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Summary 
Velocity estimation is usually an ill-posed problem even for 
isotropic media. Widespread use of anisotropic imaging has 
been shown to aid better focusing and positioning. 
However, it greatly escalates the complexity of the model 
building and makes the velocity estimation much more ill-
posed. Conventional techniques continue to rely on 
gradient-based methods that deliver a single solution (or 
realization) of the model to the user.  Here we demonstrate 
an alternative approach that acknowledges the non-
uniqueness of the problem. It delivers an entire suite of 
models that fit the data equally well, allowing the user to 
select the most geologically plausible solution. 
 
Introduction 
In the past the goal of seismic imaging was to focus the 
data and provide a high quality subsurface image. In the 
last decade more emphasis has been placed on delivering a 
proper depth image that is as close as possible to the actual 
subsurface structure. To achieve this goal it is no longer 
enough to simply focus the data, but one has to use a 
realistic anisotropic depth model to perform such imaging. 
 
It is well known that surface seismic data alone cannot 
uniquely resolve all the parameters of an anisotropic 
subsurface.  In time imaging this is reflected in our ability  
to resolve NMO velocity and anellipticity but not the 
vertical velocity, and thus depth (Tsvankin, 2001). In depth 
imaging there is a more complicated relationship between 
the resolved parameters. We have more confidence in the 
imaging velocity and less confidence in the vertical 
velocity which prevents us from accurately predicting true 
vertical depths. What is less well appreciated is that we 
often cannot resolve all the parameters of the model even if 
we have well data to help constrain the vertical velocity. In 
a companion presentation Bakulin et al. (2009) showed a 
significant ambiguity between epsilon and delta in TTI and 
VTI for a case of joint tomography of common image 
gathers and vertical VSP traveltimes. 
 
In this presentation we will use the methods described by 
Osypov et al. (2008) to characterize which combinations of 
parameters are resolved by a joint tomography experiment 
and which combinations of parameters are unresolved. 
 
Linear vs. Non-linear  
The most general way to describe of the information in a 
particular combination of data is to define the likelihood 
function for that data. This is the probability of collecting 
the data we observe given a particular model. The 
likelihood is a potentially complicated and non-linear 

function.  If we assume  Gaussian noise in the data we can 
characterize the likelihood using the misfit between the 
modeled and observed data (Taranatola, 2005). Figure 1 
shows a hypothetical data misfit for a two parameter model. 
We can see that the misfit has multiple minima. We can 
also see a “trough” of good parameter combinations that all 
fit the data reasonably well. This trough does not lie along a 
straight line but is a banana shape. 
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Figure 1:   A non-linear misfit function is shown in grey. The 
linearized approximation is shown as colored contours. The well 
resolved direction is V1, the poorly resolved direction is V2. 
 
If we wish to analyze the multi-dimensional misfit in the 
neighborhood of the minimum we often use a linearized 
approximation to the true non-linear problem. This gives a 
quadratic approximation to the misfit function which is 
indicated by the elliptical error contours shown in Figure 1.  
The linearized problem is much more mathematically 
tractable but we can see that it misses some of the features 
in the true model. The misfit function only has a single 
minimum and the trough of good solutions now lies along a 
straight line which is the long axis of the ellipse. Despite 
these limitations we will use the linearized approximation 
to explore the uncertainty in our inversion but we must 
always keep in mind that this approximation is less valid 
the further away we sample the model from our local 
minimum. 
 
Methodology 
We can characterize the information in a joint surface and 
borehole tomography problem using a linearized 
approximation to the true problem.  In this case the 
linearization involves the assumption that the rays do not 
change significantly when model is altered. The basic 
tomography problem is described by Woodward et al. 
(2008) and the analysis of uncertainty is described by 
Osypov et al. (2008). 
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The linear operator that we analyze has three components: 
1) The data covariance, Cd, describes the estimate of 

the errors in the data. In this case it handles the 
difference between the units of measurements of VSP 
traveltimes (seconds) and the units of non-flatness in 
common-image point gathers (meters).  

2) The linear operator, A, contains the linear ray-based 
predictions of changes in measurements as the model 
changes. 

3) The prior model covariance, Cm, describes the 
knowledge about the parameters that we had before 
we made the measurements.  

