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Summary 
We focus on estimating size of a hydraulic fracture using 
analysis of tube waves generated by the action of an 
external seismic field. External seismic field excites not 
only tube waves at the intersection of the fracture with the 
well, but also generates slow eigenmode by squeezing the 
fracture tips. Slow mode propagates along the fracture and 
converts into tube wave upon reaching the wellbore. Time 
delay between primary and secondary tube waves allows to 
estimate fracture size. This study concentrates on 
describing the secondary tube wave. Using averaging 
procedure we present the non-uniform pseudo-differential 
wave equation for slow eigenmode in the fluid-filled 
fracture. This equation is derived in space-time 
representation assuming long-wavelength approximation. 
Derived wave equation takes into account strong dispersion 
of slow wave and contribution of incident external seismic 
field. We state and solve the boundary problem describing 
slow mode excited at the fracture tips and estimate the 
amplitude of the secondary tube wave generated when slow 
mode hits the intersection with the well. Numerical 
calculations show that amplitudes of the secondary tube 
wave can reach several percents of the primary tube wave 
amplitudes and hence be detectable in a field experiments 
and used for fracture size characterization. 
 
Introduction 
Propagating tube waves carry an important information 
about properties of surrounding medium and, in particular, 
about cracks or fractures intersecting the well (Beydoun et 
al., 1985; Tang and Cheng, 1989; Hornby et al., 1989; 
Kostek et al., 1998; Henry et al., 2002, Derov and 
Maximov, 2002; Ionov, 2007). Knowledge of fracture 
geometry and dimensions has a critical importance for 
hydraulic fracturing process. Assuming that the treatment 
well is vertical, there are two important fracture geometries 
to consider. In the first case vertical fracture intersects a 
well along it’s entire length. Thus, in this case fracture size 
can be estimated by time delay between tube wave 
reflections from the top and bottom of the fractured zone 
(Medlin and Schmitt, 1994; Paige et al., 1995; Patzek and 
De, 2000). In the second case of horizontal or inclined 
fracture the intersection of a well and fracture is effectively 
a point. Thus, the interaction of tube wave with a fracture is 
usually considered in the limit of infinite plane fluid layer 
(Beydoun et al., 1985; Tang and Cheng, 1989; Hornby et 
al., 1989, Kostek et al., 1998; Ionov, 2007) or, in the  
contrary, as a crack of small size (Derov and Maximov, 

2002). In case of horizontal or inclined fracture 
determining fracture length is a challenge. The attempt to 
account for a finite size of the horizontal fracture on tube-
wave reflection was mentioned by Hornby et al. (1989) and 
its experimental verification was undertaken by Henry et al. 
(2002). Alternative approaches for estimating size of the 
horizontal or inclined fracture utilized diffraction of 
external seismic waves on the crack tips (Groenenboom 
and Falk, 2000; Groenenboom and van Dam, 2000). 
 
However there exist another way to estimate length of 
horizontal or inclined fracture by using tube waves excited 
in a well under action of external seismic field. If a fracture 
crossing a borehole has linear dimensions larger or 
comparable to the wavelength of external seismic wave, 
than wavefield in the fracture fluid can be excited not only 
at the point of well-fracture intersection but also at the 
fracture tips. This fact was not considered in previous 
studies. Primary tube wave is excited when external 
seismic wave hits the intersection between the fracture and 
wellbore. Slow wave in the fracture is generated when 
external seismic wave squeezes the fracture tip. This slow 
mode propagates along the fracture and, upon reaching the 
wellbore, it converts into another tube wave that we call a 
secondary. If both of these tube waves can be registered in 
a well, then the length of the fracture can be estimated from 
a time delay between their arrivals. The fundamental 
question is to predict expected amplitudes of these 
secondary tube waves produced by slow eigenmode 
traveling along fracture from its tips, when eigenmode is 
generated by external seismic wave.  
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Figure1: Geometry of the problem showing vertical well and 
inclined hydraulic fracture illuminated by an external seismic 
wave. 
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In this study we consider an external seismic wave field 
that illuminates the well and the fracture. We pose a 
problem of excitation of a pressure wavefield in a well 
intersected by arbitrary oriented fluid-filled fracture of a 
finite size, and generated by an external seismic wave field. 
The results for infinite fracture and crack of small wave 
sizes have to be the limiting cases of this statement. The 
statement of the problem is shown in the Figure 1.  
 
