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ABSTRACT
Many tasks in geophysics and acoustics require estimation of mode velocities in
cylindrically layered media. For example, acoustic logging or monitoring in open and
cased boreholes need to account for radial inhomogeneity caused by layers inside
the borehole (sand screen, gravel pack, casing) as well as layers outside (cement,
altered and unaltered formation layers). For these purposes it is convenient to study
a general model of cylindrically layered media with inner fluid layer and free surface
on the outside. Unbounded surrounding media can be described as a limiting case of
this general model when thickness of the outer layer is infinite. At low frequencies
such composite media support two symmetric modes called Stoneley (tube) and plate
(extensional) wave. Simple expressions are obtained for these two mode velocities
valid at zero frequency. They are written in a general form using elements of a
propagator matrix describing axisymmetric waves in the entire layered composite.
This allows one to apply the same formalism and compute velocities for n-layered
composites as well as anisotropic pipes. It is demonstrated that the model of periodical
cylindrical layers is equivalent to a homogeneous radially transversely isotropic media
when the number of periods increases to infinity, whereas their thickness goes to
zero. Numerical examples confirm good validity of obtained expressions and suggest
that even small number of periods may already be well described by equivalent
homogeneous anisotropic media.

INTRODUCTION

Propagation of symmetric modes in cylindrically layered ma-
terials is of significant interest to many practical applications
in acoustics and borehole geophysics (White 1983; Bakulin
et al. 2008). The most established method for computing
speeds of acoustic modes is the so-called root-finding tech-
nique (Ewing, Jardetzky and Press 1957). However, this
method as well as other techniques become very tedious for
analytical analysis when the number of layers increases. While
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some of these techniques can be efficiently programmed on a
computer, this provides little physical insight into the prob-
lem at hand. In this paper we focus on deriving wave speeds of
symmetric modes in a low-frequency limit in cylindrically lay-
ered elastic media with inner fluid layer and vacuum outside.
Each solid layer is described as linear elastic material with con-
stants that may vary only as a function of radial coordinate.
In case of a layered media, we assume welded contact between
solid layers. Such structures support two fundamental wave
modes that exist from a zero frequency (Del Grosso 1971;
Lafleur and Shields 1995; Bakulin et al. 2008): Stoneley (tube)
wave and plate (extensional) wave. We obtain formulae for
their velocities at zero frequency that require knowledge of six
elements of a cylindrical propagator matrix for axisymmetric
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waves. These formulae are valid for a broad class of propa-
gator matrices. We provide propagator matrices in the low-
frequency limit for homogeneous isotropic and radially trans-
versely isotropic materials. We also present a formalism that
allows obtaining a low-frequency propagator matrices for a
composite media with an arbitrary number of elastic layers
with welded contact. In section ‘Mode veolcities in fluid-filled
elastic pipe’ we derive a dispersion equation for symmetric
modes in a general case of a radially inhomogeneous mate-
rial that may also be radially anisotropic. With respect to
squared slowness, it is a quadratic equation with coefficients
expressed through some elements of the propagator matrix
as well as fluid parameters. We further present approximate
solutions for special cases of thin and thick pipes. In sec-
tion ‘Velocities for isotropic, layered and anisotropic pipes’
we apply the general dispersion equation to the cases of ho-
mogeneous, layered and anisotropic media. We also present
numerical computations to illustrate good applicability of de-
rived formulae for velocities. In particular, we apply them to a
case of periodically layered media with small and large thick-
nesses. We observe that periodically layered media can be re-
placed by an equivalent homogeneous media with anisotropic
behaviour.

In Appendix A we construct a low-frequency propagator
matrix for axisymmetric waves in layered media from corre-
sponding matrices of the layers. We then consider periodical
systems. We show that in the limiting case of infinitely large
numbers of periods, such a propagator matrix acquires a new
structure that is identical to that of a radially transversely
isotropic homogeneous material. In Appendix B we outline
one possible way to derive apropagator matrix for axisym-
metric waves in the limit of low frequencies. This method
follows a recipe from Molotkov (Petrashen, Molotkov and
Krauklis 1985). Finally, Appendix C outlines a possible ex-
tension when a pipe contains both fluid and solid layers.

MODE VELOCITIES IN FLUID-F ILLED
ELASTIC P IPES

In this section we consider an elastic pipe with fluid inside and
vacuum outside and obtain expressions for mode velocities
in the zero-frequency limit. To derive a dispersion equation
we tie solutions in the fluid and in the elastic media using
continuity of radial displacement and normal stresses at the
boundary between the fluid and the solid. Another simpler
but approximate method for obtaining one of the velocities
is considered as a generalization of White’s approach (White
1983).

General matrix solution of elastic equations

Consider a linear elastic material with cylindrical symmetry
that can be radially anisotropic, and inhomogeneous only in
a radial direction. As shown in Appendix B, after transferring
time t and coordinate z to frequency ω and axial wavenum-
ber ξ , we obtain a system of two differential equations of
the second order for amplitudes ur(r) and uz(r). This equa-
tion has four independent solutions. Let us define σ rr(r) and
σ rz(r) as radial and tangential stresses, respectively. While us-
ing stresses and displacements is natural in rectangular coor-
dinates, in the cylindrical case it is more convenient to use
combinations rur and rσ rz and define the following vector

Wt = [uz σrr rur rσrz] . (1)

Appendix B shows that solutions at two different radii are
related as

W(r ) = G(r, r0)W(r0), (2)

where G is the propagator matrix of the layer that ‘propagates’
vector W from one radius to another. This last equation de-
scribes an elastic pipe with arbitrary boundary conditions on
its sides.

Fluid-filled pipes in vacuum

To consider fluid-filled pipes in vacuum we need to apply ap-
propriate boundary conditions. Let us denote the pipe’s inner
radius as r0 and the outer radius as r. Boundary conditions
then become

σrr (r ) = σrz(r ) = 0,

σrr (r0) = −p, σrz(r0) = 0, ur (r0) = u, (3)

where p is fluid pressure and u is radial displacement of the
fluid at the boundary with the pipe. Thus equation (2) is
replaced by⎡⎢⎢⎢⎢⎢⎣

uz(r )

0

rur (r )

0

⎤⎥⎥⎥⎥⎥⎦ = G(r, r0)

⎡⎢⎢⎢⎢⎢⎣
uz(r0)

−p

r0 u

0

⎤⎥⎥⎥⎥⎥⎦ . (4)

To obtain a dispersion equation for symmetric modes we only
need two equations from this matrix system:⎧⎨⎩0 = g21 uz(r0) − g22 p + g23r0u,

0 = g41 uz(r0) − g42 p + g43r0u. (5)
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Elimination of uz(r0) yields the desired dispersion equation

−g41g22 + g41g23
u
p

r0 = −g21g42 + g21g43
u
p

r0. (6)

On the one hand, this equation contains elements of G which
represent the solution of dynamic equations for solid media.
On the other hand, it contains the ratio u

p determined on the
boundary with the fluid, and thus represents the solution of
the fluid dynamic equation. Therefore equation (6) relates so-
lutions for fluid and solid media and provides a dispersion
equation (gij and u/p depend on the phase velocity). This
dispersion equation is valid for any frequency and can be ap-
plied to any material for which propagator matrix G can be
constructed. For example, it can be used even for a multilay-
ered elastic material with nonviscous fluid layers inside it (see
Appendix C). In the remainder of this article we use this gen-
eral equation to study low-frequency velocities of symmetric
modes in composite pipes of various nature.

Dispersion equation at zero frequency

To derive the dispersion equation for axisymmetric modes
at zero frequency for a fluid-filled pipe in vacuum, we need
to specify how coefficients in equation (6) depend on phase
velocity and the wavenumber ξ . We assume that boundary
conditions (3) are fulfilled. Let us handle the elastic pipe first
and the internal fluid column later.

Let us consider a wavelength that is large compared to the
pipe’s outer radius ξr � 1. Although elements gij depend on
ω and ξ (which come from ∂ t and ∂ z), it is convenient to use
phase velocity c = ω/ξ < ∞ instead of ω and assume that c is
finite.
Proposition 1. In the low-wavenumber limit, elements of ma-
trix G required for the dispersion equation have the following
structure

g21 = q21ξ + O(ξ3), g2l = q2l + O(ξ2),

g41 =
[
−ρc2 yr2

0

2
+ q41

]
ξ2 + O(ξ4), g4l = q4lξ + O(ξ3),

where l = 2, 3; y = r2

r2
0

− 1, and qij are independent of c.

Proof. While complete proof can only be given when propa-
gator matrix G is fully defined, part of the result can be easily
explained without complete definition. The form of g22 fol-
lows from the obvious property of the propagator matrix G(r,
r) = I, where I is a unit matrix. The expression for g41 can be
obtained directly from the equation of motion

−ρω2uz(r ) = 1
r

∂r (rσrz(r )) − ξσzz(r ). (7)

Indeed, parameter ξr is small and the wavelength is much
greater then the pipe thickness. Therefore uz(r1) � uz(r0) for
any internal radius r0 ≤ r1 ≤ r. Utilizing this approxima-
tion and selecting boundary conditions ur(r0) = σ rr(r0) =
r0 σ rz(r0) = 0, we obtain after integration

rσrz(r ) = −ρc2ξ2 yr2
0

2
uz(r0) + ξ

∫ r

r0

dr1r1σzz(r1).

For linearly elastic materials we can further assume σ zz ∼
ξuz(r0). On the other hand, under the same boundary condi-
tions, equation (2) gives rσ rz(r) = g41uz(r0). Comparing both
expressions reveals the required structure of g41.

In the homogeneous isotropic case, the structure of other
elements easily follows from equations (B13) and (B19). �

Now let us clarify the dependence of fluid-related quantity
u/p on phase velocity c. Such a relation can be derived from
the solution of the wave equation for fluid media in the zero-
wavenumber limit (see equation (C3) in Appendix C). At the
cylindrical boundary r = r0 inside the fluid layer we have

u
p

=
(

v2
f

c2
− 1

)
r0

2K
= (X − 1)

r0

2K
, (8)

where vf and K are the longitudinal velocity and bulk modu-
lus of the fluid respectively; X = v2

f /c2 is normalized squared
slowness.

