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Summary
Non-hydrostatic stress applied to an initially transversely isotropic medium with a vertical sym-
metry axis (VTI) results in an effective medium having almost orthorhombic symmetry (provided
that one of the principal stresses is aligned with the symmetry axis). The symmetry planes in this
orthorhombic medium are aligned with the orientations of the principal stresses, and the Tsvankin
anisotropic parameters (������� �	� , 
 ����� ��� 
	� and� ����� �	� ) can reveal information about the stress magnitudes.
Therefore, time-lapse monitoring of changes in anisotropy potentially can provide information re-
garding temporal variations in the stress field.

We compare two different methods for estimating the anisotropic parameters. Using nonlinear
elasticity theory we relate the observed anisotropic parameters to the magnitudes of the princi-
pal stresses. We then study the validity of these relationships on data acquired from a physical
modeling study.

Experiment setup and instrumentation
We used a 304 x 304 x 152.5 mm block of Berea sandstone (from Cleveland quarry, near Amherst,
Ohio, USA) with density of 2.14 g/cm
 , porosity of 21� and an average grain size of 150 to 250
microns (Figure 1). Our sample was transversely isotropic in the absence of stresses, with the
symmetry axis aligned with the� 
 coordinate axis.

Uniaxial stresses - 3, 6 and 9 MPa - were applied along the� � -axis direction. Transmission mea-
surements of� -, ��� - and ��� -wave modes were made along the� � -, � � - and� 
 -axes directions at
each stress level. Here��� refers to shear waves propagating and polarized in the symmetry plane
while ��� refers to shear waves propagating in the symmetry plane but polarized perpendicular to
the symmetry plane.

We also acquired reflection waveforms of compressional, inline shear and crossline shear wave
modes along seven azimuths (Figure 1).

Measurement and estimation of anisotropic parameters
Following Grechka et al. (1999), we compare two different methods for estimating the anisotropic
parameters of an orthorhombic solid.

Method 1
Method 1 uses the vertical and horizontal velocities of� - and � -waves along with the normal
moveout (NMO) velocity of� -waves. The relevant equations are
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where ������� �	� , � ����� �	� and 
 ����� �	� are the anisotropic parameters of Tsvankin (1997).

Here and below, the superscript 1 corresponds to theKL� � $ � 
<M plane and 2 corresponds to theK � � $ � 
<M
plane.

Method 2
Method 2 uses NMO and vertical velocities of� - and � -waves. The relevant equations are
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The subscript, nmo, refers to NMO velocity.

The NMO velocity of the��� -mode was computed using the Dix equation (Grechka et al., 1999)\ � � + �] ^ � �0/1�� + � :<;>=	_ � � \ � � �] ^ � �0/1�� � :<;>=	_ � Y \ � + �] ^ � �0/1�+ � :<;>=	_ � $ (8)
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Figure 1: Schematic drawing of the experiment performed on the block of Berea sandstone under
several uniaxial stresses. Transmission velocities were measured by transducers, shown here as
dark solid circles. Multi-azimuth acquisition of�!� and �`� reflection data was conducted on the
top of the block.



Figure 2: Moveout velocities (km/s) of� -wave (diamonds) obtained by semblance analysis at
different azimuths and stress levels. The best-fit NMO ellipses are also shown. Stress was applied
in the direction of� � -axis (90a ).
where G � �J$ � and

\ � � + �] � \ � � �] Y \ � + �] is the two-way zero-offset time of the�`� -wave expressed
through the one-way zero-offset time of� -waves (

\ � � �] ) and � -waves (
\ � + �] ). The NMO velocities

of � - and �b� -modes were estimated from the data.

Anisotropic parameters of the effective orthorhombic medium

Tables 1a, b, and c show anisotropic parameters estimated using methods 1 and 2 at various stress
levels. For the unstressed sample both methods give similar estimates, but the estimates differ for
some of the higher stress levels. Since for most stress levels the difference between results for the
two methods is small, we believe that both methods can be used to reliably estimate the anisotropic
parameters. Also note that the anisotropic parameters defined in theKL� � $ � 
<M plane parallel to the
direction of the applied stress are in general larger and more sensitive to the applied stress than are
those defined in the direction perpendicular to the applied stress.

