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Short Note

Effective anisotropy of layered media

Andrey Bakulin∗ and Vladimir Grechka∗

INTRODUCTION

In-situ seismic anisotropy can be estimated using a vari-
ety of techniques. Since they require data that are typically
collected over some finite intervals of inevitably heteroge-
neous earth, one usually needs to separate the influence of
anisotropy on the measurements from that of heterogeneity.
It is not an easy task because, depending on the frequency of
propagating waves, heterogeneity and anisotropy might mimic
each other. The well-known example of this is a finely layered
isotropic solid that effectively behaves as a vertically trans-
versely isotropic (VTI) rock when probed by sufficiently long
seismic waves (Backus, 1962). Similar transitions from hetero-
geneity to anisotropy and back occur over the whole range
of seismic frequencies. For instance, Grechka and Tsvankin
(2002) recently showed that a layered isotropic structure also
looks like a VTI one at high frequencies, when the ray trac-
ing and Dix-type averaging of the normal moveout (NMO)
velocities can be applied.

In our view, part of the difficulty in discriminating the in-
fluences of intrinsic anisotropy and heterogeneity on seismic
data stems from the inherent complexity of wave propagation
in heterogeneous anisotropic media. Even restricting the mod-
els to 1D horizontally layered media does not fully eliminate
the problem. Indeed, the effective stiffnesses ce in the low-
frequency regime are computed by performing Schoenberg-
Muir calculus (Schoenberg and Muir, 1989) that operates with
elements of the interval stiffness tensors c arranged in 3× 3
matrices. At high frequencies, when the effective NMO veloc-
ities are relevant for describing seismic data, the anisotropic
counterpart of the conventional Dix (1955) formula averages
the NMO ellipses represented by 2× 2 matrices W (Grechka
et al., 1999). Given such a complexity (which increases at inter-
mediate frequencies due to scattering) and the usual inaccu-
racies in the estimated anisotropy that preclude a geophysicist
from choosing the best possible model, it is not surprising that
physical intuition regarding the interplay between anisotropy
and heterogeneity has not yet been developed.
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The goal of our short note is to show that this interde-
pendence is often not strong and, therefore, can be ignored.
Specifically, we will demonstrate that all averaging techniques
are equivalent up to the quadratic terms in fluctuations m̃ of
layer velocities, densities, and anisotropies from their mean
(i.e., volume average) values m̄. As a consequence, the errors
made by replacing the properly computed effective anisotropic
coefficients ∆e with their means ∆̄ are expected to be small
under the assumptions of weak anisotropy and small velocity
and density contrasts at layer interfaces. Bakulin (2003) drew
this conclusion for two-component finely layered VTI media.
Here, we show that it remains valid for much broader range
of anisotropic models and seismic frequencies. The general-
ity of our results suggests that many available measurements
of in-situ anisotropy are probably relatively weakly contami-
nated by unaccounted heterogeneity (unless it is uncommonly
strong) and, therefore, tend to indicate the presence of intrin-
sic anisotropy which may be related to the properties of rock
fabrics, fractures, or in-situ stresses. On the other hand, a pure
heterogeneity-induced anisotropy, such as that produced by
Backus averaging of isotropic finely layered media, is usually
weak because it is quadratic in terms of relative changes in the
velocities and density.

We begin with examining the general procedure used to
compute parameters me of effective media and, then, prove
our main statement that the differences in effective and av-
erage quantities occur in the second- and higher-order terms
in fluctuations m̃. Next, we verify our theoretical conclusions
numerically using a typical well log with intentionally added
moderate anisotropy. Throughout the paper, we denote the
interval (local) quantities and their corresponding volume av-
erages, fluctuations, and effective quantities as m, m̄, m̃, and
me, respectively.

LOCAL AND EFFECTIVE QUANTITIES

In this section, we discuss the general relationship between
a pair of interval and effective quantities, m and me. Quite
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remarkably, all known averaging procedures applied to either
tensors, or matrices, or scalars m and me can be represented in
the form

F[me] = 1
V

∫
V

F[m(x)]dx, (1)

where F is the operation that averages the quantity m(x) over
the representative volume V (which can be also an area or a
linear segment), and x≡ [x1, x2, x3] denotes Cartesian coordi-
nates.