It is convenient to write the dispersion equation with respect
to X rather than to c. Let us also introduce elastic parameter
μ and density parameter ρ. In case of isotropic homogeneous
media they have the physical meaning of shear modulus and
density of the pipe material, respectively. For more complex
pipes ρ becomes volume-averaged density. Then it is natural
to work with nondimensional parameters β and γ defined as

β = ρv2
f

μ
, γ = K

μ
. (9)

(For homogeneous isotropic media they coincide with β and
γ used by Lafleur and Shields (1995)). Then using proposition
1 and equation (8), we can rewrite the dispersion equation (6)
as(

−μβ

X
yr2

0

2
+ q41

)[
−q22 μγ + q23

r2
0

2
(X − 1)

]
= q21

[
−q42 μγ + q43

r2
0

2
(X − 1)

]
.

(10)

Equation (10) can be rewritten in the form

EX2 + F X + G = 0, (11)
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with coefficients

E = q41q23 − q43q21, (12a)

F = μγ [q42q21 − q41q22]
2
r2

0

− E − μβq23
yr2

0

2
, (12b)

G = μ2βγ q22 y + μβq23
yr2

0

2
, (12c)

where as before y = r2

r2
0

− 1 .

Quadratic form of equation (11) suggests that the system
supports two axisymmetric waves. These two waves can be
considered as generalized tube and plate waves (Bakulin et al.
2008), since one is formed mainly by the fluid column, and
the other - by the pipe. However, this division becomes rather
ambiguous when two roots are close to each other.

Approximate solutions of the dispersion equation

After inspection of equation (12) we can see that coefficients
E, F and G have common parts. Thus it is natural to collect
these common terms and introduce quantities

g1 = μ2βγ q22 y, g2 = μβq23
yr2

0

2
, (13a)

f = μ[q41q22 − q42q21]
2
r2

0

. (13b)

Then coefficients F and G can be rewritten as

F = −γ f − E − g2 and G = g1 + g2. (14)

If we introduce

B = −F − 2g2 = E + γ f − g2, (15)

then the exact solution of the dispersion equation can be writ-
ten as

X = B + 2g2 ±
√

B2 + 4(γ fg2 − Eg1)
2E

. (16)

Under the condition

B2 	 |γ fg2 − Eg1|, (17)

these solutions can be simplified. As shown in section ‘Homo-
geneous isotropic pipe’, for the homogeneous and isotropic
pipe this condition is satisfied for thick (y 	 1) and thin (y �
1) pipes. For convenience, let us consider the case when also

B = E + γ f − g2 > 0. (18)

Expanding the square root and applying equation (17), we
obtain the following simple approximations for squared nor-
malized slownesses X and phase velocities c = v f /

√
X :

X+ = 1 + γ
f
E

, C+ = v f√
1 + γ

f
E

, (19a)

X− = EG − g2
2

BE
, C2

− = μ

ρ

βBE

EG − g2
2

. (19b)

Quasistatic approximation (White’s approach)

White (1983) suggested an alternative method to obtain the
tube-wave velocity Ct in the quasistatic limit. It follows from
equation (6) and proposition 1 that

p
u

= 2M
r0

, where 2M = q41q23 − q43q21

q41q22 − q42q21
r2

0 . (20)

On the other hand, we can express ratio û(z,t)
p̂(z,t) at the same

boundary r = r0 but inside the fluid. Equating u
p = û

p̂ gives
the dispersion equation. The equation of motion for the fluid
medium is

∂

∂z
p̂(z, t) = −ρ f

∂2

∂t2
uz(z, t), (21)

where p̂, ρ f and uz are pressure, density and axial displace-
ment in the fluid at r0, respectively. Pressure can be found from
the continuity equation. In the quasistatic or low-frequency
limit (ξr � 1) we can write u

r0
� ∂r ur (r0) and thus, using equa-

tion (20), obtain

p̂ � −K
[

∂uz

∂z
+ 2û

r0

]
= −K

[
∂uz

∂z
+ p̂

M

]
, (22)

where K is the bulk modulus of the fluid and û = ur (r0, z, t).
White (1983) wrote this equation as p � −K 	V

V in terms of
relative volume change for a small fluid cylinder at hand.
Differentiating equation (22) along the axial coordinate, we
can express ∂z p̂ as[

1
K

+ 1
M

]
∂ p̂
∂z

= −∂2uz

∂z2
. (23)

Substituting this expression into equation (21), we obtain

∂2uz

∂z2
= ρ f

[
1
M

+ 1
K

]
∂2uz

∂t2
, (24)

which is a one-dimensional wave equation with phase velocity
(White 1983)

Ct = v f√
1 + K

M

. (25)
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This approximate expression for the phase velocity coin-
cides with equation (19a). This can be verified by noticing
that

f
E

= μ

M
and γ = K

μ
, (26)

which follows from equations (12a), (13b), (20) and (9).
White’s quasistatic approach can be justified using exact

dispersion equation equation (10) by adding an explicit as-
sumption of smallness of velocity Ct as compared to the sec-
ond root or plate-wave velocity Cpl. As will be shown in equa-
tion (42), for a thin pipe (h � r0) velocity Cpl can be found as
a root of the simple equation g41 = 0. When finding an expres-
sion for a second smaller root c = Ct under the assumption
C2

t � C2
pl, we can neglect the first term in g41 and write

g41 �
[

− ρc2 yr2
0

2
+ q41

]
ξ2 � q41ξ

2.

This corresponds to neglecting the first term μβ

X
yr2

0
2 in

parentheses of equation (10). After such simplification, the
quadratic with respect to X equation (10) turns into linear
equation equation (19a) for the tube-wave slowness identical
to White’s equation (25). One has to be aware of additional
assumptions behind White’s low-frequency equation. For ex-
ample, White’s equation can be particularly misleading when
Ct and Cpl become close to each other (Bakulin et al. 2008).

White described only an isotropic and homogeneous pipe
whereas Norris (1990) extended this quasistatic approach to
treat additional borehole environments with acoustic logging
tools and casing. In this paper we generalize the quasistatic ap-
proach by explaining how quantity M (equation (20)) can be
calculated for the case of radially anisotropic inhomogeneous
pipe, if its propagator matrix G is known.

VELOCITIES FOR LAYERED ISOTROPIC
AND A NISOTROPIC P IPES

Let us apply the presented formalism to cases of homogeneous
isotropic, layered and radially anisotropic elastic pipes. As in
all the cases considered before, the pipe is filled with fluid on
the inside and has vacuum outside. We also give simplified
approximations for thin and thick pipes.

Homogeneous isotropic pipes

Let us consider an isotropic pipe with density ρ and Lamé
parameters λ and μ. The derivation of the propagator matrix

for this case is described in Appendix B. Here we only present
the final result.
Proposition 2. For homogeneous isotropic elastic media the
low-wavenumber limit of the propagator matrix G(r, r0) is
given by⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 λ+μ

2μ(λ+2μ)

(
y
2 − ln r

r0

)
r2

0 ξ

λμ

λ+2μ
xξ 1 − μ

λ+2μ
x

− λ

λ+2μ

yr2
0

2 ξ 1
λ+2μ

yr2
0

2(
− ρc2 + 4μ(λ+μ)

λ+2μ

)
yr2

0
2 ξ2 λ

λ+2μ

yr2
0

2 ξ

λ+μ

λ+2μ

y
2 ξ + μ

λ+2μ
ξ ln r

r0

1
μ

ln r
r0

μ(λ+μ)
λ+2μ

2x
r2
0

− λ+μ

λ+2μ

x
2 ξ − μ

λ+2μ
ξ ln r

r0

1 + μ

λ+2μ
y λ+μ

2μ(λ+2μ)

(
x
2 − ln r

r0

)
r2ξ

λμ

λ+2μ
yξ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (27)

where ξ = ω

c is a wavenumber, c (c < ∞) is a phase velocity,
x = 1 − ( r0

r )2 and y = ( r
r0

)2 − 1 are two alternative forms of a
geometric parameter.

To calculate coefficients of the dispersion equation (11), we
should compare elements gij of matrix (27) with their repre-
sentation in proposition 1 and find qij. In this particular case
it is convenient to multiply coefficients of equation (11) by a
factor 2(1 − σ )/(xμ2) and use expressions involving Poisson’s
ratio σ

σ = λ

2(λ + μ)
, 1 + σ = 3λ + 2μ

2(λ + μ)
, 1 − σ = λ + 2μ

2(λ + μ)
.

After introduction of modified coefficients and some simpli-
fication, phase velocities c = v f /

√
X can be found from the

equation

E′ X2 + F ′ X + G′ = 0, (28)

with coefficients

E′ = 2(1 − σ )
1
x

E = 2y(1 + σ ), (29a)

F ′ = −4γ − 2y(1 + γ )(1 + σ ) − βy, (29b)

G′ = 2βγ (1 − σ ) + yβ(1 + γ ). (29c)

This equation was obtained by Lafleur and Shields (1995)

(although they used parameter α = ρv2
f

λ+2μ
instead of σ ).

Approximations for thin and thick isotropic pipe

We utilize equations (19a) and (19b), but as before intro-
duce modified coefficients B′, E′, G′, g′

2 and f ′ multiplied by
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2(1 − σ )/(xμ2) that are more convenient for isotropic pipe

f ′ = 4 + 2y(1 + σ ) = 4 + E′,
g′

2 = yβ,

B′ = E′ + γ f ′ − g′
2 = (1 + γ )E′ + 4γ − yβ .

Then the roots of equation (16) are

X =
B′ + 2yβ ±

√
B′2 + 4yβγσ 2

2E′ . (30)

With all coefficients now defined for isotropic pipe, we can
clarify that condition (17) is met if the pipe is thin (y � 1) or
thick (y 	 1). Indeed for a thin pipe we have B′2 � 16γ 2 	 y.
Likewise for a thick pipe B′2 ∼ y2 	 y. Therefore tube-wave
velocity approximation (19a) can be written for isotropic pipe
as

Ct = v f√
1 + K

μ

[
1 + 2

y(1+σ )

] . (31)

When y → ∞ we obtain the velocity for a well-known case of
fluid-filled borehole surrounded by an infinite elastic medium
(White 1983)

X(∞)
t = 1 + K

μ
, C(∞)

t = v f√
1 + K

μ

. (32)

The expression for the plate velocity is rather complex and
therefore we only write it for the cases of thin and thick pipes.
For thin pipe we have

y → 0, g′
2 → 0, G′ ≈ 2βγ (1 − σ ), B′ ≈ 4γ,

which gives

X(0)
pl = G′

B′ = β(1 − σ )
2

and C(0)
pl = vs

√
2

1 − σ
, (33)

where v s is the shear-wave velocity of the pipe material. In the
thin-pipe limit, the tube-wave velocity goes to zero, whereas
the plate-wave velocity remains finite.

