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An effective media model for alternating layers of fluids and solids:

A special case of the Biot model

Lev A. Molotkov1 and Andrey V. Bakulin2

ABSTRACT

By a comparison of both equations and wave fronts, we show that effective models of strati-
fied fluid-solid media can be considered as special cases of the Biot model. Explicit relationships
which transform all Biot parameters to the effective media domain are presented. In the case of
isotropic or transversely isotropic elastic layers this is just a special case of the transversely isotropic
Biot model. However, for the lower symmetry cases more complex Biot models are necessary, and
are presented.

A model of alternating layers of solids with fluids can be used as a first approximation in
representing fractured and porous media. However, use of traditional long-wave equivalent effec-
tive media models is not valid. Although this medium is not a strict porous medium (thus enabling
the use of Biot theory formulations based on discontinuous pore space), neither are formulations
based on monophase elasticity appropriate; even though normal displacements and stresses are con-
tinuous across boundaries for both phase, the constitutive equations representing this model are
actually two-phase.

The effective media model is a transitional model between a completely two-phase model in
which all stresses and displacements are different in both phases, unlike in a monophase model
where the stresses and displacements are coincident. This transitional character can be seen in the
expression of the wave propagation, in particular as a second longitudinal wave propagating along
the layers yet absent across lamination, and generating a triangular-shaped wave front. A relation-
ship established between models confirms the longitudinal nature of this front.

Additionally, two new features of wave propagation in the anisotropic Biot model are pre-
sented. Double loops on the shear wave front with four cusps in one quadrant are now observed.
Additionally, the transition from slow longitudinal to shear mode occurs indicating that at orthogo-
nal directions on the same front polarization changes from pure longitudinal to pure shear. These
features can be used as potential indicators for the presence of anisotropic porous reservoirs.

INTRODUCTION

Effective media models representing finely layered elastic media with nonwelded contacts have
been widely studied by the geophysics community (eg., Molotkov, 1979; Schoenberg, 1983a; Cheadle
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et al., 1991; Rathore et al., 1991; Hsu and Schoenberg, 1993; Hood and Mignogna, 1994). However,
media composed of alternating fluid and solid layers has received little attention (Brekhovskikh,
1973; Molotkov, 1979; Schoenberg, 1983b) in comparison to its importance as representing a simple
example for fractured and porous media. Although this model is too simplistic to completely depict
reservoir conditions, in order to begin more realistic modeling, wave propagation studies in porous
media must be performed. Periodic porous media have been considered using homogenization ap-
proaches (Burridge and Keller, 1981) and other averaging techniques (Pride et al., 1992) which
deduce the Biot equations starting at the microlevel. However, these expressions are rather compli-
cated for use in direct analysis. Additionally, these methods do not provide an example for any kind
of porous media, including even the simple case of alternating layers of fluids and solids. Neverthe-
less, their averaging methods lead to the same results (equations and parameters) as our method.

The first extensive investigations of wave propagation in a stratified fluid-solid medium in-
cluded establishment of constitutive equations of the two-phase effective media model by Molotkov
(1979), while Schoenberg (1983b) provided formulae and analysis of slowness curves. Molotkov
(1979) also noted (without derivation) that the constitutive equations would be similar to those of
Biot (1962). Other studies (Schoenberg, 1984; Molotkov and Khilo, 1984; Molotkov, 1988) con-
structed wave fronts in such media from a point source. The physical modeling of wave propagation
in alternating fluid and solid layers conducted by Plona et al. (1987) showed good agreement be-
tween measured and calculated velocities for all propagation modes; the predicted second wave,
often referred to as the Biot “slow” wave, was clearly observed as pure longitudinal along the layers,
yet was absent across lamination. Despite the similarities in representative equations and propaga-
tion modes, the close relationship between effective media and Biot model has not yet been estab-
lished.