 
The uncertainty in our models depends on all three 
components of the linearized tomography problem. The 
result of the uncertainty analysis is an eigen-decomposition 
of the posterior covariance. It defines combinations of 
model parameters that are well resolved by the data and 
which are poorly resolved.  

v2

v1

Trial model

Projection onto effective null space

 
Figure 2:  The effective null space corresponding to the linear 
approximation is shown in red. Trial models can be drawn from the 
prior distribution and are projected onto the effective null space. 
 
In the 2D example shown earlier the best resolved direction 
is shown in Figure 1 by vector V1. This is associated with 
the largest eigenvalue in the decomposition. If we move 
away from the minimum in that direction the misfit 
function rises fastest. The worst resolved direction is shown 
by the vector V2. If we move in that direction the misfit 
function rises slowly, if at all. This direction is associated 
with the smallest eigenvalue in the decomposition.  
If this eigenvalue were zero it would imply that the misfit 
does not change as we move in that direction. The misfit 
function would now be similar to the one shown in Figure 
2. This combination of parameters would be in the “null 
space” of the operator. We can add any amount of that 
vector to our solution without changing the misfit. All those 
solutions would be equally valid, as far as the data misfit is 

concerned. Remember however that this linearized 
approximation is not valid for huge changes in the model. 
 
In models with more parameters this picture is harder to 
draw but the same principles apply. There are directions 
that are well resolved that correspond to large eigenvalues 
and poorly resolved directions that correspond to small or 
zero eigenvalues. A realistic model may have many 
thousands or millions of parameters. This means that it is 
infeasible to find all the eigenvectors. Our approach uses a 
partial eigen-decomposition of the problem that tells us the 
most important (best resolved) eigenvectors. The analysis 
can be stopped at a chosen minimum eigenvalue. All 
vectors that are not in the “well resolved” set are in the 
“effective null space” of the problem. Any change of model 
in that direction is predicted to have a change that is 
smaller than the cut-off eigenvalue.  
In practice the effective null space can be sampled using 
the complement to the resolved space. If we have a trial 
solution drawn from the prior uncertainty we can find a null 
space solution by removing all components in the 
directions that are well resolved. In the 2D case this 
corresponds to removing the component of the trial model 
in direction V1 which corresponds to projecting trial model 
onto the line defined by the local minimum and the 
direction V2 (Figure 2). In the multi-dimensional case this 
is repeated for each resolved direction. Figure 2 shows the 
effective null space in red and the projections in blue. 
 This analysis is still limited by the linearization 
assumptions. Therefore, in order to study the global 
behavior of the non-linear objective function we must test 
our method using the true non-linear misfit to see whether 
we have stepped outside the bounds of the linear 
approximation. 
 
Synthetic example 
Let us illustrate application of the uncertainty analysis 
using synthetic dataset described by Bakulin et al. (2009). 
Subsurface model is represented by horizontally layered 
TTI sediment with a uniform symmetry-axis tilt of 45 
degrees. The model has smooth vertical variation of 
velocity and anisotropy (Figure 3). It has been proven that 
inversion of a combined dataset of narrow-azimuth surface 
seismic data and a dense vertical checkshot is non-unique 
in this case even though symmetry axis direction is 
assumed known and fixed. Whole series of equivalent TTI 
models fit the data. These models preserve the following 
combination of Thomsen parameters: 

( ) nmoP VV ≈−+ δε 75.025.110  and η. 
 
Conventional workflow 
In a real-world scenario model builder does not have 
information about non-uniqueness upfront. Our 
conventional workflow starts with an initial model and 
tomographic inversion drives it to a certain solution. In a 
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TTI case at hand, we perform joint tomographic inversion 
of seismic and checkshot data using reflection tomography 
(Woodward et al., 2008) for three parameters (VP0, ε and δ ) 
around the well. If we start with isotropic initial model then 
we recover model shown in Figure 3a. This model has 
negative Thomsen parameters that are not geologically 
plausible, but seismic and well data are matched. Without 
uncertainty analysis model builder is in a difficult 
circumstances. The only thing one can do with a 
conventional workflow (at a double the cost) is to repeat 
the process using new starting model. In our example with 
a new starting model having constant but positive values of 
anisotropy, tomography recovers a completely different 
solution (Figure 3b). At this point one can observe that both 
models have similar vertical velocity, similar 

( ) nmoP VV ≈−+ δε 75.025.110  and η, but has no assurance 
as to whether this is a coincidence or a rule. One can 
conclude that problem is likely non-unique but 
conventional workflow does not provide guidance on how 
to proceed further, especially if all found solutions are not 
geologically plausible. Most likely model builder would 
decide to fix some parameters (say δ ) and perform 
tomography for only two parameters. This however may 
lead to introducing assumptions inconsistent with the data 
(i.e. would be unable to flatten the gathers with them) or 
restrict the range of answers to only pre-determined δ 
scenarios. 
 
