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Anisotropic inversion of seismic data for stressed media: Theory
and a physical modeling study on Berea Sandstone

Debashish Sarkar∗, Andrey Bakulin‡, and Robert L. Kranz∗

ABSTRACT

Nonhydrostatic stress, an often-ignored source of seis-
mic anisotropy, is universally present in the subsurface
and may be as common as intrinsic or fracture-induced
anisotropy. Nonhydrostatic stress, applied to an initially
transversely isotropic solid with vertical symmetry axis
(VTI), results in an effective medium having almost or-
thorhombic symmetry (provided that one of the princi-
pal stresses is aligned with the symmetry axis). The sym-
metry planes observed in this orthorhombic medium are
aligned with the orientations of the principal stresses,
and anisotropic parameters (ε(1,2), δ(1,2,3), and γ (1,2)) can
reveal information about the stress magnitudes. Thus,
time-lapse monitoring of changes in anisotropy poten-
tially can provide information on temporal variations in
the stress field.

We use nonlinear elasticity theory to relate the
anisotropic parameters to the magnitudes of the prin-
cipal stresses and verify these relationships in a phys-
ical modeling study. Under the assumption of weak
background and stress-induced anisotropy, each effec-
tive anisotropic parameter reduces to the sum of the
corresponding Thomsen parameter for the unstressed
VTI background and the corresponding parameter asso-
ciated with the nonhydrostatic stress. The stress-related
anisotropic parameters depend only on the differences
between the magnitudes of principal stresses; therefore,

principal stresses can influence anisotropic parameters
only if their magnitudes differ in the symmetry plane in
which the anisotropic parameters are defined.

We test these predictions on a physical modeling data
set acquired on a block of Berea Sandstone exhibiting
intrinsic VTI anisotropy. Uniaxial stress, applied normal
to the VTI symmetry axis, i.e., horizontally, produces an
effective medium that is close to orthorhombic. We use
two different methods to estimate the anisotropic pa-
rameters and study their variation as a function of stress.
The first method utilizes conventional measurements of
transmission velocities along the principal axes of the
sample. The second method uses PP and PS reflection
data acquired along seven different azimuths on the sur-
face of the block.

In accordance with theoretical predictions, the
anisotropic parameters in the vertical plane normal to
the stress are almost insensitive to the magnitude of the
stress. In contrast, anisotropic parameters in the verti-
cal plane of the applied stress increase approximately
in a linear fashion with increasing stress. Except for
the parameter δ(1), comparison of the measured values
of anisotropic parameters with theoretical predictions
shows satisfactory agreement.

Despite some documented discrepancies, we believe
that nonlinear elasticity may provide a suitable frame-
work for estimating pore pressure and 3D stresses from
seismic data.

INTRODUCTION

Estimating and monitoring subsurface stress levels is impor-
tant for a variety of reasons:

1) knowledge of the current stress field is crucial for plan-
ning drilling and mining operations and for resolving
wellbore and mine stability problems;
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2) tectonic stresses, past and present, determine fracture
patterns, which in turn control the movement of fluids;

3) pore pressure and 3D stress monitoring during recovery
of hydrocarbons provides valuable input for optimizing
reservoir depletion strategy and reducing the risk of vari-
ous hazards, e.g., well blowouts caused by fluid overpres-
sure; and
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4) pore pressure and 3D stress influence the velocities of
seismic waves; therefore, in time-lapse seismic measure-
ments, their contribution must be removed before moni-
toring changes in fluid distribution inside reservoirs.

The presence of initial stress influences the dynamic response
of a medium; therefore, monitoring changes in elastic proper-
ties and anisotropy provides a way of monitoring stress levels.
This phenomenon is similar to the change in the velocity of
transverse vibrations along a string when the tension of the
string is changed. Various methods of estimating pore pressure
used in the oil industry utilize this principle to obtain 3D pore-
pressure fields (Eaton, 1975; Bowers, 1995). These methods,
however, are based on empirical relationships between seismic
velocity and effective hydrostatic stress (often approximated
as the difference between lithostatic stress and pore pressure)
and rely on several assumptions that are often unrealistic for
the subsurface. Two issues impair their applicability:

1) subsurface stresses are nonhydrostatic (Fjær et al., 1992);
the three principal stresses are, in general, unequal, and
their orientations and magnitudes should be recovered
to obtain a realistic description of the 3D stress field; and

2) subsurface formations are not isotropic; they possess both
intrinsic and stress-induced anisotropy.

Of the two issues, the latter may be addressed by multi-
component seismic methods, which allow for estimating the
anisotropic velocity field or stiffness tensor (Grechka et al.,
2002).

Addressing the first problem is more challenging because
it requires sound theory that goes beyond the simplistic 1D,
P-wave-only empirical models typically used in practice
(Eaton, 1975; Bowers, 1995). Here, to address this problem,
we propose to use nonlinear elasticity (Thurston and Brugger,
1964; Thurston, 1974) as a theoretical basis for studying stress-
induced anisotropy, because this theory gives a full mapping be-
tween the arbitrary triaxial stress field and the anisotropic stiff-
ness tensor, accounts for intrinsic anisotropy of the unstressed
rock, and requires only three constants of nonlinear elastic-
ity (stress-sensitivity parameters) to describe stress-dependent
velocities for all wave modes in all directions.

Prioul et al. (2001) show that nonlinear elasticity can describe
the properties of intrinsically anisotropic shales and sands as a
function of stress. Indeed, nonlinear elasticity theory provides
a rigorous link between stresses and the effective stiffness ten-
sor. For example, it supports the intuitive expectation that an
isotropic solid in the presence of uniaxial stress exhibits sym-
metry close to hexagonal, while a transversely isotropic solid,
in the presence of uniaxial stress in the isotropy plane, exhibits
anisotropy close to orthorhombic.

Previously, it was difficult to relate laboratory measurements
to field observations because in-situ estimates of the nonlinear
constants were unavailable. This is one reason why this theory
has lacked widespread acceptance. However, today, estimates
of nonlinear constants are available not only from lab mea-
surements on cores but also from in-situ multimode borehole
acoustics (Sinha and Winkler, 1999; Sinha et al., 2000; Sinha,
2001). This makes downhole calibration of nonlinear constants
possible.

Most experimental studies have focused on measurements
of stress-induced velocity anisotropy in rocks that are isotropic

in the absence of stress (e.g., Nur, 1971; Mavko et al., 1995;
Johnson and Rasolofosaon, 1996). However, rocks can ex-
hibit significant anisotropy even in the absence of stress (e.g.,
Tsvankin, 2001). It is therefore of interest to study how stresses
change velocity anisotropy of a rock that is already anisotropic
in the unstressed state. Lo et al. (1986) and Hornby (1998)
have performed such a study on transversely isotropic (TI)
rocks, but their data are limited to experiments where all prin-
cipal stresses are equal. In most subsurface conditions, how-
ever, principal stresses differ significantly (Fjær et al., 1992).
Typically the magnitude of the vertical stress exceeds that of
the horizontal stress, but such a situation may be reversed in
active tectonic regions (e.g., those with thrust faulting), where
horizontal stresses can be more than twice as large as the ver-
tical stress (Bourgoyne et al., 1991). In addition, the horizontal
stresses may vary with azimuth.