For the thick pipe we have y → ∞ and

g′
2 = yβ, G′ ≈ yβ(1 + γ ), B′ ≈ E′(1 + γ ) − yβ.

Substituting these expressions into (19b), we obtain

X(∞)
pl = β

2(1 + σ )
and C(∞)

pl =
√

N
ρ

, (34)

where N and ρ are Young’s modulus and density of the pipe
material. Note that the pipe can be considered as thick when
its outer radius is finite (and even small) and the inner radius
vanishes (r0 � r). In a limiting case of r0 = 0 we obtain
extensional mode velocity for a solid rod.

In all these approximations we used the condition B′ >

0 to simplify the square root
√

B′2 = |B′|. This condition is
satisfied in many practical cases and it turns out that the even
less restrictive condition√

N
ρ

>
v f√

1 + K
μ

(35)

is often sufficient. It can be rewritten as X(∞)
t > X(∞)

pl and
tells us that plate-wave velocity in the solid rod should exceed
tube-wave velocity in the borehole surrounded by an infinite
medium of the same material. This condition is sufficient to
make B′ positive, since

B′ = 4γ + 2y(1 + σ )
[
X(∞)

t − X(∞)
pl

]
. (36)

Moreover, when condition (35) is fulfilled, approximation
(31) can be used for any y (not only for small or large y),
although it provides less accuracy.

Finally, we emphasize that while White (1983) originally
postulated only quasistatic conditions (large wavelength), we
can see that additional assumptions about material or geo-
metric parameters are implicit in his approach and in the final
expression (31).

Radially layered pipe

Let us now apply the developed formalism to a pipe consisting
of n homogeneous isotropic elastic layers. In order to utilize
the dispersion equation, we need to establish a matrix propa-
gator for the pipe as a whole.

Let us introduce additional notations. The layer with num-
ber i has inner radius ri−1, outer radius ri, material parameters
λi, μi, ρ i and geometric parameters

xi = 1 − r2
i−1

r2
i

, yi = r2
i

r2
i−1

− 1. (37)

Propagator matrix G for the layered pipe is

G(rn, r0) = Gn(rn, rn−1) . . . G2(r2, r1)G1(r1, r0), (38)

where propagators Gj(j = 1, . . . , n) are expressed as equation
(27) for each homogeneous layer. For convenience, in the fol-
lowing text we denote r = rn for any number of layers. We
can compute matrix products and represent elements of G as
series in the wavenumber ξ . Since we are only interested in
a limit, we retain only the first terms of the series represent-
ing each element. After higher-order terms are neglected, each
element of the propagator matrix can be decomposed into
two factors. One is geometric (depends only on radii) and the
other is defined by material properties. This can be done for
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propagators of single homogeneous layers as well as for prop-
agators describing the layered pipe. In the layered case, the
geometric factor is the same and contains only the inner and
outer radii of the pipe, whereas the property-factor of each
element represents an effective material constant that depends
on the properties and geometry of individual layers.

It turns out that the propagator matrix for a multilayered
pipe (n ≥ 1) preserves the structure seen for the homogeneous
isotropic matrix (27), albeit with a larger number of material
parameters. Multilayered propagator can be expressed as⎡⎢⎢⎢⎢⎢⎣

1 q12ξ q13ξ l14 ln r
r0

s21xξ 1 + (s22 − 1)x s23
2x
r2
0

q24ξ

s31
yr2

0
2 ξ s32

yr2
0

2 1 + s33 y q34ξ

(−ρc2 + s41)
yr2

0
2 ξ2 s42

yr2
0

2 ξ s43 yξ 1

⎤⎥⎥⎥⎥⎥⎦ ,

(39a)

while remaining elements are further broken down and their
terms separately decomposed as

q12 =
[
s12 y + 2l12 ln

r
r0

]
r2

0

4
, q13 = s13

y
2

+ l13 ln
r
r0

,

q34 =
[
s34x + 2l34 ln

r
r0

]
r2

4
, q24 = s24

x
2

+ l24 ln
r
r0

.

(39b)

We use two sets of property factors (sij and lij) to emphasize
that lij are multiplied by logarithms. The factor ρ is volume
averaged density. Note that the stated powers of ξ in the first
terms reflect the general structure of linear elasticity equations
and thus remain valid for radially anisotropic and inhomoge-
neous cases. In the Appendix A we provide explicit equations
for property factors sij and lij in several special cases.

Once the propagator matrix is established, we can obtain
formulae for velocities by substituting elements of matrix
(39a) into (20). Recalling that q22 = 1 + (s22 − 1)x and

q41 = s41
yr2

0
2 , we obtain

M = [s41s23 − s43s21]y
s41 + [s41s22 − s42s21]y

. (40)

If we define ‘effective’ shear modulus μ and ‘effective’ Poisson
ratio σ as

μ = s41s23 − s43s21

s41s22 − s42s21
, 1 + σ = 2

s41
[s41s22 − s42s21],

then we can express the constant M as M = μ(1+σ )y
2+(1+σ )y . This

gives a familiar approximation for tube-wave velocity

Ct = v f√
1 + K

M

= v f√
1 + K

μ

[
1 + 2

y(1+σ )

] , (41)

that has form identical to that of isotropic homogeneous pipe
(see equation (31)). Note that μ and σ have a meaning of
effective parameters and depend on the properties and geom-
etry of all layers. The geometric factor appearing in the final
equation characterizes the entire pipe y = r2

r2
0

− 1.

In the limit of thin pipe (y � 1), the plate wave velocity is
given by a very simple expression

C(0)
pl =

√
s41

ρ
, (42)

which is derived from equation (19b). This expression shows
that for a thin pipe, the plate-wave velocity is controlled by
the property factor of a single element of matrix G and can
be found from equation g41 = 0 as seen from equation (39a).

Pipe characterized by radial transverse isotropy

Let us now examine the propagator matrix for a radially
anisotropic pipe. While in principle, materials as complex
as radially orthotropic can be handled, here we focus on a
simpler case of radial transverse isotropy because it describes
finely layered periodical pipe made of isotropic layers. This is
proved in Appendix A and illustrated numerically in section
‘Numerical examples’. Here we only describe the propagator
matrix for a homogeneous cylindrical layer of such material.
As pointed out by Love (1944) radial transverse isotropy has
a property that in every point inside the pipe symmetry axis
tracks the radial direction. Therefore Hooke’s law in cylindri-
cal coordinates can be written as⎡⎢⎣σrr

σφφ

σzz

⎤⎥⎦ =

⎡⎢⎣c11 c13 c13

c13 c33 c23

c13 c23 c33

⎤⎥⎦
⎡⎢⎣εrr

εφφ

εzz

⎤⎥⎦ , σrz = c44εrz,

σrφ = c44εrφ, σφz = c33 − c23

2
εφz. (43)

Let us introduce anisotropy parameter ν2 = c33
c11

, and define
additional geometry-property factors as

y+ =
(

r
r0

)1+ν

− 1, y− =
(

r
r0

)1−ν

− 1. (44)

As the propagator matrix G for such a medium is rather com-
plex, let us first introduce auxiliary matrix T(ν) with elements
tij(r, r0; ν). The second column of T is

⎡⎢⎢⎢⎣
t12

t22

t32

t42

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣

ξr2
0

([
c44+ (c23+νc13)

1+ν

]
y+−(c23+νc13) ln r

r0

)
2ν(1+ν)c11c44(

1 + c13
νc11

)
(y+−y)r2

0
2r2

r2
0 y+

2νc11
(c23+νc13)ξr2

0 y+
2ν(1+ν)c11

⎤⎥⎥⎥⎥⎥⎥⎦ . (45a)
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The remaining elements are

t21(r, r0) = −t43(r0, r ), t24(r, r0) = t13(r0, r ),

t31(r, r0) = t42(r0, r ), t34(r, r0) = −t12(r0, r ), (45b)

tj3(ν) = tj2(ν)
νc11 − c13

r2
0

, t14 = 1
c44

ln
r
r0

,

t11 = t44 = 0,

t41 = ξ2 yr2
0

4

(
−ρc2 + c33 − c2

13

c11

)

+ ξ2r2
0

(
y
2

− y+
1 + ν

) (c2
23 − ν2c2

13

)
2ν(1 − ν)c11

.
(45c)

Then the propagator matrix is expressed as

G = I + T(ν) + T(−ν). (45d)

For example, element g32 is given as g32 = r2
0 (y+−y−)

2νc11
. Note that

the symmetry relationships (45b) are the same for matrices T
and G.

It should be noted that the structure of the anisotropic prop-
agator is distinct from the isotropic (equation (27)) or layered
case (equation (39)) due to the presence of the factors y+ and
y− that couple the geometry and material parameters. We later
show that this new structure can be obtained as a limiting case
of a layered isotropic propagator when n → ∞. The isotropic
propagator matrix (27) can be obtained as a limiting case of
the anisotropic one if we take into account that

c11 = c33, c13 = c23, c44 = 1
2 (c33 − c23),

ν = 1, y+ = y, y− = 0,
y−

1−ν

ν→1−→ ln r
r0

.

Once the anisotropic propagator (45) is established, the
same formalism can be applied to obtain dispersion equation
and mode velocities for radially transversely isotropic pipe.
For example, in order to use equations (41) and (42), one
needs to equate the elements of anisotropic propagator (equa-
tion (45)) with the template (39a). Expressing six stiffnesses
sij from equation (40) and compliance s41 required for com-
putation of tube- and plate-wave velocities respectively, one
can use the same approximate equations (41) and (42) as be-
fore. Note that factors y+ and y− will be absorbed by sij.
Likewise, to use exact dispersion equation (10) one needs to
equate elements gij listed in proposition 1 with corresponding
elements of anisotropic propagator (45) and define required
qij. We omit the detailed expressions for brevity and only
demonstrate them in the numerical examples.

