
Direct frequency-domain 3D acoustic solver with intermediate data
compression benchmarked against time-domain modeling for
full-waveform inversion applications

Victor Kostin1, Sergey Solovyev1, Andrey Bakulin2, and Maxim Dmitriev2

ABSTRACT

We have developed a fast direct solver for numerical simulation
of acoustic waves in 3D heterogeneous media. The Helmholtz
equation is approximated by a 27-point finite-difference stencil
of second-order accuracy that is optimized to reduce the numeri-
cal dispersion. Due to the optimization, dispersion errors less than
1% are achieved with model discretization of only five points per
wavelength. Wave-propagation problem requires solving a large
system of linear equations with complex sparse symmetric coef-
ficient matrix with seismic shots representing the right-hand side.
The first step is the triangular factorization of the coefficient
matrix followed by solving systems of linear equations with

triangular coefficient matrices as a second step. Having defined
the triangular factors, the second step is very cheap, and its linear
scaling with respect to the number of shots is the main advantage
of direct methods. To reduce memory consumption and computa-
tional time at the factorization step, the lower triangular factors
are compressed using a low-rank approximation of their nonzero
blocks. The compression enables rapid solving of systems of
more than 108 equations corresponding to realistic geophysical
models. Accuracy and performance comparison of our solver
with a highly optimized time-domain solver proves that these
approaches complement each other — depending on the prob-
lem size and computing configuration, either solver may be
preferable.

INTRODUCTION

Numerical simulation of acoustic wavefields in the frequency
domain represents an important capability to solve problems arising
in exploration geophysics. In particular, it serves as an engine for
acoustic frequency-domain full-waveform inversion (FD FWI)
(Mulder and Plessix, 2004; Shin and Cha, 2008; Virieux et al.,
2009; Etienne et al., 2014). For macrovelocity reconstruction, such
a simulation is usually performed many times for several low
frequencies (up to 20 Hz) at each iteration of this process.
In acoustic simulations, the pressure wavefield is excited by a point

source working as a harmonic oscillator at a particular frequency. In
exploration seismics, the number of shots can be in the tens of thou-
sands or more, with receivers also numbering in the tens of thou-
sands, especially with the proliferation of high-channel-count land

seismic acquisition systems, some of which reach one million chan-
nels (Ourabah et al., 2015).
The time- or frequency-domain approaches can be used to perform

seismic modeling and FWI (Vigh and Starr, 2008; Virieux and Op-
erto, 2009; Plessix, 2017). A conventional solver is based on a time-
domain simulation followed by a Fourier transform to convert the
time-domain wavefields to the frequency domain. A common strat-
egy consists of distributing the seismic sources over processors. There
is no need to exchange data between processors, and the strategy be-
comes very effective. Good scalability and moderate memory require-
ments make the approach attractive for industrial purposes. However,
to be efficient in parallel processing tens of thousands of seismic
sources, the approach requires significant computational resources.
In this paper, we provide some experimental data on the solver de-
veloped by the Seiscope consortium.

Manuscript received by the Editor 29 June 2018; revised manuscript received 4 December 2018; published ahead of production 20 March 2019; published
online 27 May 2019.

1Institute of PetroleumGeology and Geophysics, SB RAS, 3, Akademika Koptyug Avenue, Novosibirsk, Russian Federation. E-mail: kostinvi@ipgg.sbras.ru;
solovyevsa@ipgg.sbras.ru.

2Geophysics Technology, EXPEC ARC, Saudi Aramco, Building 137, Dhahran 31311, Saudi Arabia. E-mail: andrey.bakulin@aramco.com; maxim.dmitriev@
aramco.com.

© 2019 Society of Exploration Geophysicists. All rights reserved.

T207

GEOPHYSICS, VOL. 84, NO. 4 (JULY-AUGUST 2019); P. T207–T219, 17 FIGS., 7 TABLES.
10.1190/GEO2018-0465.1

D
ow

nl
oa

de
d 

01
/0

2/
23

 to
 7

3.
13

6.
10

5.
22

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

S
E

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/g

eo
20

18
-0

46
5.

1

http://crossmark.crossref.org/dialog/?doi=10.1190%2Fgeo2018-0465.1&domain=pdf&date_stamp=2019-05-27


Alternatively, seismic modeling and FWI can be performed in the
frequency domain. A problem on the time harmonic solutions of
the wave equation transforms into a boundary value problem for
the Helmholtz equation. Absorbing boundary conditions are set to
reduce the reflections of waves from the boundaries. Only a few dis-
crete frequencies are needed to build a reliable macrovelocity model,
and this is the main advantage of using the frequency-domain ap-
proach. From a practical perspective, in 3D simulations, this requires
solving a system of linear equations with a huge and sparse coefficient
matrix, which is some kind of approximation of the boundary value
problem. The right sides of the system represent the seismic sources.
Iterative methods can be used to solve the system of linear equa-

tions. The Krylov subspace iteration methods demonstrate good ef-
ficiency (Plessix, 2007; Erlangga and Nabben, 2008; Belonosov
et al., 2017, 2018) and moderate memory requirements, but they
require good preconditioners and sometimes convergence may be
slow or even lost.
With the increased computational power of modern computers