To study the influence of nonhydrostatic stress on anisotropy,
we applied uniaxial load to an initially TI rock (Berea
Sandstone) and monitored the change in velocity anisotropy
with stress. We applied three levels of stress—3, 6, and 9
MPa (9 MPa is about one-tenth the burial pressure of Berea
Sandstone of Mississippian age or about one-fourth its uniax-
ial fracture strength)—along the isotropy plane to create ve-
locity anisotropy that has a symmetry close to orthorhombic.
We then related the observed anisotropic parameters to the
stress level using a nonlinear elasticity theory and, in the limit
of weak anisotropy, obtained insight into the effect of stress on
anisotropy.

EXPERIMENTAL SETUP AND INSTRUMENTATION

We used a block of buff-colored Berea sandstone (304×304×
152 mm from the Cleveland quarry near Amherst, Ohio, USA)
for our experiment. The bulk density of the rock was 2.14 g/cm3

by bulk weight. Since the dominant material in Berea sand-
stone is quartz, with silicic cement and almost no clay, this
density implies a porosity of about 21%. The average grain
size was 150–250 µ. The block appeared homogeneous at the
centimeter scale and above. Some bedding was observed per-
pendicular to the x3-axis direction (Figures 1 and 2), and no
cross-bedding was visible.

Berea sandstone is known to be anisotropic (e.g., Thomsen,
1986; Lo et al., 1986). The anisotropy comes primarily from
the weak preference for prismatic quartz grains to lie in the
bedding planes and to have elongated, microcrack-like con-
tacts between grains. Some pore-space elongation is evident
perpendicular to bedding planes but not in the bedding planes
(Prasad and Manghnani, 1997).

For the transmission measurements in the directions of x1-
and x2-axes, two pairs of aluminum side plates (304× 152×
25.34 mm) were fabricated with three wells (22.17 mm diame-
ter and 9.5 mm deep) placed near the plate midpoints (Figures 1
and 2). Three piezoelectric transducers, one compressional and
two carefully oriented shear disks, were epoxied in the wells,
and electrical leads were taken out through the plates. A pair
of aluminum plates was glued to opposing [x2, x3] faces of the
block while the other pair was glued to the opposing [x1, x3]
faces. They were oriented so that transducers of the same po-
larization were directly opposite each other.

The two pairs of matched plates were calibrated to deter-
mine the inherent (zero-length) delay times for P- and S-wave
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propagation into the rock. The calibrations for both sets of
matched plates were almost identical, yielding delay times of
0.37 and 0.43 µs for P-wave and 0.84 and 0.90 µs for S-wave
traveltimes. These times represent<1% of the total traveltimes
and were ignored. For measurements in the x3-axis direction,
we used hand-held individual Ultran transducers to obtain ve-
locities of the different wave modes.

Reflection surveys were conducted with the source and re-
ceiver transducers on the same unstressed block surface rep-
resented by the [x1, x2] plane (Figures 1 and 2). A compres-
sional Panametrics transducer providing the impulsive source
was epoxied to the block about 5 cm from the lower-left cor-
ner. We used hand-held Ultran compressional and shear re-
ceiver transducers pressed against the rock surface with an

FIG. 1. Photograph of the actual experimental set-up. The
marks on the sample indicate transducer positions for the re-
flection measurements. The bedding plane of the rock is aligned
in the [x1, x2] plane. The block of rock has been oriented so that
the loading is parallel to the bedding plane. In this picture the
axis of the VTI medium is pointing toward the viewer.

FIG. 2. Schematic of the performed experiment. The sample of
Berea Sandstone has been restored to its original in-situ ori-
entation. Bedding planes are drawn schematically. Reference
in the text to top and bottom refer to this (in-situ) orientation.
Transmission velocities were measured by transducers (shown
here as solid circles) placed in the middle of each face. Multi-
azimuth acquisition of PP and PS reflection data was conducted
on the top (i.e., [x1, x2] plane) of the block. In this orientation
the axis of the VTI medium is pointing vertically, parallel to
the x3-axis.

intervening, molasses-based couplant. Seven 2D lines were
acquired along azimuths at 0◦, 15◦, 30◦, 45◦, 60◦, 75◦, and 90◦

measured counterclockwise from the x1-axis direction. For all
azimuths, minimum source–receiver offset was 4 cm, and ad-
jacent receiver positions were spaced 3 cm apart. Along each
azimuth separate reflection surveys were conducted consec-
utively with compressional receivers, in-line shear (polarized
along the direction of the line) receivers, and cross-line shear
receivers (polarized perpendicular to the line).

To enhance S/N amplitude ratio, we stacked 512 repeti-
tions of received waveform signals (both transmission and re-
flection) before stopping the digitization. To generate source
pulses, we used a portable pulser with a fixed excitation source
pulse of approximately 400 V and 3 µs width for all trans-
mission and reflection measurements. Stresses were applied
to the sandstone block in the x2-axis direction through the
aluminum side plates using a 1 000 000-lb servo-controlled
hydraulic press from the Colorado School of Mines (CSM)
Mining Department.

DATA PROCESSING

We processed the recorded waveforms by applying only a
time-variant gain to compensate for geometrical spreading
and a spiking deconvolution to improve temporal resolution.
Ambient vibrations in the experimental equipment were trans-
mitted to the rock and were picked up by the receiving trans-
ducers as unwanted noise. We removed the noise with a 60-
100-800-1000-kHz trapezoidal bandpass filter.

The P-wave reflected from the bottom face of the block and
the converted PSV-wave were the main phases in all in-line
gathers. Some lines also contained pure-shear reflections on
the cross-line components. For each event and each azimuth,
we estimated NMO velocity from semblance analysis. Since
NMO velocity describes traveltimes accurately for near offsets,
we used only the first five traces, or a maximum offset-to-depth
ratio of about one, in the semblance analysis.

The semblance measure used here is defined as (Taner and
Koehler, 1969)

S(v, t0) ≡
∑

t1
[
∑

x Dv(t1, x)]2

N
∑

t1

∑
x D2

v(t1, x)
, (1)

where Dv(t1, x) = D[tv(t1, x), x], with tv(t1, x) =
√

t2
1 + x2/v2;

t1 are zero-offset times within a window centered at to; x is
source–receiver offset; and N = 5 is the number of traces in
a shot gather. The value Dv represents the moveout-corrected
data with trial moveout velocity v, and D represents the data
without NMO correction. At each zero-offset time t0, we com-
puted the semblance measure for different values of v and
chose the value of v that maximized the semblance measure as
the desired NMO velocity, Vnmo.

For transmission velocity measurements in the unstressed
rock, we estimated the traveltime of P-waves by manually pick-
ing the first break, which was always sharp and clear. For the
traveltime of S-waves, however, we manually estimated the
onset of the main S-wave energy. At higher stress states, trav-
eltime lags were computed by crosscorrelating the waveforms
obtained in the stressed states with those obtained in the un-
stressed state. We then estimated traveltimes of the different
modes by adding this traveltime lag to the traveltimes picked
in the unstressed state.
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MEASUREMENTS OF TRANSMISSION VELOCITIES
OF PURE MODES

Table 1 shows transmission velocities in the stressed and
unstressed states recorded in the coordinate directions x1, x2,
and x3. The first subscript for S-waves refers to the direction
of propagation; the second subscript refers to the polarization
direction. The subscript for P-waves indicates the direction of
propagation. The listed errors in velocity correspond to an as-
sumed ±1-µs error in traveltime picking in the x1 and x2 di-
rections and ±0.5 µs in the x3 direction. This corresponds to
an error of less than ±0.02 km/s in velocity. We chose a con-
servative estimate of ±0.02 km/s for our error in all our trans-
mission velocity measurements. As has been observed in other
experiments (Lo et al., 1986), our unstressed Berea Sandstone
is also transversely isotropic with VS31 = VS13 = VS32 = VS23

and VP1 = VP2. This means that our [x1, x2]-plane is a plane
of isotropy, and the x3-axis is the axis of symmetry, i.e., the
medium is transversely isotropic with a vertical symmetry axis
(VTI).