New workflow with uncertainty analysis 
Armed with the uncertainty analysis, one can pursue a 
different approach at no additional cost. For the sake of 
argument, we concentrate on uncertainty analysis 
performed around the first solution with negative Thomsen 
parameters (Figure 3a). For simplicity we pretend that our 
prior information allows us to have any value of Thomsen 
parameters larger than -0.3 and smaller than 0.3. As shown 
in Figure 2 we can sample our prior space and find its 

projection onto the nullspace. In simple words each time 
we find a closest model to the prior model that fits the data. 
For our TTI example at hand this results in a 50 realizations 
shown in Figure 4 that carries a lot of information. First, it 
diagnoses to us numerically that we have a non-uniqueness 
problem which is an extremely powerful message. Second, 
it suggests that certain parameters combination, like 

( ) nmoP VV ≈−+ δε 75.025.110  and η are much better 

constrained compared to VP0, ε and δ. Let us pick three of 
these 50 realizations shown in red in Figure 4. They have a 
deviation of about 0.05 in ε and δ which makes them 
meaningfully different from a retrieved solution in a 
practical sense. Figure 5 shows the seismic gathers after 
remigration and checkshot misfits after re-raytracing with 
these three realizations of new velocity model. We observe 
that gathers remain reasonably flat whereas checkshot 
misfit remains below 50 ms. Thus we confirm that all three 
realizations still fit the data within certain threshold of the 
misfit function (30,000).  As a result of exploring the null-
space, we obtain range of plausible solutions instead of a 
single one if problem is non-unique. 
 
In our example we can not recover the second solution 
(Figure 3b) or true solution from the analysis done around 
the first one (Figure 3a). This is because they are too far 
apart in a model space, whereas the quadratic description of 
the misfit function is local as shown on cartoon Figure 2. 
Performing analysis around several solutions we can get a 
more complete description of the null-space. Alternatively, 
with a better prior information we can explore enough of a 
surroundings to arrive to a better choice. For example we 
expect that performing uncertainty analysis around the 
second solution with positive but incorrect Thomsen 
parameters (Figure 3b) we should be able to capture the 
true model as one of the nearby realizations or at least 
verify that the true model is plausible from the data 
standpoint without repeating the inversion. 
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Figure 3 Two different solutions recovered by three-parameter tomographic inversion of seismic and checkshot data when started from a different 
initial models: (a) initial model is isotropic; (b) initial model has δ=0.03 and ε =0.08. 
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Conclusions 
Leaving all mathematical complexity of the null-space in 
the background, from the practical standpoint, the proposed 
methodology enables a novel approach to the model 
building. The null-space analysis allows to reveal the non-
uniqueness of the anisotropic inversion as well as to 
explore range of equivalent models providing similar fit to 
the data. Without null-space analysis model builder is stuck 
with a solution and no other  information as to how well it 

is resolved and whether it is the only one. With the 
uncertainty analysis, model builder has a far better 
alternative. Firstly, he can detect the non-uniqueness. 
Secondly, he can explore range of equivalent models and 
pick one that he considers more geologically plausible 
based on any a priori information. Alternatively, null-space 
analysis can reveal what additional data are required to 
constrain the model.  
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Figure 4.  Fifty null-space realizations (thin blue lines) obtained by uncertainty analysis around the first solution from Figure 3a. Three 
realizations highlighted in red are selected for further testing. Observe tight distribution of η and ( ) nmoP VV ≈−+ δε 75.025.110 whereas VP0, 

ε and δ individually are not well constrained. 
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Figure 5:  Image gathers for variuos models together with the inserts showing checkshot misfits. Number on each plot identifies total value of 
misfit fucntion characterizing unflatness of the gathers as well as checkshot misfit: (a) found solution; (b)-(d) realizations 1,2, and 3 from the 
nullspace (Figure 4). Note that gathers remain rather flat for all models, whereas checkshot residual remains less than 50 ms.
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