Table 1 Parameters of two-component periodic models used
for computations

Model A B C

r0/r 9/10 5/10 5/10
θ 1/2∗ 2/3† 2/3†

n 5 10 5
Material PVC Steel 1 Steel 2 Water

ρ (kg/m3) 1400 7870 7870 1000
Vp(m/s) 2020 5600 5600 1500
Vs(m/s) 945 3190 399 0

∗ Linear (by thickness) concentration of PVC.
† Volume concentration of PVC.

Table 2 Comparison of velocities at zero frequency computed
using different methods explained in the text

Matrix Anisotropic Average Spectral
multiplication method‡

Model A
Vt(m/s) 1243 1247 1253 1241
Vpl(m/s) 4752 4749 4753 4747

Model B
Vt(m/s) 1336 1359 1410 1336
Vpl(m/s) 4427 4428 4425 4428

Model C
Vt(m/s) 764 764 764 761
Vpl(m/s) 1046 1046 1046 1045

‡ Computed at finite frequency where results become stable.

Numerical examples

Let us illustrate the behaviour of the velocities in fluid-filled
layered pipes and their dependence on various parameters. In
particular, we consider periodically layered pipes with periods
of equal thickness. Each period consists of two sublayers.
Total thickness of the pipe is denoted as h and its inner and
outer radii are r0 and r. We have water inside and vacuum
outside the pipe.

We consider three models: A, B and C. In models B and
C the first inner sublayer is polyvinyl chloride (PVC) with
constant volume concentration θ across all periods. Volume
concentration is defined as the ratio of the cross-sectional
area of the PVC layer to the entire cross-section area of the
period. In model A concentration θ is equal to the ratio of the
thicknesses, however due to small overall thickness of the pipe
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Figure 1 Tube-wave velocity in Model B as a function of the number
of periods of constant thickness. Shown are velocities obtained by
different methods explained in the text.

Figure 2 Plate-wave velocity in Model B as a function of the number
of periods of constant thickness. Same notations as Fig. 1.

Figure 3 Tube-wave velocity in Model C. Since correction terms are
zero (equation (A22)), all methods produce the same velocities, shown
by horizontal solid line irrespective of number of layers. Thin lines
denote actual dispersion curves obtained with the spectral method
(Karpfinger et al. 2007), which collapse to the same value of velocity
at zero frequency.

it also implies approximately equal volume concentrations.
The second sublayer is steel in models A and B, but in model
C it is steel with a modified shear modulus equal to that of
PVC (Table 1).

Results are shown in Table 2 and on Figs 1–3 and dis-
play velocities obtained by four different methods. ‘Average’
denotes wavespeeds obtained from a propagator that rep-

Figure 4 Evolution of the structure for propagator matrix G with
total thickness h and number of periods n; 	 denotes all correction
terms.

resents simple volume averaging of the propagators for the
constituent layers (equation (A29)). ‘Matrix multiplication’
denotes velocities obtained using exact propagator multipli-
cation as in equation (38). To verify our results we compare
them with independent numerical computations by spectral
method (Karpfinger, Gurevich and Bakulin 2007).

These computations lead to the following conclusions:
� both tube and plate wave velocities are almost constant for

large numbers of periods (Figs 1 and 2);
� this limit can be described by simple volume averaging of

material parameters (equation (A29)) if the curvature of the
pipe is small (h/r0 � 1 ) - model A (see Table 2);

� this limit generally cannot be described by simple volume
averaging of material parameters if the curvature of the pipe
is not small - model B (Fig. 1); note that the relative error
for plate wave velocity remains very small (Fig. 2);

� in the case where sublayers in the period have equal shear
moduli, velocities at zero frequency depend only on the
relative volume concentration of sublayers (and are thus
independent of number of periods) - model C (Fig. 3).
The velocity limit for large or infinite n corresponds to the

velocity in the model with homogeneous effective anisotropic
pipe, which is obtained from a propagator described by
equation (45). The equivalence between finely layered and
anisotropic pipes is proved in Appendix A. For all models
these limits are denoted as ‘Anisotropic’ in Table 2.

A thin pipe is always well described by simple averages ir-
respective of the number of layers. Thick pipe becomes well
described by the anisotropic limit for the large number of pe-
riods. In the intermediate case, when number of periods is not
large while the pipe is thick, neither average nor anisotropic
propagators provide a good description and matrix multipli-
cation with correction terms (equation (A17)) should be car-
ried out to obtain accurate results. We illustrate this behaviour
by the diagram in Fig. 4.

CONCLUSIONS

We proposed a general form of the dispersion equation valid
for low-frequency propagation of symmetric modes in fluid-
filled boreholes and pipes consisting of radial elastic layers
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and having vacuum on the outside. This equation is expressed
through the elements of a propagator matrix for axisymmet-
ric waves characterizing the entire layered composite. We pre-
sented an exact and approximate solutions of the dispersion
equations in the limit of zero frequency. We showed that pre-
viously known results are obtained as special cases of our
general solutions.

We further presented propagator matrices for homogenous
isotropic, layered and radially transversely isotropic pipes.
We showed that a finely layered periodic medium made of
isotropic cylindrical layers is equivalent to a homogeneous
anisotropic media of transverse radial anisotropy. Numeri-
cal computations validate the good accuracy of the obtained
equations for velocities of symmetric modes and confirm that
layered pipes can be approximated by simple effective models.
Theoretically, this replacement becomes exact when the num-
ber of periods increases to infinity. For practical applications
we observe that an equivalent anisotropic media provides an
excellent description, even for a relatively small number of
periods and large acoustic contrast between the layers.
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APPENDIX A: PROPAGATOR MATRIX FOR
LAYERED ISOTROPIC MATERIAL

This appendix is devoted to detailed analysis of the propa-
gator matrix of layered isotropic pipe in the low-frequency
limit. In contrast to the plane-layered case, cylindrical layers
have a second scale in addition to wavelength. This scale is
a curvature of the pipe, defined as ratio of thickness h to the
inner radius r0 of the pipe. Whenever we refer to a ‘thin’ pipe
we assume that h � r0. Likewise, we refer to a ‘thick’ pipe
in a more general case when h is comparable to or larger
than r0.

We also consider periodical structures and the limiting case
of infinite number of periods with fixed overall thickness. Such
a system is equivalent to the radially transversely isotropic
homogeneous media suggested by Achenbach (1970). It cor-
responds to known results of equivalence of finely layered
materials and transversely isotropic media (Backus 1962).

In the following we briefly show the main steps in obtaining
the propagator matrix for cylindrical periodical structures and
compare it with the matrix of transversely isotropic materials.
After that we consider in detail propagator matrices for the
layered pipe with a finite number of layers and periodical pipe
with an infinite number of periods.

Radial anisotropy and periodical structure

Let us show that periodically layered pipe of a fixed thick-
ness with an infinite number of thin periods can be described
by a propagator matrix of radial transversely isotropic media
described by equation (45) with appropriately chosen param-
eters cij. First we outline the scheme and state the results. Then
we explain each step of the derivation.

This equivalence can be proved in three steps as illustrated
by diagram in Fig. 5. First, we find the propagator matrix
for a single infinitely thin period (h/r0 → 0), that is equiva-
lent to thin homogeneous anisotropic pipe with anisotropic
parameters cij given by Backus averaging (Backus 1962). This
is shown on the left part of the diagram. Second, we build a
propagator matrix of thick periodical pipe from the matrix
of a single infinitely thin period. This corresponds to trans-
ferring from the left to the right part of the diagram. Third,
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Figure 5 Diagram illustrating derivation scheme and relationships
between various propagators.

we establish the equivalence between thick periodical pipe in
the limit n → ∞ and thick anisotropic pipe having parame-
ters cij expressed by the same Backus averaging (Backus 1962)
previously found for thin anisotropic pipe.

Defining periodical pipe, we assume that periods consist of
homogeneous isotropic sublayers with constant volume con-
centration and the thicknesses of the periods are of the same
order.

The left part of the diagram in Fig. 5 shows that for a
given propagator matrix G0 of infinitely thin period, we con-
struct matrix S0 of elements s0 ij and vector L0 of elements
l0 1j using representation equation (39). We do not mention
elements l0 i4 because the fourth column of matrix G can be
directly reconstructed using symmetry relationships equation
(45b) applicable for both periodical and anisotropic pipes.
When the period is thin, property matrices S0 and L0 are sim-
ply volume averaged matrices of sublayers. We then establish
appropriate coefficients cij as functions of averages s0 ij and
thus obtain equivalent anisotropic thin pipe (see later equa-
tion (A31)). Note that for small thickness of the pipe (small
y) we have y± � ν±1

2 y and thus the same geometric factors
appear in periodical and anisotropic pipes.

Since we assumed constant volume concentration of sublay-
ers and matrices S0 and L0 are volume averages, then they are
the same for all infinitely thin periods of the pipe. Following
the middle row of the diagram in Fig. 5, we should express
matrices S and L of thick periodical pipe through matrices S0

and L0 of its periods. In order to do that, we introduce diag-
onal matrix P = diag{0 1 1 0}. Multiplication by P on
the right-hand side replaces the first and the fourth columns
of any 4 × 4 matrix by zeros. We show that to find a prop-
agator of periodic pipe it is sufficient to derive expressions
for a reduced matrix Z = SP, element s41 and property vector

L. Property vector L′ and other elements of property matrix S
can be recovered from symmetry relationships equation (45b)
and thus the entire propagator can be found. Let us define a
matrix

Y = Y(r, r0) =
(

r
r0

)2Z0

− I, (A1)

where Z0 = S0P. As it will be shown by equation (A6a), pa-
rameters y+ and y− introduced in equation (44) are eigenval-
ues of Y. Then desired matrices required to define a periodic
propagator in the limit n → ∞ are expressed as

Z = 1
y

Y, L ln
r
r0

= L0

∫ r

r0

dr ′

r ′ [Y(r ′, r0) + I], (A2a)

s41 = 〈s41〉 + k42〈s21〉 + k43〈s31〉,

where K =
(

Z0 − 1
y

Y
)

(I − Z0)−1
(A2b)

and 〈sij〉 are elements of matrix S0 that represent volume av-
eraging of the corresponding constituent layers in the period.
These equations correspond to equations (A40), (A52) and
(A37) considered later.