When we increase the stress level in the x2-axis direction,
the P-wave velocity (VP2) in this direction also increases. How-
ever, the velocity of P-waves propagating perpendicular to the
stress field (VP1, VP3) remains almost unchanged. The veloci-
ties of S-waves (e.g., VS23, VS32) propagating in the direction of
the applied stress or having a displacement component in that
direction also increase with the stress level. In contrast, the ve-
locities of S-waves propagating perpendicular to the direction
of applied stress and polarized perpendicular to the applied
stress (VS13, VS31) remain unaltered by changes in the stress
level. We attribute the large changes in VP2, VS23, and VS32 to
the preferential opening and closing of cracks. Also note the
stress-induced asymmetry in the velocities (VSi j 6= VSji) for
shear waves either propagating in the direction of the applied
stress or having a displacement component in that direction,
while velocities of shear waves propagating perpendicular to
the direction of the applied stress and polarized perpendicular
to the applied stress are symmetric within the error bars.

MEASUREMENT AND ESTIMATION
OF ANISOTROPIC PARAMETERS

From the symmetry of the applied stresses and the unstressed
sample, we expect the stressed sample to exhibit symmetry
close to orthorhombic, with symmetry planes [x1, x2], [x2, x3],
and [x1, x3]. Following Grechka et al. (1999), we compare
two different methods for estimating the anisotropic param-
eters of an orthorhombic solid. Instead of the stiffness matrix
[equation (A-1) in the appendix], we use another parameteri-
zation introduced by Tsvankin (1997) for orthorhombic media.
His notation contains the vertical P-wave velocity and one of
the velocities of vertical S-wave propagation, along with the
seven dimensionless Thomsen-type (1986) anisotropic param-
eters described in the appendix. For an isotropic medium, all

Table 1. Transmission velocities along the x1-, x2-, and x3-axes measured at various stress levels applied in the x2-direction.

Stress VP1 VS13 VS12 VP2 VS23 VS21 VP3 VS32 VS31
(MPa) (km/s) (km/s) (km/s) (km/s) (km/s) (km/s) (km/s) (km/s) (km/s)

0 2.45 ± 0.02 1.63 ± 0.02 1.77 ± 0.02 2.45 ± 0.02 1.63 ± 0.02 1.76 ± 0.02 2.30 ± 0.02 1.64 ± 0.02 1.62 ± 0.02
3 2.36 ± 0.02 1.61 ± 0.02 1.82 ± 0.02 2.79 ± 0.02 1.75 ± 0.02 1.88 ± 0.02 2.30 ± 0.02 1.74 ± 0.02 1.61 ± 0.02
6 2.36 ± 0.02 1.65 ± 0.02 1.90 ± 0.02 3.04 ± 0.02 1.85 ± 0.02 1.98 ± 0.02 2.33 ± 0.02 1.82 ± 0.02 1.64 ± 0.02
9 2.37 ± 0.02 1.63 ± 0.02 1.96 ± 0.02 3.20 ± 0.02 1.91 ± 0.02 2.06 ± 0.02 2.34 ± 0.02 1.87 ± 0.02 1.64 ± 0.02

seven anisotropic parameters vanish. For a VTI medium, only
five of the nine parameters are independent. Tsvankin’s pa-
rameterization is especially advantageous for seismic moveout
inversion because it provides a simple, concise description of
NMO velocities of all pure modes. The two methods of Grechka
et al. (1999) use different combinations of transmission and
NMO velocities.

Method 1

Method 1 uses the vertical and horizontal velocities of P-
and S-waves along with the NMO velocities of P-waves. The
relevant equations are (Grechka et al., 1999)

ε(1) = 1
2

(
V2

P2

V2
P3

− 1

)
, ε(2) = 1

2

(
V2

P1

V2
P3

− 1

)
, (2)

γ (1) = 1
2

(
V2

S21

V2
S31

− 1

)
, γ (2) = 1

2

(
V2

S12

V2
S32

− 1

)
, (3)

δ(i ) = 1
2

([
V (i )

P,nmo

VP3

]2

− 1

)
, (i = 1, 2). (4)

Here and below, the superscript 1 corresponds to the [x2, x3]
plane and 2 corresponds to the [x1, x3] plane (the superscripts
denote the axis normal to each plane); V (1)

P,nmo and V (2)
P,nmo are

the P-wave NMO velocities in the vertical symmetry planes
[x2, x3] and [x1, x3], respectively.

Method 2

Method 2 uses the NMO and vertical velocities of the P- and
S-waves. The relevant equations are (Grechka et al., 1999)

δ(i ) = 1
2

([
V (i )

P,nmo

VP3

]2

− 1

)
, (i = 1, 2), (5)

σ (1) = 1
2

([
V (1)

SV,nmo

VS32

]2

− 1

)
,

σ (2) = 1
2

([
V (2)

SV,nmo

VS31

]2

− 1

)
, (6)

γ (1) = 1
2

([
V (1)

SH,nmo

VS31

]2

− 1

)
,

γ (2) = 1
2

([
V (2)

SH,nmo

VS32

]2

− 1

)
, (7)

ε(1) =
(

VS32

VP3

)2

σ (1) + δ(1), ε(2) =
(

VS31

VP3

)2

σ (2) + δ(2).

(8)
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Here, SV refers to shear waves propagating in the direction
contained in a symmetry plane and polarized in that plane;
SH refers to shear waves propagating in a symmetry plane but
polarized perpendicular to the symmetry plane.

Since pure S-phases were not easy to distinguish from
other events on our in-line gather, we computed the shear-
wave NMO velocity—required to compute parameters σ (i )

[equations (6)]—from the PP and PS converted-wave NMO
velocities using the Dix-type equation (Grechka et al., 1999;
Tsvankin, 2001):

t (PS)
0

[
V (i )

PS,nmo

]2 = t (P)
0

[
V (i )

P,nmo

]2

+ t (S)
0 [V (i )

S,nmo

]2
, (i = 1, 2), (9)

where t(PS)
0 ≡ t (P)

0 + t (S)
0 is the two-way zero-offset time of the

PS converted wave, which is the sum of the one-way zero-offset
time of P-waves (t (P)

0 ) and S-waves (t (S)
0 ).

For a homogeneous orthorhombic medium, NMO velocity
as a function of azimuth is fully determined by the NMO ve-
locities in the symmetry planes. The governing relationship is
the equation of the NMO ellipse (Grechka et al., 1999):

1
V2

Q,nmo(α)
= cos2 α[

V (1)
Q,nmo

]2 +
sin2 α[

V (1)
Q,nmo

]2 ,

(Q = P, SV, or SH), (10)

where the angle α represents the azimuthal direction
in the [x1, x2]-plane measured counterclockwise from the
x1-direction.

Assuming that [x1, x3] and [x2, x3] are the two vertical
planes of symmetry of the stressed sample, we computed

FIG. 3. Seimograms of the vertical displacement component recorded at azimuth 0◦ (in the x1-axis direction or perpendicular to
the applied stress) at different stress levels. The most prominent arrival is the P-wave reflection from the bottom of the block.
In Figures 3–7 velocity is measured in kilometers per second, and the curves represent the estimated moveout with the moveout
velocity shown alongside.

anisotropic parameters for different levels of stress. The NMO
velocities and corresponding moveout curves used to compute
the parameters are shown superimposed on the shot gathers
in Figures 3–7. Since the pure-shear event (Figure 7) is not
observed in the cross-line shot gathers along the x2-direction,
γ (1) is not computed using method 2 and the cross-line gathers
are not shown.

