fully describe the problem of any free vibrating cylin-
drical structures in the r− z plane. In the next section a new approach,
based on the spectral method, is introduced in order to solve these
equations.

METHODOLOGY

The root-finding approach was developed by Pochhammer (1876) and
Chree (1889) in the 19th century. A general solution to eqs. (2)-(3)
is found which is a combination of Bessel functions of different or-
der. Substituting the solution into the boundary conditions yields a
homogenous system of linear algebraic equations. In order to have
non-trivial solutions the determinant of its matrix M must be equal to
zero, detM(ω,kz) = 0. This is called the frequency equation. The
roots of this equation yield the dispersion relation ω(kz). Since wave
solutions in cylindrical coordinates contain various Bessel functions,
it is often quite difficult to find and separate various roots. This gets
more complicated in the case of leaky modes or lossy structures where
solutions of the dispersion relation should be found in the complex
plane.

The spectral method bypasses these difficulties and solves the under-
lying Helmholtz equations numerically. For elastic wave propagation
this was first implemented by Adamou and Craster (2004) who investi-
gated circumferential waves in an elastic annulus (motion independent
of r and z: see Fig. 2). In this study we extend the spectral method to
axisymmetric longitudinal models.

The initial idea by Adamou and Craster (2004) is to use spectral DM’s
to discretise the wave equations and boundary conditions. Then they
can be solved as a matrix eigenvalue problem. The resulting eigenval-
ues correspond to a wavenumber kz for a given frequency ω or vice
versa. In the following section we illustrate the process of discretisa-
tion for the case of the free solid bar using eq. (2).

Subsequently the method is straightforwardly extended to the case of
arbitrary n-layered fluid-solid media. The eigenvectors correspond to
the potentials φ and ψθ which are finally used to compute the mode-
shapes.

DIFFERENTIATION MATRICES

In order to solve the Helmholtz eq. (2) numerically we use DM’s to
represent the differential operator Lvp . Consider a function f (x) eval-
uated at N interpolation points, which is represented in a vector f of
length N. This interpolated function f is connected to its mth deriva-
tive f(m) through the following equation


f (m)
1

f (m)
2
...

f (m)
N

≈


D(m)

11 D(m)
12 · · · D(m)

1N

D(m)
21

. . .
...

...
. . .

...
D(m)

N1 · · · · · · D(m)
NN


︸ ︷︷ ︸

D(m)

·


f1
f2
...

fN

 . (8)

This means that an approximation of the m-th derivative of f can be cal-
culated by multiplying f with the N×N matrix D(m), which represents
the DM. The DM’s are calculated by using Chebyshev polynomials.
The N interpolation points, which are, in our case, along the radius r
of the cylinder, are the N roots of the Chebyshev polynomial of the
N-th order. The Chebyshev DM’s are calculated using the recursive
formula for the derivatives of Chebyshev polynomials. The advantage
of this approach is that the derivatives of the polynomials can be com-
puted exactly.

The interpolated r vector and the calculated DM’s are now used to
represent the differential operator Lvp (eq. 2) in form of a N×N matrix

Lvp = D(2) +diag
(

1
r

)
D(1) +diag

(
ω2

v2
p

)
. (9)

In the same way matrix representations for all equations of motion and
boundary conditions are constructed.

FORMULATION OF THE EIGENVALUE PROBLEM

In order to solve the now numerically interpolated equations as an
eigenvalue problem they have to be combined in one matrix equation.
First the equations of motion Lvp and Lvs are combined in the 2N×2N
matrix

P =
(

Lvp 0
0 Lvs

)
. (10)

The stress components σrr and σrz are grouped in a matrix of the same
size

S =

(
σ

φ
rr σ

ψθ
rr ,

σ
φ
rz σ

ψθ
rz

)
, (11)

where each component is separated in terms of the displacement po-
tentials φ and ψθ .

The last step is to combine the boundary conditions with the equations
of motion in an appropriate way. As the problem is solved for a hollow
cylinder with a very small inner radius which is a limiting case for a
solid cylinder, we have to consider inner and outer boundary condi-
tions. This means that the elements of S representing the interpolation
points of the inner and outer boundary (1, N, N + 1 and 2N) replace
the corresponding rows in the P matrix which is now referred to as P̃.
The eigenvalue problem can now be formulated in the form

P̃u = k2
z Qu , (12)

where the stress-free boundary conditions are set inside the matrix Q.
This is a generalized eigenvalue problem and can be solved,for in-
stance using the MATLAB routine eig(P̃,Q) .