The smallness of fracture opening δ2  and well radius R  
in comparison with seismic wavelength allows us to write 
the averaged (by cross section) acoustical equations for 
dynamic pressure field in a well and fracture fluids. This 
approach for derivation of wave equation in a well was 
successfully applied by Ionov and Maximov (1996). In 
addition, for simplicity, the external seismic field is 
approximated by a local plane wave. 
 
Wave propagation in thin fluid-filled fracture of finite 
size 
If we define the average pressure in the fracture 

as ∫
−
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where fρ  and fc  are the fluid density and sound velocity 

and )( δ±=zuz  are vertical components of the fluid 
displacements vector in the vicinity of the crack sides under 
action of external seismic field and fluid pressure 

),,( tyxP . 
The crack opening can be found by solving dynamic 
problem of seismic wave reflection from a boundary 
between elastic and fluid half-spaces with the given 
pressure ),,( tyxP  applied to the boundary. After Fourier 
transform in space and time it can be written as 
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where ω , xk , yk are frequency and wave vector 

components of external incident plane wave, sρ  is density 
of the elastic medium, and lc , sc  are speeds of 

longitudinal and transverse waves, 222
yx kkk += , 

2222 / ll ck ων −= , 2222 / ss ck ων −= . The denominator in 
(2) corresponds to Rayleigh’s dispersion function 

( )22224),( ssl kkkD νννω +−= .   

 
Likewise, ),,( ωyx kkP  is the Fourier transform of the 

pressure field in the fluid and ),,( ωσ yxzz kkΣ  is the total 
normal stress applied to the both sides of the fracture. 
 
Applying the Fourier transforms to equation (1) and 
substituting the relation (2) we obtain the equation, that, in 
the long-wave approximation, describes the pressure field 

),,( ωyx kkP  in thin fluid layer between two elastic half-
spaces under action of external stress field 

( ) ( ) Σ=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
− zz

sl

s

fsl

s

f

f kD
cP

kD
c

c
k σ

ωδ
ων

ρ
ρ

ωδ
ων

ρ
ρω

),(
/

),(
/ 222

2 . (3) 

This equation defines the dispersion relation for 
eigenmodes in the thin fluid layer between two elastic 
media as 

( ) ( )
( )

0
4

//
2222

22
2 =

+−
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

ssl

ls

s

f

f kk

c
c

k
ννν

δνω
ρ
ρω .  (4) 

This is a well-known dispersion equation for slow 
symmetrical mode in the thin fluid layer between elastic 
half spaces (Ferrazini and Aki, 1987). In the low-frequency 
limit the dispersion of phase velocity for this mode can be 
approximated by the following expression 
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Space-time equation for slow eigenmode in a fracture 
It is easy to see that effect of finite size of the fracture is not 
accounted in the above approach because of Fourier 
transformations, which are applicable only for infinitely 
long plane-layered structures. To describe fracture of a 
finite size we have to derive governing equation in space-
time representation. To obtain such result let us slightly 
modify the equations (3) and (4). In the long wavelength 
approximation, when 1<<δk  and 1/ <<scωδ , it is 
possible to make the following asymptotic replacement for 
the dispersion curve of the slow eigenmode 

Δ≈ /),( leffkD ννω ,  (6) 
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Figure 2 verifies the acceptable accuracy of this asymptotic 
expansion by comparing dispersion curves computed with 
exact (4) and approximate (6) equations.  
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Figure 2: Frequency dependence of phase velocity for the slow 
eigenmode in thin fluid layer. Solid line – exact dispersion 
equation (4), dashed line – approximation (6) . 
 
Taking into account approximation (6) we can rewrite 
equation (3) in the form 
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Equation (6) in space-time representation is a pseudo-
differential wave equation and it can be written as 
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For one-dimensional problem, shown in Figure 1 (fracture 
restricted in one direction and infinite in the other), 
operator [ ]PH , has the following representation 
 

[ ] ( )
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

′−−

′−−
′

′

∂

∂Δ
= ∫ ∫

−

t L

L V

V
V

s xxc

xxc
txPxddc

tc
PH

0
222

2

2
)()(

),(
τ

τθ
πδ

τ  

 
Similar result with a slightly different kernel can be 
obtained for the general case of two-dimensional fracture 
with arbitrary perimeter shape. 
 