Anisotropic parameters of the effective orthorhombic medium
Table 2 shows the anisotropic parameters estimated using

methods 1 and 2 at various stress levels. For the unstressed
experiment, both methods produce similar estimates, while
the estimates of the parameters differ between the methods
at higher stress states. The tables suggest that anisotropic pa-
rameters defined in the [x2, x3] plane (the plane parallel to the
stress direction) are in general larger and more sensitive to the
applied stress than those defined in the [x1, x3] plane (the plane
perpendicular to the stress direction).

Figure 8 shows NMO velocities of P- and PSV-waves mea-
sured in the unstressed state as a function of azimuth. The NMO
ellipses were computed as a least-squares fit to the measured
values. The pure-shear wave (SV) NMO ellipse computed us-
ing equation (9) is also shown in Figure 8. All three ellipses
are close to being concentric circles, which confirms that the
model is VTI, that the x3-axis (the vertical direction) is the axis
of symmetry, and that [x1, x2] is the isotropy plane.

Figure 9 shows the P-wave NMO ellipses for different stress
states computed using a least-squares fit to the NMO velocities
and assuming that [x1, x3] and [x2, x3] are the vertical planes of
symmetry of the stressed sample. The difference between the
major and minor axes of the different ellipses increases with
stress level. We did not produce NMO ellipses for converted
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waves at higher stress states because we were unable to iden-
tify each split converted-wave mode at intermediate azimuths
(15◦–75◦) and therefore were unable to estimate their NMO
velocities accurately.

FIG. 4. Same as in Figure 3, but now for azimuth 90◦ (in the x2-axis direction or parallel to the applied stress).

FIG. 5. Seismograms of the in-line horizontal component recorded at azimuth 0◦ (in the x1-axis direction or perpendicular to the
applied stress) at different stress levels. The most prominent arrival is the converted-wave PSV reflection from the bottom of the
block.

NONLINEAR ELASTICITY THEORY
We compared preditions made from nonlinear elasticity the-

ory (Thurston and Brugger, 1964; Thurston, 1974; Bakulin
et al., 2000d) with the measured data. Configurations A, B,
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and C (Figure 10) refer to the unstressed state, deformed state,
and wave-propagation state, respectively, and are portrayed in
a Cartesian coordinate frame (x1, x2, x3).

State A is the stress-free state of the medium; the stiffness
tensor in this state is referred to as Aijpq. After application of
stress τij, the medium deforms to a new state B; Bijpq refers

FIG. 6. Same as in Figure 5, but now for azimuth 90◦ (in the x2-axis direction or parallel to the applied stress).

FIG. 7. Processed seismograms of the cross-line horizontal component recorded at azimuth 0◦ (in the x1-axis direction or perpen-
dicular to the applied stress). The most prominent arrival is the SH-SH reflection from the bottom of the block. Theory does not
predict such a reflection for a point vertical force. It is likely to be caused here by a distributed surface source and imperfect block
boundaries.

to the stiffness tensor that describes static deformations about
this deformed state. The stiffness tensors in states A and B
are related through the deformation gradient tensor [such as
∂bi /∂at in equation (11)] that describes the change from A to B.

When small-amplitude waves such as those encountered in
typical seismic experiments propagate through this stressed
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medium, the deformation is described as a linear change from
state B to a new state C. The elastic coefficients that describe
wave propagation in a stressed medium can be represented as
an effective stiffness tensor Cijpq. Since the deformation from
state A to state B may include finite strains, nonlinear elasticity
is required to describe this change. Therefore, in addition to
the fourth-order stiffness tensors (Aijpq and Bijpq) of linear
elasticity, sixth-order tensors (Aijpqrs and Bijpqrs) are required
to describe nonlinear deformation. Here,

Bi j pq = Atuvw
∂bi

∂at

∂bj

∂au

∂bp

∂av

∂bq

∂aw

ρB

ρA

and

Bi j pqrs = Atuvwrs
∂bi

∂at

∂bj

∂au

∂bp

∂av

∂bq

∂aw

ρB

ρA
,

where bi and ai are components of position vectors of a particle
in the stressed and unstressed states (Figure 10) and ρB and ρA

are the densities in the stressed and unstressed states.
The tensors Cijpq and Aijpq are related (Thurston, 1974) as

Ci j pq = δipτjq + (Atuvw + Atuvwrsεrs)
∂bi

∂at

∂bj

∂au

∂bp

∂av

∂bq

∂aw

ρB

ρA
,

(11)

where τjq is the preexisting stress field and εrs is the strain tensor
describing the transformation from A to B. Strains of the order
of 10−4 were observed in this experiment. This value is small
enough to suggest that the position vectors a and band densities
ρA and ρB are approximately equal. The deformation-gradient
tensor then reduces approximately to the Kronecker delta δip,
and equation (11) simplifies to

Cijpq = δipτjq + Aijpq + Aijpqrsεrs. (12)

The tensor Aijpq is symmetric and, in Voigt notation, can be rep-
resented as a second-order matrix Aij. In the most general case
Aij has 21 independent elements. A sixth-order tensor, Aijpqrs,
describes nonlinear elastic properties. It is also symmetric and,
in Voigt notation, can be represented as a third-order matrix
Aijk. In the most general case Aijk has 56 independent elements.
Of those elements, six are of the type Aiii, 30 are of the type
Aiij, and 20 are of the type Aijk (i ≤ j ≤ k).

When the sample is isotropic, Aij has two independent ele-
ments (the Lamé parameters), while Aijk has three indepen-
dent elements (A111, A112, and A123). When the sample has
hexagonal symmetry, five independent elements are required
to describe Aij and ten elements are required to describe Aijk.
Hearmon (1953) gives a complete list of the third-order coef-
ficients for all symmetry classes.

Table 2. Value for ε(1), ε(2), γ(1), γ(2), δ(1), and δ(2) obtained by methods 1 and 2 at different stress levels. It was impossible to
identify pure-shear events in cross-line gathers along the direction of the x2-axis, so we did not compute γ(1) using method 2.