(especially distributed memory systems, or clusters), it is now be-
coming more feasible to apply direct methods for solving systems
of linear equations with sparse coefficient matrices. The LDLT
decomposition of the coefficient matrix is first performed before
computing the solutions by forward/backward substitutions. The
factorization is computationally expensive, but it is performed only
once per frequency because it is independent of the right-side
term. The LDLT factorization leads to significant fill-in of the
matrix (i.e., the number of nonzeros increases). The fill-in strongly
depends on ordering the columns and rows of the matrix. To reduce
the fill-in, the nested dissection (ND) method to order the matrix
entries is used. For 3D problems solved with a finite-difference
(FD) method, use of the ND method results in reduction of the
fill-in by one order of magnitude (Oðn4Þ versus Oðn5Þ), where n
stands for the dimension of a 3D n3 cubic grid (George, 1973;
George et al., 1994).
Awide class of matrices arising as discretization from partial dif-

ferential equations have a so-called low-rank property. That is, the
fill-in in its direct factorization has low rank off-diagonal blocks.
Based on this property, the fill-in can be approximated by low-rank
matrices or matrices of a special hierarchical structure with low-
rank blocks (Chandrasekaran et al., 2006; Xia et al., 2010; Ghysels
et al., 2016). Structured methods (Xia, 2013; Wang et al., 2016) are
based on using the structural low-rank approximation, and this
helps to improve the theoretical performance.
In this paper, we present a multifrontal direct method of solving a

system of linear equations that arises as an optimal 27-point FD
approximation of a boundary value problem for the Helmholtz
equation. In this method, the coefficient matrix constructed using
a special kind of ordering is factorized in a product of triangular
matrices. To find the unknowns, two systems with triangular coef-
ficient matrices need to be solved.
Compared with the cost of the matrix factorization, extra right

sides do not appreciably increase the computational cost (Bakulin
et al., 2018). To reduce the issue of inordinate memory con-
sumption typical for direct solvers, we apply data compression
based on the low-rank approximation and hierarchical formats of
storing data (Aminfar et al., 2016). We further implement message
passing interface (MPI)-based parallelization inside the solver
to optimize execution on distributed memory high-performance
computers (clusters).

Several ways of using the low-rank property in algorithms for
numerical solution of frequency-domain wave equations are known.
Block low-rank methods (Amestoy et al., 2015; Pichon et al., 2018)
have been proposed as simple alternatives to structured methods.
Although they cannot reach the performance of the structured meth-
ods, simplicity of implementation is their attractive feature. Hier-
archically semiseparable formats (Xia et al., 2010; Wang et al.,
2011; Xia, 2013) have been proposed to achieve the best theoretical
performance. We apply plain low-rank approximations for subdiag-
onal blocks of the triangular factor of the LDLT factorization, and
we use the hierarchical off-diagonal low-rank (HODLR) format for
approximation of the diagonal blocks. A similar approach was used
by Glinskiy et al. (2017), but MPI optimization in that paper was
targeted to minimize the peak memory consumption. In the current
paper, the goal is performance improvement.
This paper is organized as follows: The first section discusses the

setting of the boundary value problem for the Helmholtz equation,
use of perfectly matched layers (PMLs) to diminish wave reflec-
tions from the boundaries, and an FD approximation of the boun-
dary value problem. We describe a procedure for minimization of
numerical dispersion and use it to construct the optimal 27-point
stencil. Compared with the classic seven-point stencil, the optimi-
zation results in a 1.5× decrease of the number of points per wave-
length needed to keep the numerical dispersion error within 1%. In
3D, this decrease leads to a 3× reduction of the coefficient matrix
size and an even bigger factor for the performance. We describe a
special ordering of the grid points defined by the NDmethod, which
results in a special structure of the matrix.
Factorization and solving steps are the main ingredients of our di-

rect method of solving systems of linear equations. The factorization
process includes compression of matrix blocks based on the low-rank
approximation. The second section is devoted to details of the soft-
ware implementation. In the last section, results of the numerical
experiments are given. Using two realistic subsurface models, we
demonstrate the accuracy of the solver, its MPI scalability, and per-
formance. We compare the solver with the industrial time-domain
solver provided by the Seiscope consortium, and we demonstrate that
both solvers complement each other.