Grechka et al. (1999) showed that the azimuthal dependence of NMO velocity of any pure mode is
elliptical. Figure 2 shows the� -wave NMO ellipses for different stress levels computed as a least-
squares fit to the NMO velocities observed at various azimuths. For this least-squares estimationK � � $ � 
<M and K � � $ � 
<M were assumed to be planes of symmetry of the stressed sample. Note that the
difference between the major and minor axes of the different ellipses increases with the stress level.

Stress (MPa) Method c ����� c �&�	�
0 1 0.07d 0.02 0.07d 0.02
0 2 0.05d 0.04 0.05d 0.04
3 1 0.24d 0.02 0.03d 0.02
3 2 0.20d 0.04 0.07d 0.04
6 1 0.35d 0.02 0.01d 0.02
6 2 0.35d 0.04 0.10d 0.04
9 1 0.44d 0.02 0.01d 0.02
9 2 0.31d 0.04 0.09d 0.04

Table 1a. Estimates ofc ����� and c �-�	� obtained by methods 1 and 2 at different stress levels.
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Stress (MPa) Method e ����� e �-�	�
0 1 0.09d 0.02 0.09d 0.02
0 2 – 0.08d 0.04
3 1 0.18d 0.02 0.05d 0.02
3 2 – 0.04d 0.04
6 1 0.23d 0.02 0.05d 0.02
6 2 – 0.04d 0.04
9 1 0.29d 0.02 0.05d 0.02
9 2 – 0.05d 0.04

Table 1b. e ����� and e �-�	� estimates obtained by methods 1 and 2 at different stress levels. As it was not
possible to identify pure shear events in crossline gathers along the direction off � -axis, we did not computee ����� using method 2.

Stress (MPa) Method g ����� g �-�	�
0 1 and 2 0.04d 0.03 0.04d 0.03
3 1 and 2 0.15d 0.03 0.11d 0.03
6 1 and 2 0.19d 0.03 0.14d 0.03
9 1 and 2 0.32d 0.03 0.16d 0.03

Table 1c. g ����� and g �&�	� estimated fromh -wave NMO ellipses at different stress levels.

Nonlinear elasticity theory
Since the applied stresses are small and the strains negligible, the deformation gradients of the
sandstone block can be approximated with unity matrices. Therefore, the stress-induced stiffness
tensor can be related to the unstressed stiffness tensor by the following equation (Thurston, 1974).i /kj.lnm�o 
 /Llqp�jrm Y F.s /Lj�l�m Y s /kj�l�mut�v � t	v I $ (9)

wheres /Lj�l�m is the unstressed stiffness tensor,s /kj.lnm�t	v is the sixth-order tensor of nonlinear elasticity
and � t	v is the strain tensor. For our samples /kj.l�m has VTI symmetry. Following Prioul et al. (2001),
we assume isotropic symmetry fors /kj�l�mut	v . In Voigt notation the tensors /Lj�l�mut	v can be written as a
third-order tensor with three independent elements (s ����� , s ���.� ands �.��
 ). Thus, equation (9) can be
expanded into a set of 12 linear equations (nine relating to the diagonal elements and three relating
to the off-diagonal elements). At a particular stress level the diagonal elements of the effective
stiffness tensor are related to the velocities of wave modes propagating along the coordinate axes
by formulas i /&/&/&/ �xwzy� �� / $ i /LjD/kj �{wzy� �+ /kj $ (10)

where y� � / and y� + /kj are transmission velocities of� and � wave modes, respectively, measured at
non-zero stress levels. Likewise, the unstressed stiffness tensor is expressed as

s /&/&/&/ �{w � �� / $'s /kjD/kj �{w � �+ /kj $ (11)

where � � / and � + /kj are transmission velocities of� and � wave modes, respectively, measured
along the coordinate axes in the absence of stress. The subscriptG refers to the direction of propa-
gation, while the subscript| refers to the polarization direction. The stresses and the deformation
strains are related by Hooke’s law. We assumed that the density of the sample is equal to 2.14
g/cm
 for all stress levels.

Knowing the diagonal elements of the stiffness tensors and the strains, we computeds ����� , s ���.�
and s �.��
 using a linear least-squares inversion of equation (9). We repeated the procedure for each
uniaxial stress level (p#��� �  ~} MPa, -6 MPa and -9 MPa) to estimate three sets of third-order



tensorss � ]�� 
	�/kjD� $�s � ]���� �/kjD� $<s � ]���� �/kjr� . The superscripts here indicate the two stress levels involved in the

least-squares procedure. We found thats � ]�� 
	������ �  ��� } �J� , s � ]�� 
	����.� � � }��J� , s � ]�� 
	��.��
 � } � } ; s � ]���� ���������� � � � � } � , s � ]���� ������.�	� � }J�J� , s � ]���� ����.��
	� � �J�J� and s � ]���� ������ �  � � � � � , s � ]���� ����.� �  � ��} , s � ]���� ��.��
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GPa units.