CYLINDRICAL LAYERING

This approach can be straightforwardly extended to n cylindrical fluid
and solid layers (see Fig. 2). Each of the n layers has P- and S-wave
velocities (vp1 ...vpn ,vs1 ...vsn ) and densities ρ1...ρn. For each of these
layers the matrix Pn is computed in analogy to eq. (10). These equa-
tions are finally combined in a diagonal matrix of the size n2N×n2N
which has the form
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r

n=1
n=2

n=3
n=4

r=a

r=b

r=c

r=d
vs2,vp2,ρ2

vs4,vp4,ρ4

vfl,ρfl

vfl,ρfl

Figure 2: Geometry of a model with four cylindrical layers. The
layer index is n = 1..4 numbered from the center to the surface of the
bar; The layers are either non-viscous fluid (v f l , ρ f l) or elastic solid
(vpn, vsn, ρ f l)

P =

 P1 0 0

0
. . . 0

0 0 Pn

 . (13)

The same procedure has to be done for the stress components Sn (see
eq. 11) of each layer n, which are finally combined in a matrix S of
same size as P. A similar matrix U is computed for the displacement
components.

For the case of layering additional boundary conditions across the
interface have to be introduced. Both the stress and the displace-
ment components have to be continuous. This means that [σrr]

∣∣∣
r=i

=

[σrz]
∣∣∣
r=i

= [ur]
∣∣∣
r=i

= [uz]
∣∣∣
r=i

= 0, where i are the radii of the differ-

ent layers i = a,b.... The stress-free boundary conditions on the inner
and outer boundary are introduced in the P-matrix the same way as
for a free cylinder in the rows (1, nN, nN +1 and n2N). The interface
conditions are introduced as the vanishing differences of the displace-
ments and stresses between adjacent layers. It is convenient to apply
the continuity stress boundary conditions to the rows N,2N...nN of the
P-matrix and the continuity displacement conditions to N,2N...nN.

This means that the elements of S and U representing the interpolation
points of the inner and outer boundary and the interfaces replace the
corresponding rows in the P matrix which is now referred to as P̃. The
eigenvalue problem can now be formulated analogous to eq. 12 and
solved using the MATLAB eigenvalue routine.

DISPERSION CURVES FOR A SOLID BAR AND A FLUID-
FILLED CYLINDER
Let us illustrate the results produced by this approach in the form of
dispersion curves (Fig. 3-4). To compare with previous results ob-
tained by root-finding techniques, we used models presented by Davies
(1948) and Del Grosso and McGill (1968). In Fig. (3) the dispersion
curves for a free solid bar are computed with the parameters shown in
the picture. These curves reproduce in very good agreement the disper-
sion curves shown in Davies (1948,Fig.13) which are calculated ana-
lytically using root-finding techniques. The fundamental mode L(0,1)
behaves like a pure extensional mode for low frequencies and propa-
gates with the velocity

√
E/ρ where E is the Young’s modulus. For

higher frequencies the mode propagates like a Rayleigh wave on the
cylinder surface. The higher modes (L(0,1)...L(0,n)) have cut-off fre-
quencies, which means they don’t exist below these frequencies. For
very high frequencies they tend to propagate close to the Rayleigh ve-
locity.

The second example (Fig. 4) is a two-layer model: a fluid-filled hol-
low cylinder. The dispersion curves were originally calculated by
Del Grosso and McGill (1968). Here the dispersion curves were com-
puted by A. Sidorov using the root-finding technique analogous to
Del Grosso and McGill (1968). Again we were able to reproduce these
results accurately using the spectral method. Note that in this case
there exist two fundamental modes starting from a zero frequency: first
one (ET0) is commonly referred to as a tube wave or Stoneley wave,
whereas second (ET1) is an analog of a (longitudinal) plate wave. The
mode ET1 only weakly depends on the fluid properties and disappears
when the thickness of the cylinder wall increases to infinity or the outer
boundary of the cylinder becomes rigid (Rn).