Although the functions F are different for different av-
eraging procedures (see the examples below), they share
two important properties: differentiability and invertibil-
ity. The first property means the existence of derivatives
DF/Dm≡ ∂Fi /∂mj , where Fi and mj denote the elements of
tensors F and m. The invertibility states that there is such a
function F† which undoes F, i.e.,

F†[F[m]] = m and F†[F[me]] = me. (2)

The latter allows us to rewrite equation (1) as

me = F†
[

1
V

∫
V

F[m(x)]dx
]
. (3)

Examples of functions F

Since any averaging procedure can be cast in the form of
equations (1) or (3), the examples of functions F are abundant.
Perhaps, the simplest one is the Backus (1962) average of Lamè
constants µ in a stack of plane thin isotropic layers that yields
the stiffness coefficient ce

66 of the effective VTI medium:

ce
66 =

1
V

∫
V
µ(x)dx. (4)

Clearly, equation (4) is a special case of equation (1) when
both F and F† are the scalar identity functions whose values
are equal to those of their arguments, F[m]= F †[m]=m.

Another well known example is the Backus average of µ
that produces the effective stiffness ce

44:

ce
44 =

[
1
V

∫
V

[µ(x)]−1dx
]−1

. (5)

This time, equation (5) follows from equation (3) if we let func-
tions F and F† be the inverse of their scalar arguments, i.e.,
F[m]= F †[m]=m−1.

A more complicated Schoenberg-Muir calculus, which ex-
tends Backus averaging to anisotropic media, can be also writ-
ten in the form (3). Instead of showing this directly, we refer the
reader to Appendix A, where we prove a much more general
statement valid in 3D heterogeneous anisotropic media.

Other averaging procedures, for instance, the Dix (1955) for-
mula for the NMO velocities v,

ve =
[

1
T

∫ T

0
v2(t)dt

]1/2

, (6)

where T is the vertical time, and the generalized Dix formula of
Grechka et al. (1999) for the NMO ellipses (2× 2 matrices) W,

We =
[

1
T

∫ T

0
W−1(t)dt

]−1

, (7)

can be also reduced to equations (1) or (3) that perform spatial
rather than temporal integration. The way to show this is to
change the differential dt in equations (6) and (7) to qdx3,
where q is the vertical slowness and x3 is the depth. We skip
these proofs because they exactly repeat the one described in
Appendix A.

PROOF OF RELATIONSHIP mee = m̄ + O(m̃22)

Having presented a number of examples showing the validity
of equations (1) and (3), we are ready to formulate our main
statement. First, however, we need to define the mean m̄ and
fluctuation m̃(x) of m(x):

m̄ = 1
V

∫
V

m(x)dx (8)

and

m̃(x) = m(x)− m̄. (9)

Note that the mean m̄ is calculated over the same representa-
tive volume V . As follows from equations (8) and (9),∫

V
m̃(x)dx = 0. (10)

The equality we intend to prove reads

me = m̄+ O(m̃2). (11)

Let us note the remarkable fact that me given by equation (11)
does not contain any linear terms in fluctuation m̃. To show
this, we expand F(m) in a Taylor series in the vicinity of m̄,

F[m] = F[m̄]+ DF
Dm

∣∣∣∣
m=m̄

m̃+ O(m̃2), (12)

and substitute this expansion into equation (3). We obtain

me = F†
[

1
V

∫
V

{
F[m̄]+ DF

Dm

∣∣∣∣
m=m̄

m̃(x)+O(m̃2(x))
}

dx
]

= F†
[

F[m̄]+ 1
V

DF
Dm

∣∣∣∣
m=m̄

∫
V

m̃(x)dx+ O(m̃2)
]

because
1
V

∫
V

O(m̃2(x))dx = O(m̃2(x))

= F†[F[m̄]+ O(m̃2)] (13)

because
∫

V

m̃(x)dx = 0 due to equation (10).

Expanding function F† further in a Taylor series and making
use of equation (2) yields

me = F† [F[m̄]]+ DF†

D{F[m̄]+O(m̃2)}
∣∣∣∣
m̃=0

O(m̃2)+O(m̃4)

= m̄+ O(m̃2) (14)

and, thus, proves equality (11).
It is critical to realize that since no formal relationship be-

tween the norms ‖m̄‖ and ‖m̃‖ was used to establish equa-
tion (11), its value is not obvious because, in principle, relative
magnitudes of the terms m̄ and O(m̃2) can be arbitrary. On
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the other hand, the usefulness of equation (11) becomes clear
when

‖m̄‖ À ‖m̃‖. (15)

Then, not only does equation (11) show that any effective quan-
tity me is approximately equal to the mean value m̄ of the cor-
responding interval quantity m, but it also states that the error
one makes by replacing me with m̄ is expected to be small be-
cause it is quadratic with respect to the fluctuation m̃. As a
result, the approximation

me ≈ m̄ (16)

might be acceptable in many practical applications.