Numerical comparison of anisotropic parameters
Tsvankin (1997) defined the anisotropic parameters (� ����� �	� , 
 ����� ��� 
	� and � ����� �	� ) in terms of the el-
ements of a symmetric orthorhombic stiffness tensor. However, because

i /kj.l�m is not symmetric,
the orthorhombic anisotropic parameters that are defined for a symmetric orthorhombic tensor
(Tsvankin, 1997) are not strictly applicable to our data. Although in principle it is possible to
generalize the Tsvankin’s parameters for asymmetric tensors of a stress-induced medium, we do
not choose to do so in this study. Instead we use a simple adaptation of Tsvankin’s parameters in
which the anisotropic parameters in theK � � $ � 
�M plane are� �&�	��� i �������  i 
�
�
�
� i 
�
�
�
 $
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We believe that such an adaptation will give results that are similar to those expected from the
generalization of Tsvankin’s parameters for an asymmetric tensor. Also, since the predicted asym-
metry in

i /kj.lnm [equation (9)] is negligible, replacing
i /kj	/kj by

i jD/LjD/ does not change the predictions
of the anisotropic parameters significantly. Our choice to use

i /kj	/kj over
i j	/kjD/ in equations (12) and

(13) was arbitrary.

Using each estimate of the third-order tensor —s � ]�� 
	�/kjD� , s � ]���� �/Ljr� and s � ]���� �/Ljr� — we predicted the
elements of

i /kjD�<� at all stress levels. The elements of each predicted stiffness tensor were in turn
used to compute the velocities and the anisotropic parameters. Therefore, for each stress level
and for each quantity, three different predictions were made. We considered the mean of the three
predictions as the desired estimate that we compare with our observations, while the standard
deviation of the three predictions, which in Figures 3, 4, 5 and 6 equals half the error bar, gives the
variability in our estimate. We compare our predictions with estimates computed using method 1.

Figures 3, 4 and 5 show the variation of the� -, � - and 
 - parameters with stress. Both predicted
and measured anisotropic parameters� �-�	� , 
 �-�	� and � �-�	� , defined in theK � � $ � 
�M plane, normal to the
applied load, are almost insensitive to stress. In contrast, anisotropic parameters�n����� , 
 ����� and � ����� ,
defined in theK � � $ � 
<M plane, containing the stress direction, all increase with increasing stress. In
general, except for the parameter
 ����� (Figure 5), we observe satisfactory agreement between all
measured and predicted anisotropic parameters.
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Figure 3: Measured and predicted� ����� and � �&�	� versus applied uniaxial stress. Stress was applied in
the � � -direction.

Figure 4: Measured and predicted� ����� and � �-�	� versus applied uniaxial stress. Stress was applied
in the � � -direction.

Figure 5: Measured and predicted
 ����� and 
 �-�	� versus applied uniaxial stress. Stress was applied
in the � � direction.



Figure 6: Measured and predicted� + �.� and � + ��� velocities versus applied uniaxial stress. Stress
was applied in the� � direction.

Conclusions
This study offers an approach for estimating the orientation and magnitudes of subsurface principal
stresses using seismic data. First, 3-D seismic measurements could establish directions of principal
stresses, which correspond to the principal axes of an orthorhombic medium. Using third-order
coefficients, obtained from core and borehole measurements, the anisotropic parameters can be
related to changes in the stress level, suggesting the possibility of monitoring stress levels using
transmission and reflection measurements of stress-induced anisotropy.

Nonlinear elasticity, however, fails to correctly predict the magnitude of the asymmetry in
i /Lj�l�m .

This problem can be seen in Figure 6; the large asymmetry in the observed velocities is not pre-
dicted by equation (9) (

i �.���.�  i ���.��� � p#���  p���� =few MPa). This may have caused the poor
prediction of
 ����� and thus may be a source of concern.

Nonlinear elasticity may have application in a wide range of problems related to the estimation
of 3-D stress and pore pressure in anisotropic formations. Perhaps our results will motivate more
field and laboratory experiments related to anisotropic rocks under complex subsurface stress con-
ditions.
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