Stress
(MPa) Method ε(1) ε(2) γ (1) γ (2) δ(1) δ(2)

0 1 0.07 ± 0.02 0.07 ± 0.02 0.09 ± 0.02 0.09 ± 0.02 0.04 ± 0.03 0.04 ± 0.03
0 2 0.05 ± 0.04 0.05 ± 0.04 — 0.08 ± 0.04 0.04 ± 0.03 0.04 ± 0.03
3 1 0.24 ± 0.02 0.03 ± 0.02 0.18 ± 0.02 0.05 ± 0.02 0.15 ± 0.03 0.11 ± 0.03
3 2 0.20 ± 0.04 0.07 ± 0.04 — 0.04 ± 0.04 0.15 ± 0.03 0.11 ± 0.03
6 1 0.35 ± 0.02 0.01 ± 0.02 0.23 ± 0.02 0.05 ± 0.02 0.19 ± 0.03 0.14 ± 0.03
6 2 0.35 ± 0.04 0.10 ± 0.04 — 0.04 ± 0.04 0.19 ± 0.03 0.14 ± 0.03
9 1 0.44 ± 0.02 0.01 ± 0.02 0.29 ± 0.02 0.05 ± 0.02 0.32 ± 0.03 0.16 ± 0.03
9 2 0.31 ± 0.04 0.09 ± 0.04 — 0.05 ± 0.04 0.32 ± 0.03 0.16 ± 0.03

For the sample of Berea Sandstone used in this experiment,
we found that Aijpq has hexagonal symmetry. Because Winkler
et al. (1998) and Prioul et al. (2001) have shown that isotropic
Aijpqrs is sufficient to explain the stress-induced behavior of
VTI rocks, and because we have no information to constrain
the tensor any further, we assumed isotropic symmetry for the
sixth-order tensor Aijpqrs. Using hexagonal symmetry for Aijpq
and isotropy for Aijpqrs, we can expand equation (12) as

C1111 = A11 + τ11 + A111ε11 + A112 (ε22 + ε33),

C2222 = A11 + τ22 + A111ε22 + A112 (ε11 + ε33),

C3333 = A33 + τ33 + A111ε33 + A112 (ε11 + ε22),

C1212 = A66 + τ22 + A111
(ε11 + ε22)

4

+ A112

(
ε33

2
− (ε11 + ε22)

4

)
− A123

ε33

2
,

C1313 = A44 + τ33 + A111
(ε11 + ε33)

4

+ A112

(
ε22

2
− (ε11 + ε33)

4

)
− A123

ε22

2
,

C2323 = A44 + τ33 + A111
(ε22 + ε33)

4

+ A112

(
ε11

2
− (ε22 + ε33)

4

)
− A123

ε11

2
, (13)

C2121 = A66 + τ11 + A111
(ε11 + ε22)

4

+ A112

(
ε33

2
− (ε11 + ε22)

4

)
− A123

ε33

2
,

C3131 = A44 + τ11 + A111
(ε11 + ε33)

4

+ A112

(
ε22

2
− (ε11 + ε33)

4

)
− A123

ε22

2
,

C3232 = A44 + τ22 + A111
(ε22 + ε33)

4

+ A112

(
ε11

2
− (ε22 + ε33)

4

)
− A123

ε11

2
,

and

C1122 = A12 + A112(ε11 + ε22)+ A123ε33,

C1133 = A13 + A112(ε11 + ε33)+ A123ε22, (14)

C2233 = A13 + A112(ε22 + ε33)+ A123ε11.
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Here, Voigt indices have been used for the symmetric tensors
Aijpq and Aijpqrs. The diagonal elements of the tensors Aij and
Cijpq are related by equations (13), while the off-diagonal ele-
ments of Aij and Cijpq are related by equations (14).

Note that the effective stiffness tensor does not exhibit all
of the symmetry properties commonly expected of a stiffness
tensor (i.e., Cijpq 6= Cjipq,Cijpq 6= Cijqp,Cijpq 6= Cjiqp, where
i = p and j = q). This is an important difference between
intrinsic and stress-induced anisotropy. The equations indi-
cate that when uniaxial stress is applied in the isotropy plane
[x1, x2] of a TI solid, the effective stiffness tensor has a symme-
try close to, but not identical to, orthorhombic. The medium
differs from orthorhombic because of the asymmetry of the

FIG. 8. Polar plots of observed moveout velocities (km/s) of P-
and converted PS-waves (diamonds) obtained by semblance
analysis for the unstressed state. The best-fit NMO ellipses
(solid lines) for P- and PS-modes along with the estimated
NMO ellipse for the pure S-mode are also shown. All three el-
lipses are close to concentric circles, which confirms that [x1, x2]
(the bedding plane orientation) is the isotropy plane of the un-
stressed VTI medium.

FIG. 9. Polar plots of P-wave moveout velocities (km/s) (diamonds) obtained by semblance analysis at different stress states. The
best-fit NMO ellipse (solid lines) for each stress state, assuming that [x1, x3] and [x2, x3] are symmetry planes of the stressed medium,
is also shown. Stress was applied in the x2-axis direction (90◦).

tensors just mentioned. Consequently, instead of nine indepen-
dent elements required to describe an orthorhombic medium,
the effective stiffness tensor has 12 independent elements
[equations (13) and (14)].

COMPARISON OF EXPERIMENTAL RESULTS
WITH THE THEORY

Before testing whether experimental results can be ex-
plained in terms of nonlinear elasticity, note that in a particular
stress state, the diagonal elements of the effective stiffness ten-
sor are related to the velocities ṼSij and ṼPi of wave modes
propagating along the coordinate axes by simple formulas:

Cijij = ρṼ
2
Sij, (i 6= j )

Ciiii = ρṼ
2
Pi. (15)

Likewise, diagonal elements of the unstressed stiffness tensor
are expressed as

Aijij = ρV2
Sij, (i 6= j )

Aiiii = ρV2
Pi, (16)

where VSij and VPi are transmission velocities of S- and P-waves
propagating along the coordinate axes measured in the ab-
sence of stress. The subscript i refers to the propagation direc-
tion, while the subscript j refers to the polarization direction.
Thurston (1974) showed that stresses and strains are strictly
related via the nonlinear Hooke’s law:

εij = A−1
ijpqτpq − A−1

ijkl A
−1
lmno A−1

pqrs Aklnorsτlmτpq. (17)

Numerical estimates show that, for the stresses applied, the
second (nonlinear) term on the right-hand side is small enough
to be ignored. Therefore, to compute strains, we used only the
linear part (the first term) of Hooke’s law. In computations, we
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assumed that the density ρ was equal to 2.14 g/cm3 for all stress
states.

The VTI stiffness tensor (GPa) of Berea Sandstone in the
unstressed state was found to be

A =



12.80± 0.20 −0.44± 0.30 0.40± 0.25 0 0 0

−0.44± 0.30 12.80± 0.20 0.40± 0.25 0 0 0

0.40± 0.25 0.40± 0.25 11.30± 0.20 0 0 0

0 0 0 5.68± 0.20 0 0

0 0 0 0 5.68± 0.20 0

0 0 0 0 0 6.62± 0.20


.

We computed the diagonal elements using equations (16) and
estimated the off-diagonal element A13 = A23 from the param-
eter δ using an equation similar to equation (A-5) or (A-8).
We derived Thomsen’s parameter δ from P-wave NMO and
vertical velocities [equation (4)] and obtained the other off-
diagonal element, A12, from A12 = A11 − 2A66. The error
bars were computed by propagating the error in transmission
velocities (±0.02 km/s) and NMO velocities (±0.05 km/s) in
equations (15) and (16).

Evaluation of third-order coefficients

Knowing the diagonal elements of the stiffness tensors and
the strains, we computed the third-order coefficients using a
linear least-squares inversion of equation (13). We repeated the
procedure for each uniaxial stress state (τ22 = −3 MPa; τ22 =
−6 MPa; τ22 = −9 MPa) to estimate three sets of third-order
tensors: A(0−3)

ijk , A(0−6)
ijk , A(0−9)

ijk . The numeric superscript indicates

FIG. 10. Schematic diagram depicting the position of an arbi-
trary particle in the unstressed state A, the stressed state B, and
the wave-propagation state C. Letters a, b and c are position
vectors of a particle for states. A, B, and C, respectively, u de-
notes the displacement vector resulting from a small amplitude
disturbance.

the two stress levels involved in the least-squares procedure.
We found that A(0−3)

111 = −15 357, A(0−3)
112 = 1344, A(0−3)

123 = 313;
A(0−6)

111 = −14 231, A(0−6)
112 = 398, A(0−6)

123 = 906; and A(0−9)
111 =

−12 126, A(0−9)
112 = −143, A(0−9)

123 = 225, all in GPa units.