The goal of this paper is to show that the effective media model for a stratified fluid-solid
medium is just a special case of the transversely isotropic Biot model, providing the solid layers are
at most transversely isotropic in complexity. Effective media models for systems having less sym-
metric solid layers are special cases of the Biot model as well, but with a more complex formulation.
The focus of this paper will be on the relationships between models for both constitutive equations
and wave fronts. Multiphase models of stratified media of fluid and solid layers with slide contact
on the interfaces were derived and investigated by Molotkov and Khilo (1984) and Molotkov (1994b).
A special case of these models is the two-phase effective media model of a stratified solid-fluid
medium. The Biot model was generalized to three phases: one case is for two elastic and one fluid
phase (Leclaire and Cohen-Tenoudji, 1994), while the other has only one of each solid, liquid, and
gaseous phase (Camarasa, 1994). Clearly there is an analogous relationship between these multiphase
models.

THE TRANSVERSELY ISOTROPIC BIOT MODEL

In the Biot model it is assumed that at any physical point there are two vectors of displace-
ment and two tensors of stress corresponding to the fluid and the solid phases, hereafter referred to
as the “first” and “second” phase, respectively. Two phases are necessary because in any small
neighborhood there are skeleton and fluid; in addition, relative motion between the fluid and solid is
possible because the pore space is interconnected. For both phases, displacements ux

(1), uy
(1), uz

(1) and
stress t(1) can be averaged over the fluid phase, while displacements ux

(2), uy
(2), uz

(2) and stresses txx
(2),

tyy
(2), tzz

(2), tyz
(2), txz

(2), txy
(2) can be averaged over the solid phase. Superscripts (1) and (2) represent the

separate fluid and solid phase components, respectively. These averages characterize the displace-
ment and stress at any point of a porous medium.
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Since every phase occupies a part of the total volume, it is necessary to average the stress not
just over one phase but over the total bulk volume at any point in a neighborhood. Let porosity ε
represent the part of the volume occupied by fluid. Then the total volume averaged stresses corre-
sponding to both solid and fluid phases are given by

σij
(2) = (1− ε)tij

(2), σ(1) = εt(1) , (1)

respectively, for i, j = x, y, z. Setting the symmetry axis along z, the equations of a transversely
isotropic Biot medium in terms of the stresses averaged over the total volume and displacements
averaged over their respective phase volume are, according to Hooke’s law,

(2)

where the matrix of coefficients relating stress to strain from equation (2) is positive definite and
P = A + 2N. Additionally, displacements and stresses satisfy the equilibrium equations

(3)
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where each dot above the vector components represents a single differentiation with respect to time.
Although the original Biot formulation does not provide expressions for these matrix coefficients as
functions of solid and fluid phase parameters and porosity, subsequent papers (eg., Biot and Willis,
1957) developed methods based on experimental determination. Averaging techniques by Burridge
and Keller (1980) and Pride et al. (1992) rederived the Biot equations from fundamental solid and
fluid equations at the microgeometry scale. Although explicit expressions for all parameters are
formulated in those studies, their expressions are not readily applied and analyzed.

Another group of parameters is dependent on the density of both phases as well as the pore
space geometry, and is defined as

ρ1́1 = ρs (1 − ε ) + ε ρƒ (α1 − 1) , ρ´́11 = ρs (1 − ε ) + ε ρƒ (α2 − 1) ,

ρ1́2 = − ρƒ ε (α1 − 1) , ρ´́12 = − ρƒ  ε (α2 − 1) ,

ρ 2́2 = ρƒ  ε α1 , ρ´́ 22 = ρƒ  ε α2 , (4)

where ρs and ρƒ are the densities of solid and fluid material, respectively. The α1 and α2 are the
components of the tortuosity tensor in the x and z directions, respectively, which describes the ge-
ometry of pore space. Transverse isotropy is assumed, which means that when symmetry is along
the z direction, tortuosities in the horizontal xy-plane are independent of direction and uncoupled
from one another, i.e.

 . (5)

The transversely isotropic Biot model is therefore defined by 13 parameters: A, F, M, C, Q, R, L, N,
ρs, ρƒ, α1, α2, and ε.