In the third step, shown as the right-hand column of the di-
agram on Fig. 5, we again use template (equation (39) to find
propagator matrix G that simultaneously describes periodi-
cal pipe at the limit n → ∞ and equivalent anisotropic pipe.
Note that in the general case of a thick pipe, elements of S
and L include complex geometry-property factors y± defined
by equation (44). This manifests change of the propagator
structure where clear decomposition in property and geomet-
ric factors is no longer possible. The section ‘Numerical ex-
amples’ illustrates this change of structure using diagram in
Fig. 4 and numerical results shown in Figs 1 and 2.

Computation of effective material parameters

Let us describe how to calculate the matrix expressions (A2)
postulated above. These expressions are functions of the re-
duced property matrix Z0 = S0P and can be calculated if
matrix Z0 is diagonalized. As will be shown in section ‘Ef-
fective homogeneous media describing layered pipe of small
thickness’, elements of Z0 can be considered as combinations
of constants cij of some radial transversely isotropic material.
After introducing parameter ν2 = c33

c11
and computing eigen-

values, matrix Z0 can be diagonalized as

Z0 = M diag{0 1+ν

2
1−ν

2 0} M−1, (A3)
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where matrix M is formed by eigenvectors of Z0:

M =

⎡⎢⎢⎢⎢⎢⎢⎣
1

1−ν+ 1
c44

(νc11+c13)

(1+ν)c11
m13 0

0 (νc11+c13)
2c11

m23 0

0 1
c11

m33 0

0 c23+νc13
(1+ν)c11

m43 1

⎤⎥⎥⎥⎥⎥⎥⎦ . (A4)

Elements mj3 can be expressed through mj2 as

mj3 = 1
2

(νc11 + c13)mj2(−ν). (A5)

Expressions for eigenvalues of matrix Z0 will be proved in
section ‘Eigenvalues of reduced property matrix’.

We observe that eigenvalues and eigenvectors only de-
pend on anisotropic parameters cij and do not depend on
geometric parameters. This also means that the structure of
the anisotropic propagator for thin pipe is the same as for
isotropic or layered case (equation (39)). This is a consequence
of the fact that Z0 describes an infinitely thin period.

Using equation (A3) we can rewrite equation (A2) in a di-
agonalized form as

yZ = M diag{0 y+ y− 0} M−1, (A6a)

L ln
r
r0

= L0 M diag
{
ln r

r0

y+
1+ν

y−
1−ν

ln r
r0

}
M−1, (A6b)

K = 1
y

M diag
{
0 1+ν

1−ν

[
y − 2y+

1+ν

]
1−ν

1+ν

[
y − 2y−

1−ν

]
0
}

M−1.

(A6c)

We observe that geometry-property factors y+ and y− of thick
anisotropic pipe appeared in eigenvalues corresponding to pe-
riodical pipe with an infinite number of periods.

To make it obvious that after substituting equations above
into the form (equation (39)) we obtain exactly the propagator
matrix (equation (45)) of anisotropic pipe, let us give a more
detailed expression for the newly appeared quantity

D = M diag{d1 d2 d3 d4} M−1, (A7)

which is contained in all expressions (equation (A6)). Elements
of such a matrix product are

djk = (−1)k

det M
[d2mj2m2k − d3mj3m3k],

j = 2, 3, k = 2, 3;
(A8a)

djk = (−1)k

det M
[(d2 − dj )mj2m2k − (d3 − dj )mj3m3k],

j = 1, 4, k = 2, 3;
(A8b)

dj j = dj , j = 1, 4, (A8c)

where det M = ν(νc11 + c13)
2c11

. (A8d)

In conclusion, we should mention how to obtain propaga-
tors for the special case of ν = 1. This may occur for isotropic
or transversely isotropic material with c23 �= c13. In such a
case, as one can see from matrix (A4), elements m13 and m43

tend to infinity proportionally to (1 − ν)−1. However, these
elements appear only in equation (A8b), where they are mul-
tiplied by d3 − d4 ∼ 1 − ν (we always have d1 = d4 in our
equations). Indeed, in all possible cases (for matrices S, L and
K correspondingly) this uncertainty can be resolved utilizing
following relationships:

y− ∼ (1 − ν) ln
r
r0

,
y−

1 − ν
− ln

r
r0

∼ 1 − ν

2
ln

r
r0

,

1 − ν

1 + ν

[
y − 2y−

1 − ν

]
∼ 1 − ν

2
[y − ln(1 + y)].

(A9)

Multilayered systems

In this section we analyse the structure of the propagator
matrix G, defined by equation (38). Representing matrix G
in the form (39), we consider how its property-factors can be
expressed through property-factors of component layers.

To construct such a representation, we notice that the
structure of the diagonal elements of propagators (equations
(27) and (39a)) naturally allows them to be represented as
G = I + G. We then can write equation (38) for n = 2 in the
form

I + G(r2, r0) = [I + G2(r2, r1)][I + G1(r1, r0)] (A10)

and express G through G2 and G1 as

G(r2, r0) = G2(r2, r1) + G1(r1, r0) + G2(r2, r1)G1(r1, r0).

There are two important observations concerning the equa-
tion above. The first is that it is an exact equation for matrices
with all terms with ξ -expansion included. Since we are only
interested in a low-wavenumber limit, we only consider the
first term of each element. If we keep them for matrices G2 and
G1, then higher-order terms naturally appear in the product
G2G1 and we should neglect them. This could be formalized
using projector matrices. In particular, three corner elements
of G2G1 begin with the ξ2-term, while in matrices G j they be-
gin with the ξ0-term. To take it into account we introduce a
linear operation {·} that acts on 4 × 4 matrices according to
the rule: if Â = {A} then â11 = â14 = â44 = 0 and âi j = ai j for
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other elements. To avoid higher-order terms in the product,
we should also put to zero elements g(2)

24 , g(2)
34 of matrix G2 and

g(1)
12 , g(1)

13 of matrix G1. When we rewrite the equation for a lay-
ered propagator G in terms of property-factors, the described
operation will be achieved by diagonal projector matrix P =
diag {0 1 1 0}.

A second observation is that the considered expression has
the form of an arithmetic average G2 + G1, with some correc-
tion term G2G1. Therefore, we define averages 〈·〉 and 〈·〉ln with
the following weights

θi = r2
i − r2

i−1

r2
n − r2

0

, ψi =
ln ri

ri−1

ln rn
r0

, (A11)

where r0 and rn are the inner and outer radii of the pipe with
n layers.

Let us gather property-factors sij into matrix S, l1j into vec-
tor L and lj4 into vector L′. Matrices Si and vectors Li, Li

′

of the property-factors describing the isotropic layer are given
by

Si =

⎡⎢⎢⎢⎢⎢⎣
0 λi +μi

μi (λi +2μi )
λi +μi
λi +2μi

0
λi μi

λi +2μi

λi +μi
λi +2μi

μi (λi +μi )
λi +2μi

− λi +μi
λi +2μi

− λi
λi +2μi

1
λi +2μi

μi
λi +2μi

λi +μi
μi (λi +2μi )

4μi (λi +μi )
λi +2μi

λi
λi +2μi

λi μi
λi +2μi

0

⎤⎥⎥⎥⎥⎥⎦ , (A12a)

Li =
[
0 − λi +μi

μi (λi +2μi )
μi

λi +2μi

1
μi

]
, (A12b)

L′
i =

[
1
μi

− μi
λi +2μi

− λi +μi
μi (λi +2μi )

0
]t

. (A12c)

We are now ready to construct a low-frequency version for a
two-layered propagator.
Proposition 3. A property matrix describing a pipe consisting
of two layers with welded contact can be obtained as volum-
averaged elements of constituent layers with some correction
terms

S = 〈S〉 + y1 y2

y
{S2 P(S1 − P)}, (A13a)

L = 〈L〉ln + y1ψ2L2S1 P, (A13b)

L′ = 〈L′〉ln + x2ψ1 P(S2 − P)L′
1, (A13c)

where parameters

xi = 1 − r2
i−1

r2
i

, yi = r2
i

r2
i−1

− 1, y = r2
n

r2
0

− 1 (A14)

are used with n = 2 and i = 1, 2.
Layers in this proposition can be inhomogeneous and equa-

tion (A13) can be applied recursively to obtain S, L and L′ for

the multilayered case. For example, in the case of composite
pipe consisting of three isotropic layers we obtain

S = 〈S〉 + y3 y2

y
{S3 P(S2 − P)}

+ y3 y1

y
{S3 P(S1 − P)} + y2 y1

y
{S2 P(S1 − P)}

+ y3 y2 y1

y
{S3 P(S2 − I) + S3 PS2 P(S1 − I)}. (A15)

Recursively applying equation (A13a) we can derive the ex-
pression for n layers. They will also contain volume-averaged
terms 〈S〉 and additional terms of progressively higher orders
of yi.

However, a more convenient generalization can be pro-
duced using the matrices of property-factors S(n,k) and ge-
ometric parameters y(n,k) computed for the group of layers
with numbers k, . . . , n. For simplification we use the notation
S(k) = S(k,1) and Sk = S(k,k). Let us denote combinations in-
volving the projector as

Z = SP and Z′ = P − PS,

which can be similarly defined for matrices S and Z with
indices. Volume-averaging weights can be expressed through
geometric parameters as

θi = yi (1 + yi−1) . . . (1 + y1)
y

, θ1 = y1

y
. (A16)

As a result, for the case of n layers we derive general expres-
sions for property matrices and vectors defining a multilayered
propagator

S = 〈S〉 −
{

n∑
k=2

y(n,k) Z(n,k)θk−1 Z′
k−1

}
, (A17a)

L = 〈L〉ln +
n∑

k=2

ψkLky(k−1) Z(k−1), (A17b)

L′ = 〈L′〉ln −
n∑

k=2

x(n,k) Z′
(n,k)ψk−1L′

k−1. (A17c)

There exists a simple representations for matrices Z(n,k) and
Z′

(n,k) used in the above expressions. Multiplying equation
(A13a) by P on either righthand or lefthand side, and using
property {A} P = AP or P{A} = PA and expressions (A16),
we reduce equation (A13a) to the following form

I + yZ = (I + y2 Z2)(I + y1 Z1), or (A18a)

I − xZ′ = (I − x2 Z′
2)(I − x1 Z′

1), (A18b)
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which can be generalized for the group of n layers as

I + y(n,k) Z(n,k) = (I + yn Zn) . . . (I + ykZk), (A19a)

I − x(n,k) Z′
(n,k) = (I − xn Z′

n) . . . (I − xkZ′
k). (A19b)

Parameters y(n,k) and x(n,k) can be similarly rewritten as

1 + y(n,k) = (1 + yn) . . . (1 + yk+1)(1 + yk), (A20a)

1 − x(n,k) = (1 − xn) . . . (1 − xk+1)(1 − xk). (A20b)

Each set of geometric parameters x or y can be used and
simple relationships exist between them for the case of n layers

yi = xi

1 − xi
,

yn . . . y1

y
= xn . . . x1

x
. (A21)

Note that order of matrices in the products above is fixed.
The presence of correction terms does not allow layers to
be interchanged. This in contrast to a medium of fine plane
layers where layers can be interchanged at low frequencies and
the propagator only contains volume-averaged terms. We will
further observe how correction terms accumulate for large
n and transform the structure of the propagator to the new
type.