The mean (µk) of the three estimates for each Aijk is shown in
Table 3 along with its standard deviation (δk), which is some-
what indicative of the error in the estimate. Also shown in
Table 3 are other previously published measurements of the
third-order tensor for Berea Sandstone. The standard devia-
tion is defined here as√∑n

i=1(dik − µk)2

n− 1
,

where n= 3, and the quantity dik refers to an independent ele-
ment of the third-order stiffness tensor computed using a par-
ticular stress level. The index i = 1, 2, 3 denotes the stress state,
and the index k = 1, 2, 3 denotes an element of the third-order
stiffness tensor.

Predicting transmission velocities

Using each estimate of the third-order tensor—A(0−3)
ijk , A(0−6)

ijk ,

and A(0−9)
ijk —we predicted the diagonal elements of the effective

stiffness tensor at all stress levels and then computed velocities
from the predicted diagonal elements as ṼSij =

√
Ci ji j /ρ (S-

waves, where i 6= j ) and ṼPi =
√

Ciii i /ρ (P-waves). Therefore,
at each stress level we made three predictions for each wave
mode. Note that two of the three predictions (made for each
wave mode at each stress level) were computed using third-
order tensors estimated from velocities observed at stress levels
other than the one being studied. The mean of the predicted
values is plotted in Figure 11 as a function of the applied stress.
The standard deviation of each predicted quantity is equal to
half the length of the error bar. The error bars of±0.02 km/s for
the measured velocities are smaller than the size of the symbols
used and are not plotted.

Figure 11a compares the measured and predicted P-wave
velocities. In accordance with the VTI symmetry, VP1 and VP2

are equal in the unstressed state. With increasing stress level,
VP2 increases with stress, while VP1 and VP3 remain virtually
unchanged. This behavior is well predicted by nonlinear elas-
ticity theory; however, the theory predicts VP3 to be slightly
more sensitive than VP1 to the stress level, while the data show
just the opposite.

Figure 11b shows S-wave velocities VS23 and VS13, and
Figure 11c shows S-wave velocities VS32 and VS31. In accordance
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with VTI symmetry, VS23, VS13, VS32, and VS31 are equal in the
unstressed state. As the stress level increases, note that the ve-
locities of S-waves propagating in the direction of the applied
stress or polarized in the direction of the applied stress increase,
while the velocities of S-waves propagating in a direction per-
pendicular to the applied stress and polarized perpendicular
to the applied stress are virtually unchanged. This behavior is
well predicted by the theory.

Figure 11d shows S-wave velocities VS12 and VS21. For
an orthorhombic solid, VS12 should be equal to VS21; how-
ever, for stress-induced anisotropy they may be different
[equations (13)]. The nonlinear theory predicts negligible
asymmetry (C1212 − C2121= τ22 − τ11≈ a few MPa), but the
observed asymmetry is significantly larger. This large asym-
metry is not unique to Berea Sandstone or to our exper-
imental setup. It was also observed in shales by Hornby
(1998) and in Colton Sandstone by Dillen et al. (1999). We
do not have an explanation for this phenomenon, but we
believe this is an important observation that deserves fur-
ther study. In spite of this discrepancy, the theory correctly
predicts our observations that C1212 6=C2121 and C2323 6=C3232,
while C1313=C3131.

Note on the use of the Tsvankin (orthorhombic) parameters

The theory predicts that a uniaxial stress applied in the
isotropy plane of a TI rock results in an effective stiffness
tensor with symmetry close to, but not truly, orthorhombic
[equations (13)-(14)]. The stiffness tensor of an intrinsically
orthorhombic medium differs from the effective stiffness ten-
sor of a stress-induced orthorhombic medium by virtue of
the asymmetry in the latter. Theoretical predictions suggest
that the asymmetry should be negligible and can be ignored
(see Figure 11 for predicted velocities), but our observed
data show considerable asymmetry. Therefore, the anisotropic
parameters defined for a symmetric orthorhombic tensor
[equations (A-2)–(A-10), Tsvankin (1997)] are not strictly ap-
plicable to our data.

In principle, however, Tsvankin’s parameters can be gener-
alized for asymmetric tensors of a stress-induced medium. Al-
though such a parameterization requires three additional pa-
rameters to account for the asymmetry of the shear modes, the
parameterization is attractive because it provides a simple de-
scription of conventional seismic signatures (e.g., NMO veloc-
ities). In this study, we do not attempt to generalize Tsvankin’s
parameters for asymmetric tensors but have opted instead
for a simple adaptation of those parameters as shown in the
appendix [equations (A-11)–(A-12)].

Table 3. Estimated third-order coefficients Aijk and unstressed elastic properties [VP , VS (measured perpendicular to
bedding), ρ] for Berea Sandstone.

ρ VP VS A111 A112 A123
Source (kg/m3) (m/s) (m/s) (GPa) (GPa) (GPa) VS/VP

Winkler et al., 1998 2062 1900 1350 −12 884 −2546 1269 0.71
Winkler et al., 1998 2062 2127 1418 −9550 −1370 1062 0.67
Winkler and Liu, 1996 2120 2183 1457 −17 038 −3272 −3160 0.67
Winkler and Liu, 1996 2080 2037 1334 −29 106 −6940 −2090 0.65
Sinha and Kostek, 1996 2062 2320 1500 −21 217 −8044 2361 0.65
Present study (mean value) 2140 2300 1640 −13 904 ± 1944 533 ± 699 481 ± 370 0.71

Theoretical anisotropic parameters in the weak
anisotropy limit

Before comparing experimental and predicted anisotropic
parameters derived from the velocities, it is important to
establish the analytic relationships between Tsvankin’s param-
eters that control seismic signatures and the stress magnitudes.
The exact expressions for Tsvankin’s parameters in terms of
stresses, however, are too complicated. From such relation-
ships, it is also difficult to gain any insight into the influence of
stress magnitude on the effective anisotropic model. There-
fore, we apply a weak anisotropy approximation (Bakulin
et al., 2000a,b) and assume that both intrinsic anisotropy and
stress-induced changes act as small perturbations imposed on
some isotropic unstressed reference background.

Each element of the stiffness tensor in equations (13)-(14)
can be represented as

Cijpq= Aij(1+1ijpq), (18)

where 1ijpq is a dimensionless perturbation introduced by the
stress and the Einstein summation is not implied. The weak

FIG. 11. Measured and predicted P- and S-wave velocities
along the axes directions as functions of the applied stress. The
stress was applied in the direction of the x2-axis. (a) P-waves
propagating along the three coordinate axes, (b) S-waves po-
larized along the x3-axis, (c) S-waves propagating along the
x3-axis, (d) S-waves in the [x1-x2]-plane.
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anisotropy assumption means that all1ijpq, along with the un-
stressed background parameters εb, δb, and γb are small quan-
tities of the same order. Expressing equation (18) in terms of
the linearized anisotropic parameters yields

ε(1)= εb+ K p

2A55
(τ22− τ33), ε(2)= εb+ K p

2A55
(τ11− τ33),

(19)

δ(2)= δb+ K p

2A55
(τ22− τ33), δ(1)= δb+ K p

2A55
(τ11− τ33),

(20)

γ (1)= γb+ Ks

2A55
(τ22− τ33), γ (2)= γb+ Ks

2A55
(τ11− τ33),

(21)

δ(3)= K p

2A55
(τ22− τ11), (22)

where

K p= 2A155

A33
, Ks= A456

A55
, (23)

and where A155= (A111− A112)/4, A456= (A111−3A112+2A123)/
8 are two combinations of the three third-order elastic con-
stants that control the stress-induced part of the P- and S-wave
anisotropy, respectively. Note that small terms in equations (13)
represented by τii (responsible for asymmetry of the stiffness
tensor) are ignored in this approximation.