The derived space-time representation for slow eigenmode 
in the fluid-filled fracture is analogous to the wave equation 
for the tube wave in a well (Ionov and Maximov, 1996). 
Thus, to describe wavefield in a borehole-fracture system 
under action of external seismic wave we have two 
governing equations: one for the tube wave and another for 
the slow fracture mode (equation 7). In addition, we have to 

formulate boundary conditions at the intersection between 
the well and the fracture as well as boundary conditions at 
the fracture tips. The first condition can be expressed as 
equality of fluid pressures and mass fluid flows across the 
intersection. Boundary condition at the fracture tips are 
derived using approach of Maximov and Ionov (1998)  and 
can be written as 
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Numerical results 
Main effect, which has to be verified in the described 
approach, is the correct description of amplitude of slow 
fracture mode generated by an external seismic wave on the 
fracture tips. To perform this verification we used finite-
difference modeling code for cylindrically layered media 
provided to us by Shell Int. E&P. To carry out an exact 
comparison we reformulated equations (7) - (8) for a 
cylindrical geometry (see Figure 3).  

 
 

Fracture Receivers

Incident angle

Seismic source

 
Figure 3: Cylindrical fracture geometry used for verification with a 
finite-difference modeling. Fracture has a doughnut-shape 
horizontal cross-section. 

 
Fracture is represented as a thin (1 cm thickness) doughnut-
shaped water-filled layer with the inner radius of 4 m. The 
fracture tips are rectangular. Infill fluid is a water with 
parameters =fρ 1 g/cm3, =fc 1.5 km/s, whereas elastic 

host medium parameters are as follows: =sρ 2 g/cm3, 
=lc 4.5 km/s, =sc 2.5 km/s. Point pressure source is 

located on the symmetry axis. By varying an offset from 
the source to the fracture plane we can illuminate fracture 
tips at a different angles. The source radiates spherical 
pressure pulse with the shape of the second derivative of a 
Gaussian with a dominant frequency of 700 Hz. In the 
background elastic medium this creates a disturbance with 
the longitudinal wavelength of about 6 m. Pressure 
receivers are placed inside the fracture with a constant 
spacing of 0.25 m. 
Figure 4 represents a comparison of wavefields generated 
by the developed approach (red line) and by the finite-
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difference calculations (black line) when incident angle of 
the external wave was 450 (Figure 3). We observe excellent 
agreement between the two sets of waveforms including 
later and weaker arrival of the slow wave generated at the 
tip. This comparison verifies accuracy of our approach. 

 
Now we are ready to estimate amplitudes of the secondary 
tube waves in a well excited by slow eigenmode from the 
fracture tips. As an example, we consider excitation of the 
wave field in case of a vertical well intersected by one-
dimensional fracture infinite in one direction (Figure 1). 
External seismic field is considered as a plane 
wave )/(),( vzz cxtftx −=Σσ , where θcos/lv cc =  is 
apparent velocity of the external seismic wave propagation 
along the fracture. We assume that fracture is characterized 
by tilt 3/πθ = , length =L 50 m and width =δ 0.01 m. 
Figure 5 shows seismograms of the total pressure field 
inside the well. First, notice strong reflected and 
transmitted tube waves generated when incident P-wave 
hits the intersection of the fracture with the well. Late weak 
arrival corresponds to the secondary tube wave that is 
generated when slow eigenmode from the fracture tips hits 
the wellbore. Amplitudes of this secondary tube wave is 

typically several percents (up to ten) of the primary tube 
wave magnitude. Therefore such arrivals may be 
potentially recorded in a real field data.  
 
Conclusions 
We present an approach that uses tube-wave information 
from a VSP measurements to estimate fracture size by 
registering time delays between the primary and secondary 
tube waves. These secondary tube waves originate when 
slow wave propagating in the fluid-filled fracture hits the 
intersection between the fracture and the borehole. We 
presented analytical approach that correctly computes 
amplitude and waveforms of the slow fracture mode 
excited an the external seismic wavefield from an offset 
source. We validated new approach by comparison with the 
finite-difference modeling and estimated magnitude of the 
expected secondary tube waves for realistic fracture-
wellbore configurations. 
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Figure 4: Comparison of pressure seismograms along the fracture 
when external plane wave illuminates the fracture at 450. Black 
line corresponds to the finite-difference calculation, whereas red 
line denotes results of the developed analytical approach. 

Figure 5: Pressure seismograms along a well intersected by a finite 
fracture (Figure 1). Wavefield is excited by an external seismic 
wave. Note strong primary tube waves originated at z=0m. Also 
observe weak later arrival (>50ms) representing secondary tube 
wave converted from slow fracture wave. 
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