Analysis of correction terms

Let us analyse the correction term, which is the difference
between matrix S of layered material and averaged matrix
〈S〉. The difference S − 〈S〉 is controlled by curvature τ = h/

r0 and shear modulus difference 	 μ = max (μi − μj). It
is convenient to use usual parameter y expressed through τ

as y = τ (2 + τ ). For any number of layers this difference is
bounded by

‖ S − 〈S〉 ‖≤
[
1 − ln(1 + y)

y

]
	μD, (A22)

where D depends only on the material parameters of con-
stituent layers. For small y we can write a more crude estimate

‖ S − 〈S〉 ‖≤ y
2

	μD � τ	μD. (A23)

To explain the origin of this estimate, let us begin with the
geometrical part. Generalizing equation (A15) to n layers we
can write

‖ S − 〈S〉 ‖ ≤
[ ∑

1≤ j<i≤n

yi yj

y
+ . . . + yn . . . y1

y

]
C

= 1
y

[
(1 + y) −

(
1 +

n∑
k=1

yk

)]
C,

(A24)

where we used representation (A20a) for y; constant C is inde-
pendent of radii. We then note that function f (yn, . . . , y1) =∑n

k=1 yk has its conditional minimum when all yk are equal to
some fixed value y0. Relation (A20a) gives (1 + y0)n = 1 + y
and we further simplify to

‖ S − 〈S〉 ‖ ≤ 1
y

[
y −

n∑
k=1

yk

]
C ≤ 1 − ny0

y

=
[
1 − y0

y
ln(1 + y)
ln(1 + y0)

]
C ≤

[
1 − ln(1 + y)

y

]
C.

(A25)

To illustrate the dependence on 	μ we start with the case
of n = 2. First, we obtain a more specific expression derived
from Eq. (A31a) and describing two-component pipe with
arbitrary first layer but isotropic second layer

S = 〈S〉 − y1 y2

y
{S2 P	S}, (A26)

where 	S = S2 − S1. This can be verified by reminding you
that the property of a propagator for an isotropic homoge-
neous layer {S2P (S2 − P)} = 0, which in turn can be obtained
from equation (A13a) by considering the case of bilayered pipe
with identical layers.

When both layers are homogeneous and isotropic then we
can obtain an even more detailed result. Isotropic property
matrices from equation (A13a) possess the following symme-
try property: the second and the third columns of matrix Si

are dependent as well as two middle rows of matrix Si − P. If
we denote the second column of S2 as c2, and the third row
of S1 − P as t1, then

S2 P = {0 c2 μ2c2 0}, PS1 − P =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0

−μ1 t1

t1

0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

and S2P (S1 − P) = (μ2 − μ1) c2 t1. Therefore, the correction
term is proportional to the difference between shear moduli
and equation (A13a) now turns into

S = 〈S〉 − y2 y1

y
	μ{D}, (A27)

where D = −c2 t1 and 	μ = μ2 − μ1 .
This result can be generalized for the case of three layers

after noticing that the last term of equation (A15) can be
written in the form

S3 P(S2 − P) + S3 PS2 P(S1 − P)

= −	μ32D32 − 	μ21S3 PD21, (A28)

where 	μ32 = μ3 − μ2 and 	μ21 = μ2 − μ1 .
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Effective homogeneous media describing layered pipe of small
thickness

When pipe is thin (has a small curvature τ � 1), then correc-
tion terms in equation (A17) can be neglected in S, L and L′

and we arrive at a simpler expressions

S � 〈S〉, L � 〈L〉, L′ � 〈L′〉. (A29)

Note that we are allowed to use only volume average, because
all weights (A11) become identical θi � ψi � hi/h for thin
pipe. Therefore, we arrived at the following result: if layered
pipe is thin compared to its inner radius (τ � 1), then it
can be replaced by homogeneous radially anisotropic pipe
with five elastic parameters. Such materials were called radial
transverse isotropy by Love (1944).

Convergence of volume and logarithmic averaging for thin
pipe preserves the same relationships (equation (A12)) be-
tween elements of L, L′ and S as for isotropic layers

l12 = −s12, l13 = 1 − s13, l14 = s12 + s32,

l34 = −s34, l24 = −1 − s24.

For thirteen elements sij there also exist eight additional rela-
tionships

s21 = s43, s22 = s13, s24 = −s13,

s31 = −s42, s33 = 1 − s22, s34 = s12,

s41 = 4s23, 2s22 = 1 + s42. (A30)

Therefore, only five property constants remain independent in
the layered propagator matrix G. Another material, charac-
terized by five independent material constants, is radial trans-
verse isotropy with the stress-strain law given by equation
(43). In order to replace the considered thin packet of homo-
geneous isotropic layers with anisotropic homogeneous pipe,
we should relate their parameters as follows

c11 = 1
〈s32〉 , c33 = 4〈s23〉 + 〈s42〉2

〈s32〉 , c44 = 1
〈l14〉 ,

c13 = 〈s42〉
〈s32〉 , c23 = 2〈s43〉 + 〈s42〉2

〈s32〉 , (A31)

where 〈sij〉 denotes volume averaging of corresponding ele-
ments of the property matrix for thin stack of layers. The ex-
pressions (A31) are identical to the well-known Backus (1962)
averaging for effective anisotropic media replacing stack of
isotropic plane layers. This is also in agreement with the re-
sults of Achenbach (1970) for cylindrical layers obtained by
different means.

It can easily be verified that if thin pipe (τ � 1) consists of
homogeneous isotropic layers with equal shear moduli, then
the effective medium is isotropic with the same μ whereas the

effective λ is given by

1
λ + 2μ

=
n∑

m=1

θm
1

λm + 2μ
. (A32)

It is consistent with general results of Hill (Hill 1963) for
microinhomogeneous media. Note, that S = 〈S〉 even for thick
pipe, but correction terms for L and L′ do not vanish when λi

are not equal for all layers. Thus, we need small curvature to
use all of equation (A29).

Eigenvalues of a reduced property matrix

In the next section we consider a propagator for periodically
layered pipe where it is convenient to operate with diago-
nalized property matrices. Thus, we need to determine the
eigenvalues of the property matrix especially for the case of
infinitely thin layered pipe, described in previous section ‘Ef-
fective homogeneous media describing layered pipe of small
thickness’.

Consider reduced property matrix Z = Z(n) of infinitely thin
pipe made of n isotropic elastic layers. The first and the fourth
columns are zero in the matrices of layers Zk as well as in the
matrix Z for the stack of n layers. Therefore, they all have
two zero eigenvalues. The remaining two eigenvalues can be
determined if both Tr Z and det(Z − I) are known (note that
always det Z = 0).

Now, let us calculate nonzero eigenvalues z2 and z3 for the
case of the infinitely thin pipe (A12a) reveals that the trace of
the property matrix S for a single isotropic layer as well as for
a volume-averaged stack of layers < S>, is equal to unity

TrZ = z2 + z3 = 1. (A33)

To compute the determinant we use relationships equation
(A30) and expression (A31) and arrive to

det(Z − I) = s22s33 − s23s32

= 1 − s2
42

4
− s23s32 = 1

4

(
1 − c33

c11

)
, (A34)

where sij = 〈sij〉. Introducing parameter ν2 = c33/c11, we ob-
tain the eigenvalues of reduced property matrix Z describing
infinitely thin pipe as

z2 = 1 + ν

2
, z3 = 1 − ν

2
. (A35)

It can be shown that ν = 1 in both cases of constant μ or
λ + μ.
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Periodically layered pipe

In this section we consider the application of the previous
results (A17) and (A19) for periodically layered pipe of ar-
bitrary total thickness. As shown in section ‘Effective homo-
geneous media describing layered pipe of small thickness’, at
low frequencies thin pipe (h/r0 � 1) can be replaced by effec-
tive homogeneous pipe with radial transverse isotropy. Here
we generalize this result and show that even for a large total
thickness, pipe formed by an infinite number of thin periods
can be replaced with anisotropic homogeneous pipe charac-
terized by the material parameters of a single averaged thin
period. The propagator matrix for such anisotropic pipe was
already presented by equation (45).

In order to find the propagator matrix of such a periodical
structure we need to compute the limits

S = lim
n→∞

S(n), L = lim
n→∞

L(n), L′ = lim
n→∞

L′
(n).

It is natural to assume that the volume concentration of
all constituents is constant for all periods. However, in or-
der to compute the limits, one also needs to say something
about period geometries. For cylindrical layers one has mul-
tiple choices, for example, to consider periods of constant
thickness or constant area. For averaging purposes, it is ad-
vantageous to start with a special case when yk for all periods
is equal to each other. This case is important because the
property matrices and property vectors for each period are
also equal, which gives the shortest path to the desired limit.
For example, equation (A13a) confirms that for equal volume
concentrations the first terms (< S>) are the same for all pe-
riods. If all yk are equal for all periods, then the correction
terms are also equal for all periods (note that yk corresponds
to y in equation (A13a). Therefore the propagator matrices
are all equal.

Calculation of property matrix S for an infinite number
of periods

As a first step we calculate this limit for a reduced property
matrix Z, in the simple case when all yk are equal to some
y0(n) and all Zk are equal to some Z0(n)

I + yZ = lim
n→∞

(I + y0(n)Z0(n))n, (A36)

where y0(n) is found from the equation 1 + y = (1 + y0)n.
As a second step, we show that periodic pipes with different
period geometries, which satisfy condition (A45), also lead to
the same limit.