Each anisotropic parameter consists of two distinct parts:
one resulting from the background intrinsic anisotropy of
the unstressed rock and the other from the stress. This is a
consequence of the weak anisotropy addition rule noted by
Bakulin et al. (2000b) while analyzing a combination of in-
trinsic and fracture-induced anisotropy. Intrinsic anisotropy is
represented by the Thomsen parameters εb, δb, and γb of the
unstressed rock. The parameter δ(3) does not contain back-
ground anisotropic parameters because [x1, x2] is the isotropy
plane of the unstressed VTI medium. The stress-induced part
of the anisotropy (from here on denoted by subscript s− i )
is expressed by equations (19)–(22), with εb= δb= γb= 0. It
is characterized by elliptical anisotropy in all three symmetry
planes, which in Tsvankin’s notation is expressed as

ε
(1)
s−i = δ(1)

s−i , ε
(2)
s−i = δ(2)

s−i , δ
(3)
s−i = ε(1)

s−i , − ε(2)
s−i . (24)

This agrees with Rasolofosaon (1998), who noted that isotropic
materials subjected to an arbitrary triaxial stress field become,
effectively, an orthorhombic medium with elliptical anisotropy
in each symmetry plane. Certain specific models for granular
and cracked media also predict elliptical VTI anisotropy under
uniaxial stress (Schwartz et al., 1994).

For uniaxial stress τ11= τ33= 0, τ22 6= 0, equations (19)–(21)
may be further simplified to

ε(1) = εb + K p

2A55
τ22, ε(2) = εb, (25)

δ(1) = δb + K p

2A55
τ22, δ(2) = δb, (26)

γ (1) = γb + Ks

2A55
τ22, γ (2) = γb. (27)

Therefore, we expect that anisotropic parameters in the sym-
metry plane [x1, x3] normal to the applied stress should stay

close to the Thomsen parameters of the unstressed rock.
In the vertical plane containing the applied stress direction,
[x2, x3], we expect each anisotropic parameter to increase lin-
early with the stress magnitude. The stress-induced part of the
anisotropic parameters should be positive because the values
of KP = −637, KS = −319, and uniaxial stress τ22 are negative
in accordance with our convention on compressive stresses.

Numerical comparison of anisotropic parameters

Although the weak anisotropy approximations provide use-
ful insight into the interdependence between anisotropy and
stress, we use the exact equations and Aijk found from the data
to predict the anisotropic parameters ε(i ), δ(i ), and γ (i ) under
stress and then compare them with the experimental values
obtained by method 1 (Table 2).

The predicted effective stiffness tensor for our sample of
Berea Sandstone was computed using equations (13)–(14).
Since the difference between the predicted values of Cijij and
Cjiji was negligible, we ignored the asymmetry and computed
the anisotropic parameters from equations (A-4)–(A-10).

Figure 12 shows the variation of the ε, γ , and δ param-
eters with stress. In accordance with the weak anisotropy

FIG. 12. Measured and predicted (a) ε(1) and ε(2) versus stress,
(b) γ (1) and γ (2) versus stress, and (c) δ(1) and δ(2) versus stress
applied in the x2-direction.
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approximation [equations (25)–(27)], both the predicted and
measured anisotropic parameters ε(2), δ(2), and γ (2), defined in
the vertical plane normal to the applied stress [x1, x3], are al-
most insensitive to stress. In contrast, the anisotropic param-
eters ε(1), δ(1), and γ (1), defined in the vertical plane [x2, x3]
containing the stress direction all increase in a nearly linear
fashion. As is predicted by equations (25)–(27), the deviation
from the linear dependence is evident only at the higher levels
of stress, where anisotropy is strong.

In general, except for the parameter δ(1) (Figure 12c), we
observe satisfactory agreement between all measured and pre-
dicted anisotropic parameters. Several possible reasons that
may contribute to the poor match in δ(1) are outlined in the dis-
cussion section. We also note that the predicted values of δ(1)

are extremely large. Tsvankin (2001) determined that the pa-
rameter δ for VTI media is bounded by−0.5 ≤ δ ≤ 2; however,
he assumed that the minimum value of VP0/VS0 =

√
2 ≈ 1.41.

In our experiment the corresponding ratio, VP3/VS32 in the
[x2, x3]-plane, is as small as 1.25 for a stress of 9 MPa (see
Table 1), which increases the upper bound of δ(1) to 3.55.

DISCUSSION

Differences between the predicted and observed velocities
and anisotropic parameters may arise as a result of hysteresis,
substantial magnitude of deformation, an anisotropic third-
order stiffness tensor, and heterogeneous distribution of stress
in the sample. We believe our measurements of distances
between sources and receivers are accurate, and any error
caused by the deformation in the sample is negligible and can
be ignored.

Hysteresis.—Table 4 shows the transmission velocities mea-
sured along the coordinate axes at zero uniaxial stress before
the application of each new stress state. Note that the rock does
not return to its original state after being subjected to uniaxial
stress. We speculate that the observed hysteresis is the result
of a change in crack distribution caused by the presence of the
initial stress field.

Hooke’s law and deformation gradients.—No strain gauges
were placed in or on the rock; therefore, we are unable to
use actual measurements of strains and deformation gradients.
Our analysis presented was possible only because the estimated
strains are small (≈10−4). When strains are large, the nonlin-
ear (second) term is required in Hooke’s law [equation (17)],
and the deformation gradient tensor can no longer be approxi-
mated with the Kronecker delta function. Future experiments
should use strain gauges so rock deformation can be monitored
accurately.

Sixth-order tensors.—Use of an isotropic sixth-order ten-
sor was an important assumption in this study. In the absence

Table 4. Velocities in the unstressed state measured at different stages of the experiment. Velocities VS32 and VS31 were not
measured at the unstressed state after 6 MPa.

VP1 VP2 VP3 VS23 VS13 VS12 VS32 VS31 VS21
(km/s) (km/s) (km/s) (km/s) (km/s) (km/s) (km/s) (km/s) (km/s)

Initial 2.45 ± 0.02 2.45 ± 0.02 2.30 ± 0.02 1.63 ± 0.02 1.63 ± 0.02 176 ± 0.02 1.62 ± 0.02 1.62 ± 0.02 1.76 ± 0.02
After 3 MPa 2.41 ± 0.02 2.45 ± 0.02 2.31 ± 0.02 1.63 ± 0.02 1.63 ± 0.02 1.77 ± 0.02 1.60 ± 0.02 1.59 ± 0.02 1.75 ± 0.02
After 6 MPa 2.32 ± 0.02 2.39 ± 0.02 2.20 ± 0.02 1.61 ± 0.02 1.58 ± 0.02 1.71 ± 0.02 1.71 ± 0.02

of any knowledge about the symmetry of the sixth-order ten-
sor, isotropy offered the simplest possible parameterization.
Also, an isotropic sixth-order tensor is often sufficient to ex-
plain the stress-induced effective stiffness tensor of unstressed
VTI rocks (Prioul et al., 2001). The VTI sixth-order tensor
requires ten independent elements and, in general, is difficult
to estimate in practice. Future work may attempt to invert for
a larger number (between three and ten) of VTI sixth-order
constants and try to improve the match between predicted and
measured elastic properties of anisotropic rocks under stress.
Although using the correct symmetry of the sixth-order stiff-
ness tensor can improve the accuracy of the predictions, it does
not influence the asymmetry of the effective stress-induced
stiffness tensor. Theory predicts that the asymmetry is deter-
mined solely by the applied stress tensor [equation (11)].