EQUATIONS OF THE EFFECTIVE MEDIA MODEL OF A
LAYERED FLUID-SOLID MEDIUM

Applying the methods of matrix averaging to stratified fluid-solid media, Molotkov (1979)
obtained the constitutive equations for two-phase media as

(6)
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with the equilibrium equations represented as

(7)

where

(8)

and

(9)

with ui
(1), ui

(2), t(1), tij
(2) (i, j = x, y, z) as previously defined. The λ2, µ2 and ρs are the Lamé parameters

and density of the solid phase material, respectively; λ1 and ρƒ are the Lamé parameter and density
of the fluid phase material, respectively; and ε is porosity. These six parameters λ2, µ2, ρs, λ1, ρƒ, ε
completely define the medium.

TRANSFORMATION OF BIOT MODEL TO THE EFFECTIVE MEDIA MODEL

Taking into account the relationships of equations (7) and (9), a direct comparison of the two
sets of equations, (2) and (3) with (6) and (8), shows that the equations of the transversely isotropic
Biot medium transform to the equations of the effective media model, providing that the thirteen
Biot parameters are properly expressed through the six parameters of the effective media model.

It is instructive to make this transition step-by-step in order to note from the physical point of
view which parameters and associated conditions control the characteristic wave propagation ef-
fects, such as the origins of triangular wave fronts which often occur in effective media models
(Molotkov, 1988; Schoenberg, 1984). For this purpose, three intermediate models are considered;
each successive model a more specialized case of the previous one. Equations governing each model
are derived and wave fronts from a point source are presented. To construct the wave fronts in the
Biot and effective media models, a parametric description of the wave fronts in the form x = x(τ) and
z = z(τ) is used which is applicable to transversely isotropic elastic and porous media (Molotkov and
Khilo, 1984). Analytic descriptions of the wave fronts provides a means to derive expressions for
velocities along axes, investigate the curvature of fronts, and find angular points or cusps.

A more detailed comparison of wave fronts in a transversely isotropic Biot model with the
effective media model of a stratified fluid-solid medium with isotropic layers can be found in
(Molotkov and Bakulin, 1998); a medium composed of alternating layers of fluid and solid aniso-
tropic elastic layers, however, was not considered in that paper.
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The first step in the transition from a pure Biot model to an effective media model is to
consider a model where shear modulus L = 0, indicating that the layered fluid-solid medium does
not support shear stress in the xz-plane. The transformation from the Biot model to the first interme-
diate model is shown in Figures 1 and 2, where wave fronts (group velocities) from a point source in
the xz-plane for the Biot model (Figure 1) and Model 1 (Figure 2) are represented for L = 0.2 GPa

FIG. 1. Wave fronts in a transversaly isotropic porous medium for small L (L = 0.2 GPa with
P = C = 31.2 GPa, F = 4.3 GPa, M = Q = 1.1 GPa, R = 0.4 GPa, ρs = 2700 kg/m3, ρƒ = 1000 kg/m3,
α1 = α2 = 3, porosity = 20%) The bold line corresponds to the fast quasi-longitudinal wave P1,
the semi-bold line represents the second or “slow” quasi-longitudinal wave P2, and the thin
line is for the quasi-shear SV wave. Note the double loop on the SV wave front.

FIG. 2. Wave fronts in a transversaly isotropic porous medium for Model 1 with L = 0 and all
other parameters as in Fig. 1. Note the survival of the double loop from the previous figure.
The bold line corresponds to the fast quasi-longitudinal wave P1, the semi-bold line represents
the second or “slow” quasi-longitudinal wave P2, and the thin line is for the quasi-shear SV
wave.



Molotkov and Bakulin 247

and L = 0, respectively. On the SV wave front a double loop (or loop of second order) with four cusps
is observed (Figure 1). As L approaches zero, the convex parts of outer loop advance toward the
coordinate axes and destructively interfere with the corresponding fronts from the adjacent quad-
rants to effectively vanish (Figure 2).