Once the limit for the reduced matrix Z is found, the full
property matrix S can be recovered using the expression

S − S0 = {(Z − Z0)(I − Z0)−1(P − S0)}. (A37)

To obtain this relation we first need to recall that S0 = 〈S〉,
Z0 = lim

n → ∞
Z0(n) = 〈Z〉. Second, we observe that equation

(A17a) can be written as S − S0 = {�n(S0 − P)}. Multiply-
ing this expression by P on the right-hand side, we obtain
Z − Z0 = �n(Z0 − I), which allows one to express �n =
(Z − Z0)(Z0 − I)−1. As a result, the property matrix S of the
entire periodical structure can be expressed by equation (A37)
through Z, Z0 and S0.

In the remainder of this appendix we will prove the equiva-
lence by showing that for a thick pipe of finite thickness made
of infinitely thin periods (τ → 0) we have

I + yZ = (1 + y)Z0 . (A38)

This equation can be substituted into equation (A37) and
represents previously stated result in equation (A2b). Note
that if the uncertainty appears due to det(Z0 − I) = 0, then
it can always be resolved by means similar to example in
equation (A9).

As we deal with functions of matrix Z0, it is convenient to
perform diagonalization and consider all expressions in terms
of eigenvalues. Let us denote the elected eigenvalue of matrix
Z0 as Z0, and the corresponding eigenvalue of matrix Z as z.
Equation (A20a) gives 1 + y = (1 + y0)n and we find that

ny0 = y0 ln(1 + y)
ln(1 + y0)

−→
[n→∞]

ln(1 + y). (A39)

We then rewrite equation (A36) for single eigenvalue z0 and
z as

1 + yz = lim
n→∞

en ln(1+y0z0) = ez0 ln(1+y) = (1 + y)z0 . (A40)

It remains to prove that the established limit remains the
same for other period geometries with non-constant yk and
non-constant Zk. Thus, we need to prove that matrix (A19a)
made of factors (I + ykZk) and a matrix made of factors
(I + y0Z0) are close to each other and become identical when
n → ∞. We accomplish this proof in two steps. In the first
step, we estimate the error of replacing matrix (A19a) made
of (I + ykZk) with a matrix made of (I + ykZ0). In the second
step, we estimate the error of replacing a matrix made of (I +
ykZ0) with a matrix made of (I + y0Z0).

Let us perform the first step and replace the product (A19a)
by a similar product with Zk = Z0

I + yZ̃(n) = (I + yn Z0) . . . (I + y2 Z0)(I + y1 Z0), (A41)
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and estimate the error introduced by such a replacement. It
follows from equation (A23) that

‖ Zk − Z0 ‖< C max
k

yk = Cδ, (A42)

where C is some constant. For a matrix of any period we can
write

I + ykZk = yk(Zk − Z0) + (I + ykZ0). (A43)

After transformations

I + yZ(n) = (I + yn Zn) . . . (I + y2 Z2)y1(Z1 − Z0)

+ . . . + yn(Zn − Z0)(I + yn−1 Z0) . . . (I + y1 Z0)

+ (I + yn Z0) . . . (I + y2 Z0)(I + y1 Z0),

we obtain following estimate

y ‖ Z(n)) − Z̃(n) ‖< n maxk yk ‖ Zk − Z0 ‖
× (‖ 1 + ykZ0 ‖ +yk ‖ Zk − Z0 ‖)n−1

< Cnδ2(1 + Cδ2 + δ|Z0|)n−1,

where c0 =‖ Z0 ‖. It is convenient but not restrictive to assume
that C > 1. We then arrive at the final estimate of the error
valid for sufficiently large n when δ < c0:

y ‖ Z(n) − Z̃(n) ‖< Cnδ2e2c0nδ. (A44)

Note that for any k we have yk ≥ 2hk/r = 2h/(rn) and thus
nδ = n max yk ≥ C1 (h and r are the thickness and outer radius
of the pipe). However, the exponential term in the right-hand
side remains finite only if nδ ≤ C2, where C2 is some constant.
Thus, we obtain a condition on yk that periodic media should
satisfy in order to justify this first replacement:

C1

n
≤ yk = Ck(n)

n
≤ C2

n
, or yk ∼ 1

n
. (A45)

Under this condition, replacement error becomes small and
goes to zero when n → ∞. The simple geometrical meaning
of this condition is that period thicknesses should remain of
the same order while n → ∞.

Let us now make the second step and replace all yk with y0

determined by (1 + y0)n = 1 + y and estimate the error of such
a replacement. Note that y0 � 1

n ln(1 + y) and thus meets the
condition (A45). It is more convenient to deal with the sum
of the matrices instead of the product. Once we replace all
Zk by Z0, we can take logarithms on both sides of equation
(A41). Using the general inequality ln q ≤ q − 1, we obtain
for selected eigenvalue z0 that

ln
1 + ykz0

1 + y0z0
≤ (yk − y0)z0

1 + y0z0
. (A46)

We then write for a finite number of periods:

ln
(1 + ynz0) . . . (1 + y1z0)

(1 + y0z0)n
≤ z0

1 + y0z0

n∑
k=1

(yk − y0). (A47)

To continue estimations we need to use general inequalities

ln(1 + yk) ≥ yk − y2
k
2 , y0 ≥ ln(1 + y0),

which are valid for yk > 0, and obtain

ln(1 + y) =
n∑

k=1

ln(1 + yk) ≥
n∑

k=1

(
yk − y2

k

2

)

=
n∑

k=1

(yk − y0) −
n∑

k=1

y2
k

2
+ ny0

≥
n∑

k=1

(yk − y0) −
n∑

k=1

y2
k

2
+ ln(1 + y). (A48)

Cancelling out identical terms, we arrive at

n∑
k=1

(yk − y0) ≤
n∑

k=1

y2
k

2
. (A49)

Assuming the same condition yk ∼ 1
n is fulfilled, we can see

that replacement error (equation (A47)) is indeed small

ln
(1 + ynz0) . . . (1 + y1z0)

(1 + y0z0)n
≤ z0n max

k

y2
k

2
∼ 1

n
→ 0.

Thus, we conclude the proof that the limit (equation (A40))
does not depend on the details of yk when they are of the same
order, which is expressed by condition (A45).

Calculation of property vector L for an infinite number
of periods

To obtain vector L we should find the limit of equation (A17b)

L(n) ln
r
r0

=
n−1∑
k=0

Lk+1[I + y(k) Z(k)] ln
rk+1

rk
. (A50)

When n → ∞ then the periods become thin and their property
vectors converge Lk → L0. For selected z0, let us denote z(r′)
as an eigenvalue of the intermediate layer bounded by r0 and
r′ with an infinite number of periods. We also denote y(r ′) =
( r ′

r )2 − 1. We then utilize equation (A40) in the form

1 + y(r ′)z(r ′) = (1 + y(r ′))z0 =
(

r ′

r0

)2z0

. (A51)

Under condition (A45) and for large n we can write ln rk+1
rk

=
ln(1 + hk+1

rk
) � hk+1

rk
, which is replaced by drk

rk
at the limit of

infinite n. Taking all this into account, we obtain for the
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selected eigenvalue zk of matrix Z(k) that

n−1∑
k=0

[1 + y(k)zk] ln
rk+1

rk
−→

[n→∞]

∫ r

r0

dr ′

r ′ [1 + y(r ′)z(r ′)]

=
∫ r

r0

dr ′

r ′

(
r ′

r0

)2z0

=
⎧⎨⎩

( r
r0

)2z0 −1

2z0
, if z0 �= 0,

ln r
r0

, if z0 = 0.

(A52)

The eigenvalues of Z0 are {0 1+ν

2
1−ν

2 0}, as shown in
section ‘Eigenvalues of reduced property matrix’. Then, prop-
erty vector for periodically layered pipe is expressed as

L ln
r
r0

= L0 M diag
{

ln
r
r0

y+
1 + ν

y−
1 − ν

ln
r
r0

}
M−1.

(A53)

Note that additional geometry-property parameters of
anisotropic material y+ and y− emerged after taking the limit
(they are defined by equation (44)). This evolution of the prop-
agator structure is depicted by the diagram in Fig. 4. We start
with a single period with the simplest propagator structure,
similar to the structure of isotropic homogeneous pipe. For
a finite number of periods inside the thick pipe this structure
becomes more complex because of the presence of correction
terms due to curvature. After taking the limit (n → ∞) we
arrive at a completely different structure, identical to that of
a thick anisotropic pipe. We emphasize that the new struc-
ture only emerges after accumulating an infinite number of
corrections terms.

Finally we point out that equation (A40) coupled with equa-
tions (A37) and (A53) allows to calculate all elements of S and
L and provide initially stated equation (A2).

APPENDIX B: DERIVATION OF
PROPAGATOR MATRIX FOR
A X I S Y M M E T R I C W A V E S IN IS O T R O P I C
ELASTIC MEDI A

We restrict our derivation to only axisymmetric modes. In
cylindrical coordinates (r, φ, z) this means uφ = 0 and ∂φ =
0. Let us consider monochromatic waves propagating in an
axial z-direction with amplitudes dependent on r

uz(r, z; t) = uz(r ) sin(ωt + ξz),
ur (r, z; t) = ur (r ) cos(ωt + ξz).

(B1)

Assuming linearly elastic isotropic material, we can write the
differential equations on amplitudes ur and uz as

ρω2ur − μξ2ur + (λ + 2μ)
[
∂2

r ur + ∂r ur

r
− ur

r2

]
+ (λ + μ)ξ∂r uz = 0,

ρω2uz − (λ + 2μ)ξ2uz + μ

[
∂2

r uz + ∂r uz

r

]
− (λ + μ)ξ

[
∂r ur + ur

r

]
= 0. (B2)

In the following, we use parameters α and β defined as

α2 =
(

ρc2

λ + 2μ
− 1

)
ξ2, β2 =

(
ρc2

μ
− 1

)
ξ2, (B3)

where c is phase velocity c = ω

ξ
< ∞. Let us also define vectors

u =
[

ur

uz

]
, σ =

[
σrr

σrz

]
. (B4)

Equation (B2) has four independent solutions:

u1 =
[

α

ξ
J1(αr )

J0(αr )

]
, u2 =

[
α

ξ
N1(αr )

N0(αr )

]
, (B5)

u3 =
[

ξ

β
J1(βr )

−J0(βr )

]
, u4 =

[
ξ

β
N1(βr )

−N0(βr )

]
, (B6)

expressed through special functions J, N defined by

Jn(x) = 1
n!