Homogeneous stress distribution.—In studies related to
stress-induced anisotropy, it is common to assume that the
stress distribution in the sample is uniform, but rarely is this
assumption ever put to the test. In our study, we too make
such an assumption but do not attempt to monitor the stress
distribution at different stress states. Therefore, the possibility
of having a nonuniform stress distribution in our experiments
exists. One way to detect stress concentration in the sample
is to record transmission velocities along the x3-axis at differ-
ent points in the [x1, x2] plane at each stress state. If indeed
the stresses are constant over the sample, velocities along the
x3-axis will not vary with position in the [x1, x2] plane. How-
ever, if stress concentrations are present, velocities along the
x3-axis will be position dependent. We advise following some
such procedure in future experiments.

CONCLUSIONS

Despite many existing and potential challenges, our study
offers an approach for estimating the orientation and magni-
tudes of subsurface principal stresses using seismic data. First,
3D seismic measurements could be used to establish directions
of the principal stresses, which correspond to the principal axes
of the effective orthorhombic medium. Then, using methods
described in this paper, the Tsvankin parameters ε(1,2), δ(1,2),
and γ (1,2) could be estimated. In practice, these parameters
could also be estimated from amplitude variation with offset
and azimuth (Rüger, 1998) and multiazimuth vertical seismic
profiling (Bakulin et al., 2000c). Using third-order constants es-
timated from laboratory measurements (Bakulin et al., 2000d;
Winkler and Liu, 1996) or borehole acoustic measurements
(Sinha, 2001; Sinha and Winkler; 1999), one might relate the
estimated Tsvankin’s parameters to the stress levels.

To gain a better understanding of the influence of stress on
the effective medium, we simplified the anisotropic parameters
under the assumption of weak background and stress-induced
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anisotropy. We found that each anisotropic parameter is the
sum of the corresponding Thomsen parameter of the VTI un-
stressed medium and a stress-related contribution. The part
attributable to stress is proportional to the difference between
the principal stresses acting in a symmetry plane corresponding
to the anisotropic parameter under examination. Therefore, if
two principal stresses in a symmetry plane are equal, the stress-
related term vanishes. For hydrostatic stress (τ11 = τ22 = τ33)
the anisotropic parameters of the stressed and unstressed me-
dia should be equal. We also confirmed Rasolofosaon’s result
that the stress-induced part of the anisotropic parameters has
an elliptical form in all symmetry planes. Therefore, ε(1)

s−i = δ(1)
s−i ,

ε
(2)
s−i = δ

(2)
s−i and δ

(3)
s−i = ε

(1)
s−i − ε(2)

s−i , where s − i denotes the
stress-induced part in equations (19)–(22). These constraints
differ from the ones existing for fracture-induced anisotropy
(Bakulin et al., 2000a,b) and can be used in practice to distin-
guish between fracture-induced and stress-induced anisotropy.

Nonlinear elasticity may have application in a wide range of
problems related to estimating 3D stress and pore pressure in
anisotropic formations. Perhaps our results will motivate more
field and laboratory experiments related to anisotropic rocks
under complex subsurface stress conditions.
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APPENDIX

ANISOTROPIC PARAMETERS FOR ORTHORHOMBIC MEDIA

Elastic properties of orthorhombic solids are conventionally
represented in condensed (Voigt) notation by the stiffness ma-
trix with nine independent elements:

C =



C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66


. (A-1)

In describing seismic signatures (e.g., NMO velocities and
amplitude versus offset gradients), the elements of this stiff-
ness tensor have proved to be inconvenient. A more efficient
parameterization to describe seismic signatures, given by
Tsvankin (1997), is defined below.

The P-wave vertical velocity; VP0, is

VP0 ≡
√

C33

ρ
. (A-2)

The vertical velocity of the S-wave polarized in the x1-
direction, VS0, is

VS0 ≡
√

C55

ρ
. (A-3)

The VTI parameters ε, δ, and γ in the [x1, x3] symmetry
plane normal to the x2-axis (this explains the superscript 2)
or ε(2), δ(2), and γ (2), are

ε(2) ≡ C11 − C33

2C33
, (A-4)

δ(2) ≡ (C13 + C55)2 − (C33 − C55)2

2C33(C33 − C55)
, (A-5)

γ (2) ≡ C66 − C44

2C44
. (A-6)

The VTI parameters ε, δ, and γ in the [x2, x3] symmetry
plane, ε(1), δ(1), and γ (1), are

ε(1) ≡ C22 − C33

2C33
, (A-7)

δ(1) ≡ (C23 + C44)2 − (C33 − C44)2

2C33(C33 − C44)
, (A-8)

γ (1) ≡ C66 − C55

2C55
. (A-9)

The VTI parameter δ in the [x1, x2] plane (x1 plays the role
of the symmetry axis), or δ(3), is

δ(3) ≡ (C12 + C66)2 − (C11 − C66)2

2C11(C11 − C66)
. (A-10)

These nine parameters fully describe wave propagation in
general orthorhombic media with a known orientation of the
symmetry planes. For VTI media, ε(1) = ε(2), δ(1) = δ(2), γ (1) =
γ (2), and δ(3) = 0. Therefore, only five parameters are required
to describe the VTI medium.

For stressed media, shear velocities VSij (for propagation
along the xi -axis and polarization along the xj -axis) and VSji
(for propagation along the xj -axis and polarization along the
xj -axis) are unequal, resulting in an asymmetric stiffness tensor
(Cijpq 6= Cjipq, Cijpq 6= Cijqp,Cijpq 6= Cjiqp). For an asymmetric
stiffness tensor, we adopted the following approximations to
Tsvankin parameters. For anisotropic parameters in the [x1, x3]
plane,

ε(2) ≡ C1111 − C3333

2C3333
,

δ(2) ≡ (C1133 + C3131)2 − (C3333 − C3131)2

2C3333(C3333 − C3131)
, (A-11)

γ (2) ≡ C1212 − C3232

2C3232
.

For anisotropic parameters in the [x2, x3] plane,

ε(1) ≡ C2222 − C3333

2C3333
,

δ(1) ≡ (C2233 + C3232)2 − (C3333 − C3232)2

2C3333(C3333 − C3232)
, (A-12)

γ (1) ≡ C2121 − C3131

2C3131
.

Since the asymmetry of the predicted stiffness tensor is neg-
ligible, replacing Cijij with Cjiji will not change the results sig-
nificantly. Our choice to use Cijij rather than Cjiji in equations
(A-11) and (A-12) was arbitrary.
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Errata
To: “Anisotropic inversion of seismic data for stressed media: Theory and a physical modeling study on Berea Sandstone”
(D. Sarkar, A. Bakulin, and R. L. Kranz, Geophysics, 68, 690–704).

In equation (20) δ(2) should be replaced by δ(1), and δ(1) should be replaced by δ(2). The correct equation follows.

δ(1) = δb + K p

2A55
(τ22 − τ33), δ(2) = δb + K p

2A55
(τ11 − τ33). (20)
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