The next intermediate step is Model 2 which incorporates the additional constraint of propor-
tionality between coefficients of the σzz

(2) and σ(1) terms of equation (2):

(10)

so that

εσzz
(2) = (1 − ε)σ(1), tzz

(2)  = t(1). (11)

Equation (11) is simply the boundary condition requiring that internal normal stresses along the z-
axis are continuous across the fluid-solid interfaces. The relationships of equation (11) hold at all
points throughout the medium due to the long wavelength criteria, i.e., when the thickness of the
fluid and solid layers is sufficiently small compared with the measuring wavelength. As parameters
F, M, C, Q, R approach values satisfying the conditions of equation (10), the velocities of waves P2
and SV along the z-axis decrease to zero, whereas the upper angular point of the P2 front approaches
the intersection of the SV front with the x-axis (Figure 3). When the conditions of equation (10) are
strictly satisfied (as in Model 2), the parts of the P2 and SV fronts corresponding to the upper
angular point of the P2 front continue towards the x-axis and cancel from destructive interference
with fronts from the adjacent quadrants (Figure 4).

FIG. 3. Wave fronts for the intermediate Biot model, where conditions of equation (10) are
approximately satisfied, corresponding to preferential alignment of fracture planes (fluid lay-
ers) parallel to the x-axis. The bold line corresponds to the fast quasi-longitudinal wave P1, the
semi-bold line represents the second or “slow” quasi-longitudinal wave P2, and the thin line is
for the quasi-shear SV wave.
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The final step in the transition from a Biot model to an effective media model is represented
by Model 3 which has the additional conditions

α1 = 1, α2 = ∞, (12)

which correspond to the absence of mechanical coupling between solid and fluid displacements
along the x-axis, and full coupling of both phases in orthogonal directions, respectively. The rela-
tionships of equation (12) were first suggested by Schoenberg and Sen (1983) who noted that wave
propagation in a medium of alternating fluid-fluid layers could be described on the basis of the
anisotropic Biot model. In order to keep kinetic energy in Model 3 finite, while α2 → ∞ it is neces-
sary to assume that

uz
(1) = uz

(2). (13)

This implies that normal displacements are continuous at every fluid-solid interface. When these
interfaces are densely distributed, equation (13) holds at any point in the medium. This additional
constraint does not change the shape of wavefronts shown in Figure 4 but does affect the velocity
values along the coordinate axes.

Parameters P, F, and C for Model 3 have expressions

P = (1 −  ε ) [a + (1 − ε ) λ0b2] ,

F = (1 −  ε )2 λ0b ,
and

C = (1 −  ε )2 λ0 , (14)

where λ1 is the Lamé parameter of the fluid phase; the λ2 and µ2 are the Lamé parameters of the solid
phase; and a, b, λ0 are given by equation (9). Strictly satisfying the conditions of equation (14)
transforms the Biot model into the equations of the effective media model for a stratified fluid-solid
medium derived by Molotkov (1979; 1991).

FIG. 4. Wave fronts for Model 2 with conditions of equation (10) strictly satisfied, correspond-
ing to complete alignment of fractures (fluid layers) parallel with the x-axis. The bold line
corresponds to the fast quasi-longitudinal wave P1, the semi-bold line represents the second or
“slow” quasi-longitudinal wave P2, and the thin line is for the quasi-shear SV wave.
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Thus, the effective media model for alternating layers of fluids and solids is merely a special
case of the transversely isotropic Biot model, equations (2) and (3), with