(x
2

)n
− 1

(n + 1)!

(x
2

)n+2
+ . . . ,

π

2
N0(x) = J0(x) ln

x
2

−
∞∑

m=0

(−1)m

(m!)2

(x
2

)2m
[

m∑
n=1

1
n

− C

]
,

π

2
N1(x) = J1(x) ln

x
2

− 1
x

+ O(x). (B7)

Any common solution is a linear combination with arbitrary
constants. This combination is the same for both displace-
ments and stresses:

u = u1 Z1 + u2 Z2 + u3 Z3 + u4 Z4,

σ = σ 1 Z1 + σ 2 Z2 + σ 3 Z3 + σ 4 Z4.
(B8)

It is convenient to introduce a vector

W = (uzσrr rurrσrz)
t (B9)

and rewrite equation (B8) in matrix form W(r) = M(r) Z,
where matrix M has elements uz i, σ rr i, rur i, rσ rz i with i =
1, . . . , 4. On the other hand, for some different radius r0 we
have W(r0) = M(r0)Z. Thus, we can relate vectors W(r) and
W(r0) as

W(r ) = M(r )M−1(r0)W(r0) = G(r, r0)W(r0) (B10)

via a propagator matrix G(r, r0). To establish the exact repre-
sentation for the propagator matrix we closely follow a recipe
proposed by Molotkov (Petrashen et al. 1985).
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Proposition 4. Matrix M(r) can be represented in the form of
the following product

M(r ) = F (r )AQS(r ), (B11)

where

F (r ) =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0

0 1 − 2μ

r2 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎦ , A =

⎡⎢⎢⎢⎢⎢⎣
1 −1 0 0
g
ξ

2ξμ 0 0

0 0 1
ξ

ξ

β2

0 0 −2μ
g
β2

⎤⎥⎥⎥⎥⎥⎦ ,

S(r ) =

⎡⎢⎢⎢⎢⎢⎣
J0(αr ) N0(αr ) 0 0

αr J1(αr ) αr N1(αr ) 0 0

0 0 J0(βr ) N0(βr )

0 0 βr J1(βr ) βr N1(βr )

⎤⎥⎥⎥⎥⎥⎦ ,

Q =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎦ and g = ρω2 − 2μξ2. (B12)

Using this expansion of matrix M(r) and Q−1 = Q we can
write

G(r, r0) = F (r )AQS(r )S−1(r0)QA−1 F −1(r0). (B13)

If we introduce functions

Skl
α (r, r0) = −π

2
(αr )k(αr0)l [Jk(αr )Nl (αr0) − Nk(αr )Jl (αr0)],

(B14)

then we can write S(r)S−1 (r0)

=

⎡⎢⎢⎢⎢⎢⎣
S01

α (r, r0) S00
α (r0, r ) 0 0

S11
α (r, r0) S01

α (r0, r ) 0 0

0 0 S01
β (r, r0) S00

β (r0, r )

0 0 S11
β (r, r0) S01

β (r0, r )

⎤⎥⎥⎥⎥⎥⎦ . (B15)

It is important to consider functions Sik in detail using repre-
sentations

π

2
N0(z) = J0(z) ln

z
2

− P0(z), (B16)

π

2
N1(z) = J1(z) ln

z
2

− 1
z

− zP1(z), (B17)

where P0(z) and P1(z) are some polynomials of z2. Then

S01
α (r, r0) = J0(αr ) + αr0 J0(αr )J1(αr0) ln

r
r0

− αr0 P0(αr )J1(αr0) + (αr0)2 J0(αr )P1(αr0). (B18)

We can consider the last expression as function of ξ2 and
expand it as a series using equation (B3)

S01
α (r, r0) = 1 + s ′

01ξ
2 + s ′′

01ξ
4 + . . . . (B19a)

In the same way we may expand other elements

S00
α (r0, r ) = s00 + s ′

00ξ
2 + s ′′

00ξ
4 + . . . , (B19b)

S11
α (r, r0) = s ′

11ξ
2 + s ′′

11ξ
4 + . . . . (B19c)

The important conclusion is that the elements of matrix G are
series which have either odd or even powers of wavenumber
ξ (or frequency ω) with coefficients dependent only on radii
and velocities. Elements of the resulting propagator matrix do
not contain terms like ln ξ , although these terms are present
in functions N0 and N1.

Utilizing expansions (B19) and proposition 4 and retaining
only main term in the series for each element, we arrive at
equation (27) of the main text providing low-frequency rep-
resentation for the isotropic propagator matrix.

APPENDIX C: GENERALIZED PROPAGATOR
MATRIX FOR A FLUID LAYER
SANDWICHED BETWEEN TWO SOLID
L A Y E R S

Let us consider a combination of a nonviscous fluid layer
sandwiched between two solid layers. In this section we de-
rive a propagator matrix which allows us to connect vectors
W taken inside both solids. First, we derive a 2 × 2 propagator
matrix for a fluid layer itself. Second, we build a superstruc-
ture 4 × 4 that takes into account the surrounding solid layers.

For fluid we have σ zz = σ φφ = σ rr and σ rz = 0. If we
consider monochromatic waves (equation (B1)), and use phase
velocity c = ω/ξ < ∞, then amplitudes can be found from the
equations

ρ f ξ
2c2uz − ξσrr = 0, (C1a)

ρ f ξ
2c2ur + ∂rσrr = 0, (C1b)

σrr = λ f

[
∂r ur + ur

r
+ ∂zuz

]
. (C1c)

The full solution can be described using functions
equation (B7) and α2

f = ξ2[ ρ f c2

λ f
− 1] as[

σrr

ur

]
=
[
ρ f ξ

2c2 J0(α f r ) ρ f ξ
2c2 N0(α f r )

α f J1(α f r ) α f N1(α f r )

][
Z1

Z2

]
, (C2)

where Z1 and Z2 are arbitrary constants.
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One immediate application of this solution consists in de-
riving ratio ur/p for a fluid cylinder in the low frequency limit.
In such a case, the solution should satisfy ur(0) = 0 and thus,
we have

ur

p
= − ur

σrr
= − α f J1(α f r )

ρ f ξ2c2 J0(α f r )
� − α2

f r

2ρ f ξ2c2
. (C3)

If we rewrite this ratio in terms of X = λ f /(ρ f c2) then we
arrive to equation (8).

Another application of equation (C2) is a propagator matrix
for fluid media, which can be derived in the way shown in
Appendix B. This matrix relates vectors V = [σrr rur ]t at
different radii inside the fluid. Using definition (B14) we can
write it as⎡⎣ S01

α f
(r, r0) ρ f ξ

2c2S00
α f

(r0, r )

1
ρ f ξ2c2 S11

α f
(r, r0) S01

α f
(r0, r )

⎤⎦ . (C4)

Although the two middle components of vector W (they also
form vector V) are continuous on all boundaries including
solid-fluid interfaces, the remaining two quantities are not.
However, we can still construct a generalized matrix G(f ),
which relates W(rk−1 − 0) on the boundary inside the first
solid with W(rk + 0) at the interface inside a second solid.
The fluid layer is sandwiched between the solids whereas outer
solid layer has fluid outside (or a vacuum if it is the last layer of
the composite pipe). The corresponding part of the generalized
propagator matrix of the entire system can be expressed as

. . . G( f )
k+2Gk+1(rk+1, rk)G

( f )
k (rk, rk−1)Gk−1 . . . .

Elements of matrix G(f ) connecting continuous elements of W
coincide with elements of matrix (C4). Tangential stresses σ rz

are zero on the boundaries of solid layers with the fluid, thus
the fourth row of G(f ) is zero. Therefore, we need to obtain the
first row. Since there is fluid or vacuum outside the outermost
solid layer and hence σ rz(rk+1) = 0, we can express uz(rk + 0)
inside the solid through continuous ur(rk) and σ rr(rk) by

g(k+1)
41 uz(rk + 0) = −g(k+1)

42 σrr (rk) − g(k+1)
43 rkur (rk),

where g(k+1)
ij are elements of matrix Gk+1(rk+1, rk). In turn,

continuous ur(rk) and σ rr(rk) can be expressed via ur(rk−1)
and σ rr(rk−1) by usual propagator matrix (C4) of the fluid
layer. As a result, at low frequencies we obtain the following
expression

G( f )
k (rk, rk−1) =

⎡⎢⎢⎢⎢⎣
0 f12 f13 0
0 1 λ f

X ξ2 ln r
r0

0

0 1−X
λ f

xkr2
k

2 1 0

0 0 0 0

⎤⎥⎥⎥⎥⎦ , (C5)

where xk = 1 − ( rk−1
rk

)2 and

f12 = − g(k+1)
42

g(k+1)
41

f22 − g(k+1)
43

g(k+1)
41

f32,

f13 = − g(k+1)
42

g(k+1)
41

f23 − g(k+1)
43

g(k+1)
41

f33 (C6)

are expressed through elements of the middle two rows of
G(f ).

If we consider a fluid-filled pipe and apply this formalism
to describe the innermost fluid layer starting from r = 0, then
equation (4) can be rewritten as⎡⎢⎢⎢⎣

uz(r )
0

rur (r )
0

⎤⎥⎥⎥⎦G = G(r, r0)G( f )(r0, 0)

⎡⎢⎢⎢⎣
uz(0)
σrr (0)

0
0

⎤⎥⎥⎥⎦ . (C7)

Dispersion equation (6) becomes simply g̃22 = 0, where g̃22 is
an element of the generalized propagator matrix GG(f ). Sim-
ilarly, we can write dispersion equation for pipe when the
pipe consists of n solid layers interchanged with fluid lay-
ers. In this case, we should consider g̃22 to be an element of
GnG(f )

n . . . G1G(f )
1 . Note that the degree of the dispersion equa-

tion is 2n relative to X which describes n generalized tube
waves and n generalized plate waves. Examples of such dis-
persion equations for n = 2 (two concentric pipes filled with
fluid) are given by Bakulin et al. (2008).

C© 2008 European Association of Geoscientists & Engineers, Geophysical Prospecting, 57, 863–882