NUMERICAL EXAMPLE

Here, we demonstrate that approximation (16) works sur-
prisingly well for typical layered media characterized by mod-
erate polar and azimuthal anisotropy. We compare the perfor-
mance of our approximation in predicting both the effective
anisotropic coefficients ce computed by Schoenberg-Muir cal-
culus and the effective NMO ellipses We obtained using the
generalized Dix formula (Grechka et al., 1999).

Figure 1 displays portions of typical Gulf of Mexico sonic,
shear, and density logs measured over a 500-m interval with
the increment 0.5 ft= 0.1524 m. Note that vertical velocity het-
erogeneity is not that weak. Its values, expressed through the
differences between velocity maxima and minima divided by
the mean velocities, are 49% and 51% for P- and S-waves, re-
spectively. As we will see below, such velocity fluctuations do
not cause our approximation to break down because the vol-
umes occupied by extreme low- and high-velocity layers are
relatively small. Next, we make all layers anisotropic, artifi-
cially introducing moderate monoclinic anisotropy specified by
the coefficients ∆≡{ε(1), ε(2), δ(1), δ(2), δ(3), γ (1), γ (2), ζ (1), ζ (2),
ζ (3)} (Grechka et al., 2000), whose values are Gaussian random
numbers. The means ∆̄ of these anisotropic coefficients in the
whole model are shown with crosses in Figure 2.

FIG. 1. Sonic (black), shear (blue), and density (red) logs. We
treat sonic and shear logs as the vertical velocities VP0 and VS0,
respectively.

To produce a suite of 300 anisotropic models, we keep the
velocities and densities shown in Figure 1 fixed and randomly
vary anisotropic coefficients in all layers. The standard devia-
tions are equal to 0.10 for the interval ε(1,2), δ(1,2,3), and γ (1,2),
and to 0.03 for ζ (1,2,3). Given such large standard deviations,
the local anisotropic coefficients ε(1,2), δ(1,2,3), and γ (1,2) would
cover the whole range in Figure 2 if we plotted their interval
values.

Assuming sufficiently low frequencies of propagating waves,
we compute the exact effective medium for each of our 300
random models using Schoenberg-Muir calculus. The bars in
Figure 2 indicate the ranges of effective anisotropic coeffi-
cients ∆e. Quite remarkably, their values are well predicted by
the means of the corresponding interval coefficients (crosses).
This suggests a simple practical recipe for obtaining any given
effective anisotropic coefficient 1e

i . Instead of going through
Schoenberg-Muir computations in their full complexity, which
would require knowing all interval velocities and anisotropies,
one can just calculate the mean 1̄i and use it as a reasonable
estimate of 1e

i . Moreover, validity of this conclusion does not
seem to depend on details of local parameter fluctuations. For
example, the ranges of effective anisotropic coefficients shown
in Figure 2 remain almost unchanged if Gaussian distribution
of interval anisotropy is replaced with either uniform or log-
normal distributions.

Figure 2 also demonstrates that some of the obtained means
(e.g., δ̄(1,2) and γ̄ (1,2)) are biased. The origin of these biases
can be explained based on the Backus average of the original
isotropic layered model (Figure 1) that produces a VTI solid
with negative Thomsen (1986) anisotropic coefficient δe and
positive γ e. In accordance with our theory, such heterogeneity-
induced effective anisotropy is weak, and the observed biases
are much smaller than usual errors expected in anisotropic
coefficients estimated from seismic data.

The effective normal-moveout velocities of high-frequency
waves propagating in the generated anisotropic models are
computed using the generalized Dix formula (Grechka et al.,
1999). Figure 3 shows that the effective NMO ellipses We in
our 300 vastly different anisotropic models overlap (thin solid

FIG. 2. Mean values of interval anisotropic coefficients
(crosses) and ranges of their effective values1e (bars) obtained
for 300 models.
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FIG. 3. NMO ellipses W̄ of (a) P-, (b) S1-, and (c) S2-waves computed in the mean model (red dots) and ellipses We obtained by
applying generalized Dix formula in 300 models with randomly varying anisotropy (solid). The circles marked with 1, 2, 3, 4 indicate
velocities (in km/s); the numbers 0, 30, . . . , 330 correspond to azimuths (in degrees) in the horizontal plane.

lines). More importantly, the ellipses W̄ computed in the mean
model (red dots in Figure 3) match the exact ones. Although
this could have been predicted from the correspondence of
the mean and effective anisotropic coefficients shown in Fig-
ure 2, the performed test demonstrates that robustness of for-
mula (16) does not seem to depend on frequency content of
the data.