A = λ0b2 (1 − ε )2 + 2µ2b (1 − ε ) , F = (1 − ε )2 λ0b ,

C = (1− ε )2 λ0 , Q = ε (1 − ε ) λ0 , M = ε (1 − ε ) λ0b ,

L = 0 , N = (1 − ε ) µ2 , R = ε2 λ0 , P = A + 2N ,

α1 = 1 , α2 = ∞ , (15)

where densities ρs, ρƒ and porosity ε are the same parameters for both models.
The two-phase effective media model of Molotkov (1979, 1991) for layered solid-fluid sys-

tems was successfully verified by the laboratory experiments of Plona et al., (1987) which showed
agreement between measured and predicted effective model velocities. The model also explains the
existence of a slow interference wave, as was observed by Goloshubin et al., (1993) in thin oil-
saturated layers. This wave is in fact absent in nonporous elastic layers both in theory and experi-
mentally. Therefore we assume this model to be a good representation for interwell continuity log-
ging. In the case of infinitely thin, fluid-filled fractures, this model is a special case of a transversely
isotropic elastic medium with one of the shear moduli (c44) equal to zero (Molotkov and Khilo,
1984).

STRATIFIED FLUID-SOLID MEDIA WITH ANISOTROPIC ELASTIC LAYERS

The relationships derived in the previous section compare the Biot model with the effective
media model for stratified fluid-solid media. These equations also apply for elastic layers possess-
ing more complex anisotropy; the equilibrium equations of the Biot model in equation (3) remain
the same. Hooke’s law is represented in matrix form as

(16)
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where C is a symmetric positive definite matrix with 28 independent coefficients. For the special
case when the elements of C are given by

(17)

with

equation (16) (transforms into the Hooke’s law, representing effective media models for stratified
fluid-solid media with elastic layers of arbitrary anisotropy (Molotkov and Khilo, 1983; Molotkov,
1994a). The Aij

mn, Aijk
lmn, Aijkl

mnps are the minors of matrix A for Hooke’s law for material of arbitrary
anisotropic elastic layers

(18)

Similar relationships exist when the elastic layers of the stratified media have monoclinic, orthor-
hombic, tetragonal and hexagonal symmetry, and are presented below.
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In the case of the monoclinic Biot model, matrix C of Hooke’s law has 18 independent ele-
ments. If these elements are given by formulas

(19)

then equation (16) transforms into the Hooke’s law for the effective model of stratified fluid-solid
medium with monoclinic elastic layers. In equation (19), the aij are the elements of matrix A repre-
senting Hooke’s law for material with elastic layers. For monoclinic and higher symmetry λ0 is
given by

(20)

In the case of orthorhombic symmetry, the Biot model is defined by 13 independent stiffness moduli:
c11, c12, c13, c17, c22, c23, c27, c33, c37, c44, c55, c66, c77. When these elements are expressed as

(21)
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then Hooke’s law for an orthorhombic Biot model transforms to that of an effective model of a
stratified fluid-solid medium with orthorhombic elastic layers, where the aik are the elastic moduli of
the layers.

If the Biot model is tetragonal, then there are nine elastic constants. If these constants satisfy
the conditions

(22)

then Hooke’s law for a tetragonal Biot model transforms to Hooke’s law for an effective model of
stratified fluid-solid medium with tetragonal elastic layers.

The effective media model of a stratified fluid-solid medium with elastic layers possessing
cubic anisotropy is a special case of the tetragonal Biot model. Whereas, when elastic layers possess
hexagonal anisotropy, the effective media model is a special case of the transversely isotropic Biot
model with the elastic parameters are given as

(23)

It can be seen that although there are eight Biot moduli, they are expressed by only six independent
parameters (the five elastic moduli representative of the hexagonal solid, and one for the fluid).

NEW FEATURES OF SEISMIC WAVE PROPAGATION
IN ANISOTROPIC POROUS MEDIA

The investigation of models intermediate between the Biot formulation and those using effective
media theory has shed light on some new features of wave propagation in anisotropic porous media:

• Wave fronts in the anisotropic Biot models display a five-valued character – up to five arrivals
along chosen directions (see the shear wave front on Figure 1), and with more complex shapes
than generally encountered. In this paper such features have been referred to as double loops, or
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loops of second order. This phenomenon does not exist in nonporous elastic anisotropic media.
These loops are most obvious on the SV wave fronts in Figure 1. In the Biot model, such five-
valued behavior occurs in nonporous media rather than the usual occurrence of triplications in
anelastic media, because the order of the Christoffel equation is increased by two, giving rise to
two more cusps in a single quadrant.