0 0.5 1 1.5 2

0.5

1

1.5

r/(k
z
/2π)

v p
h/v

o L(0,1)
L(0,4)

L(0,3)L(0,2)

v
p
 =1618 m/s

v
s
 =880 m/s

ρ = 5000 kg/m3 , a= 1m

Figure 3: Dispersion curves of a free solid bar: x-axis: wavenumber-
radius product, y-axis: phase velocity vph = ω/kz normalized by the
bar velocity v2

0 = E/ρ where E is the Young’s modulus (compare with
Davies, 1948,Sec. 11, Fig.13);

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

b k
z

v ph
/v

p,
fl

ET0

ET1

ET2 ET3 ET4 ET5 ET6 ET7

R0

R1
R2

R3
R4 R5

fluid: v
p
= 1.5 km/s, v

s
=0 km/s, ρ=1000kg/m3

solid: v
p
= 3.7 km/s, v

s
=2 km/s, ρ=8500kg/m3

a=1m, b= 1.125 m

Figure 4: Dispersion curves for a hollow cylinder filled with non-
viscous fluid. Thickness of the cylinder wall: 0.125m; Modes ETn in
elastic tube with stress-free outer boundary are shown in red, whereas
mode Rn for pipe with rigid outer boundary are shown in blue. Phase
velocity vph is normalized by the velocity of the fluid (vp, f l) compare
with Del Grosso and McGill (1968).

MODESHAPES: PARTICLE DISPLACEMENT PROFILES

Solving the eigenvalue problem yields the eigenvalues which allow to
construct the dispersion curves. At the same time the eigenvectors
are computed representing the potentials φ and ψθ . They allow the
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Figure 5: Particle displacement profiles of the fundamental longitudinal mode L(0,1) for (a) 500 Hz (b) 2000 Hz,(c) 5000 Hz,(d) 10000 Hz; x-axis:
normalized ur = |ur| and uz = i|uz| displacement; y-axis: bar radius from 0 m (center of bar) to 1 m (surface of bar).

computation of the modeshapes, that is the distribution of field quan-
tities like displacements, stresses, power flow etc., along the radius of
the cylinder. Exemplarily we illustrate the displacements (ur,uz) here
which can be easily computed using the eigenvectors and eqs. (4)-
(5). In order to display the particle displacement profiles ur and uz are
calculated along the radius for a certain frequency. These values are
normalized by the maximum absolute value of the uz displacement.
Finally the radial displacement is plotted as ur = |ur| and the longitu-
dinal displacement as uz = i|uz|.

DISPLACEMENT PROFILES OF THE L(0,1) MODE

For the illustration of the displacement profiles we have chosen the
fundamental mode L(0,1) propagating in a free solid cylinder (see
Fig. 1). The particle motion ur and uz is computed for four differ-
ent frequencies (500 Hz, 2000 Hz, 5000 Hz and 10000 Hz). The insert
plot in Fig. 5:d shows the position of the frequencies on the dispersion
curve. Fig. 5:a-d displays the displacement profiles for ur and uz for
the different frequencies.

For low frequencies like 500 Hz (Fig. 5:a) the wave propagates like
a longitudinal wave. Consequently the particle motion is in axial di-
rection mainly and uniform throughout the radius of the cylinder. The
radial displacement is very small.

In Fig. 5:b we can see that for 2000 Hz the ur displacement has already
significantly increased all over the cross section. It only remains zero
in the center of the cylinder. At the same time the uz displacement
decreases but keeps its maximum value in the center.

For a higher frequency (5000 Hz; Fig. 5:c) it can be observed that
the shape of the displacement profiles propagates slowly towards the
typical pattern of Rayleigh modes. Close to the surface (r=0.85−1m)
the motion is already Rayleigh-like. Only towards the center of the bar
especially the uz component is still relatively strong.

Finally in Fig. 5:d we get the typical particle motion profile of Rayleigh
waves. In contrast to Fig. 5:c obviously the amplitudes of both dis-
placement components decreases significantly for r < 0.8m.

Summarizing we can say that the displacement field for the L(0,1)
mode can be modeled using the spectral method like expected, which

is another proof that the approach works properly.

CONCLUSIONS

We extended and implemented the spectral method for propagation of
axisymmetric longitudinal modes in a cylindrical bar. The method was
also generalized to N-layered cylindrical fluid-solid structures typical
for borehole environment. Dispersion curves for a free solid cylinder
and a fluid filled tube were computed and compared with analytical
solutions. Furthermore the displacement profile for the L(0,1) were
computed using the eigenvectors and displayed for different frequen-
cies. The advantage of this approach is, that in contrast to traditional
methods, it is easier to implement, especially for cases where root-
finding becomes complicated. For cylindrical geometries the spectral
method is a good alternative as the produced results are accurate and
the computational time is very short. The method is well-suited for ex-
tension to anisotropic, attenuative and poroelastic borehole structures.
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