DISCUSSION AND EXTENSIONS

The main result of our paper is given by the equality me =
m̄ + O(m̃2) . It not only shows that the effective parameters
can be approximately replaced with the mean values of interval
ones (this has been noticed before for particular models), but it
also indicates the high accuracy of this substitution when fluc-
tuations of local parameters are relatively small. We demon-
strated the validity of this statement for a typical well log that
was intentionally made anisotropic. While it is clear that the ac-
curacy of approximation me≈ m̄ deteriorates as the parameter
fluctuations increase, the presented test as well as others (not
shown) indicate that heterogeneity should be rather strong to
render our results useless.

It is interesting that the equation me= m̄+O(m̃2) is for-
mally valid for any effective quantity and for any frequency of
propagating waves. We illustrated this by comparing the mean
anisotropy ∆̄ with the effective ones given by Schoenberg-
Muir and generalized Dix averages which, strictly speaking,
correspond to zero and infinite frequencies. A similar result
for velocities and attenuation in layered isotropic structures
was obtained by Shapiro and Hubral (1996). They explicitly
showed that frequency-dependent phase increments and at-
tenuation coefficients do not contain the linear terms in veloc-
ity and density fluctuations [their equations (5) and (6)]. The
absence of linear terms in either Shapiro and Hubral’s or our
equations indicates that replacing m̄ with harmonic or geomet-
ric or any other average will not significantly alter the predicted
effective quantities. In fact, Beretta et al. (2001) noticed this for
the P- and S-wave transit times in 1D finely layered media. All
averaging techniques they tested led to the times that differed
from each other by less than 2%.

Finally, the generality of derivation presented here also sug-
gests that our main result remains valid not only for 1D but
also for 3D anisotropic heterogeneous media (Appendix A).
Indeed, since the above introduced averaging operation F is
rather arbitrary, there is no apparent reason to restrict our fi-
nal conclusion to just horizontally layered solids. While we are
not aware of any exact solutions that could be used to verify the
last statement for general anisotropy and heterogeneity, certain
approximations indicate that such extensions are natural. For
instance, Gold et al. (2000) and Müller et al. (2002) showed that
both the effective velocity and so-called effective scattering at-
tenuation contain only quadratic and higher-order terms in m̃
in 2D and 3D random media. As their result is consistent with
our prediction that differences between the volume-averaged
and effective quantities are proportional to the squared local
fluctuations, it can be taken as an independent verification of
the theory described in this paper.
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APPENDIX A

EFFECTIVE STIFFNESS COEFFICIENTS FOR 3D HETEROGENEOUS ANISOTROPIC MEDIA

To illustrate the generality of equation (3), we show that
it describes the effective stiffness coefficients in 3D heteroge-
neous anisotropic media. To this end, we define the function F
as

F[c(x)] ≡ c(x)ε(x), (A-1)

where c is the stiffness tensor, ε is the strain tensor, and x de-
notes cartesian coordinates. Since equation (A-1) represents
Hooke’s law, we can write

F[c(x)] ≡ c(x)ε(x) = τ (x), (A-2)

where τ is the stress tensor. Similar definition for the effective
stiffnesses, strains, and stresses reads

F[ce] ≡ ceεe = τ e. (A-3)

The relationship between the effective and local stress ten-
sors (e.g., Christensen, 1979),

τ e = 1
V

∫
V
τ (x)dx, (A-4)

allows us to construct the following sequence of equalities:

F[ce] = τ e = 1
V

∫
V
τ (x)dx = 1

V

∫
V

c(x)ε(x)dx

= 1
V

∫
V

F[c(x)]dx. (A-5)

As follows from the fist and last equations in our sequence and
the second equation (2),

ce = F†
[

1
V

∫
V

F[c(x)]dx
]
, (A-6)

which is exactly equation (3) in the main text. The function F†

here denotes solving linear equations (A-3) with respect to ce.