• There can be a longitudinal mode to shear mode transition, or vice-versa, on the same wave front
in porous medium. Figure 5 shows wave fronts in the transversely isotropic Biot model. Polariza-
tions of the two inner fronts change from pure longitudinal along one axis to pure shear along the
other axis. This situation is extremely rare in elastic nonporous media and occurs only with the
first longitudinal mode transitioning to the shear mode (Ledbetter and Kriz, 1982; Musgrave,
1970). In porous media this transition frequently occurs because two longitudinal waves exist
which enables the transition of the second longitudinal mode to a shear mode (Figure 5). This is
possible because in porous rocks the velocities of the second longitudinal wave are usually close
to that of shear waves. Numerical calculations have shown that such a transition takes place pro-
viding that the following inequalities hold (Bakulin and Molotkov, 1998)

Vx
P2 < Vx

SV and Vz
P2 > Vz

SV or Vx
P2 > Vx

SV and Vz
P2 < Vz

SV . (24)

These inequalities are similar to those for elastic nonporous media (Helbig and Schoenberg, 1987)
where the velocities of the second longitudinal waves Vx

P2 and Vz
P2 would be replaced by the veloci-

ties of the standard fast longitudinal wave. Also note that for transversely isotropic, poroelastic
media, velocities Vx

SV and Vz
SV of the SV-waves parallel to the coordinate axes are different than

those of transversely isotropic, elastic media. This is due to the different tortuosities along the x
and z axes (Schmitt, 1989).

FIG. 5. Wave fronts in the transversely isotropic Biot model (model 3) with α1 = 3, α2 = 100, and
all other parameters as in Fig. 1. Note the second longitudinal mode to shear mode transition
and vice versa on two inner fronts, where P represents longitudinal polarization and S repre-
sents shear polarization. The bold line corresponds to the fast quasi-longitudinal wave. Two
inner fronts are of mixed nature.
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DISCUSSION & CONCLUSIONS

Parameters are presented which transform the Biot (1962) model into an effective media model,
showing that the effective media model of alternating fluid-solid layers is merely a special case of
the Biot model. This is significant in that it provides the insight that the inner triangular wave front
in the effective media model (Figure 4) corresponds to the second longitudinal Biot “slow” wave.
This wave exists in all directions except directly perpendicular to the layers where it has no velocity.
Therefore, along the x-axis the effective media model exhibits wave propagation typical of two-
phase porous media, while along the z-axis this model exhibits monophase wave propagation typi-
cal of elastic (or fluid) media. This is because the pore space is represented by planar fractures (or
fluid layers) connected along the x-axis and not interconnected in the z-axis direction. In the strict
sense, a stratified fluid-solid medium can not be described directly with the Biot model since pores
(the fluid layers) are separated by solid layers and therefore not connected. Nevertheless, we can say
that the effective media model is one of transition between the two-phase and the monophase model,
whereas in the Biot model the two sets of stresses and displacements for both phases are completely
different, while in the effective media model they are partially coincident (equations (11) and (13)).

The simple model of alternating fluid and solid layers serves as an example of an anisotropic
Biot medium with analytically defined elastic and geometric parameters. The relationships between
models is to some extent a justification for the Biot model, constructed on the basis of physical
hypotheses, whereas the model of a fluid-solid medium corresponds to the asymptotics of the wave
field. Since the effective media model is a special case of the Biot model, the physical meaning of
the stresses and displacements in Hooke’s law are now better understood for the Biot model. For
example, the stresses in Hooke’s law from equation (2) are averaged over total bulk volume, whereas
displacements are averaged only over the separate phase volumes (otherwise Hooke’s law will not
be symmetric).

Features of wave propagation in the anisotropic Biot model, such as double loops and longi-
tudinal to shear mode transition, are seen to be unique characteristics of porous media; these fea-
tures do not occur in nonporous media. These features can, therefore, be used as diagnostic tools in
the detection of anisotropic porous reservoirs.
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