METHODS

An FD scheme for the Helmholtz equation

In the frequency domain, acoustic wave propagation in R3 is
governed by the Helmholtz equation:

ΔuðxÞ þ k2ðxÞuðxÞ ¼ fðxÞ; (1)

where Δ is the Laplace operator, uðxÞ ¼ uðx1; x2; x3Þ is the un-
known function (pressure), kðxÞ ¼ ω∕cðxÞ is the wavenumber, ω
is the angular temporal frequency, and cðxÞ is the sound velocity
at point x (To avoid cumbersomeness in our formulas, we use x
along with triples ðx1; x2; x3Þ and ðx; y; zÞ as notations for the in-
dependent spatial variables. It should be clear from the context
which notation is used, and we hope that such a shortcut would
not confuse the reader.). The pressure is excited by a source repre-
sented by function fðxÞ in the right side. For a seismic shot located
at source point xs ¼ ðxs1; xs2; xs3Þ, the right side has a form of the
delta function:

T208 Kostin et al.

D
ow

nl
oa

de
d 

01
/0

2/
23

 to
 7

3.
13

6.
10

5.
22

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

S
E

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/g

eo
20

18
-0

46
5.

1



fðxÞ ¼ δðx − xsÞ: (2)

If equation 1 is considered in an unbounded domain, for unique
resolvability some condition (e.g., radiation condition; Vainberg,
1966) should be posed at infinity.
In practice, the solution is to be found in some parallelepiped D

where the velocity function is given and the source point is located.
To reduce the influence on the solution of the limited computational
domain, we apply the PML technique (see, e.g., Berenger, 1994;
Bermúdez et al., 2007). For this purpose, D is immersed in some
bigger parallelepiped ~D as shown schematically in Figure 1. If free-
surface boundary conditions need to be imposed, the respective
faces of D and ~D lie in the same plane. The differential equation
is extended to ~D in the form of the second-order partial differential
equation:

X3
i¼1

αiðxiÞ
∂
∂xi

�
αiðxiÞ

∂u
∂xi

�
þk2ðxÞuðxÞ¼fðxÞ; x∈ ~D; (3)

where kðxÞ is smoothly extended to DPML and fðxÞ is extended by
zero. Functions

αiðxiÞ ¼
iω

iωþ diðxiÞ
; (4)

are complex-valued defined via damping functions diðxiÞ, which
are zeros for points within D. Respectively, αiðxiÞ is equal to one
in D, and equation 3 coincides with equation 1. To provide attenu-
ation of the solution, damping functions are positive within the re-
spective PMLs. To maintain the symmetry of the coefficient matrix
in the FD approximation, we divide the partial differential equa-
tion 3 by αðxÞ ¼ α1ðx1Þα2ðx2Þα3ðx3Þ and obtain

P
3
i¼1

αiðxiÞ
αðxÞ

∂
∂xi

�
αiðxiÞ ∂u

∂xi

�
þ k2ðxÞ

αðxÞ uðxÞ ¼ fðxÞ
αðxÞ : (5)

On the boundary of domain ~D, the homogeneous Dirichlet condi-
tion is posed

uðxÞjx∈∂ ~D ¼ 0: (6)

Differential equation 5 or 3 along with boundary condition 6 is the
boundary value problem used for numerical simulation of acoustic
waves in the frequency domain.
For numerical solution of this boundary value problem, we first

introduce a rectangular equidistant grid in ~D. The
grid points ðxi; yj; zkÞ are defined as multiples
of integer triplets ði; j; kÞ with grid step h. A dis-
crete analog uijk of the unknown function
uðx; y; zÞ is defined as uijk ¼ uðxi; yj; zkÞ, and
discretization fijk of the right side fðxÞ∕αðxÞ is
similarly done.
Differential equation 5 is approximated using

FD schemes. To reduce the impact of numerical
dispersion, one can use FD schemes of a higher
order of approximation (Dablain, 1986; Liu and
Sen, 2011). Such schemes use wider stencils,
which may result in cost increases at the matrix
factorization stage.

To approximate the differential equation at point ðxi; yj; zkÞ, we
use a 27-point FD approximation of second-order accuracy

X1
i0¼−1

X1
j0¼−1

X1
k0¼−1

βi;i0;j;j0;k;k0uiþi0;jþj0;kþk0 ¼ fijk; (7)

to boundary value problems 5 and 6. To define coefficients
βi;i0 ;j;j0;k;k0 , we represent the left side of equation 7 as a linear com-
bination of seven terms with the weight coefficients

γ1Δ1uijk þ γ2Δ2uijk þ γ3Δ3uijk

þ k2ðxi; yj; zkÞ
�
w1uijk þ

w2

6

X
ð2Þ

ui1;j1;k1

þ w3

12

X
ð3Þ

ui1;j1;k1 þ
w2

8

X
ð4Þ

ui1;j1;k1

�
: (8)

Operator Δj; ðj ¼ 1; 2; 3Þ in sum 8 is a second-order-accuracy FD
approximation of the Laplace operator represented by the stencil
marked (j) in Figure 2. In fact, in Figure 2 only z-parts of the re-
spective stencils are depicted. Obviously, to get an approximation of
the Laplace operator, the sum of weights γj should be equal to one.
Likewise, sums in parentheses in expression 8 are the second-order-
accuracy approximations of uðxi; yj; zkÞ that correspond to the sten-
cils depicted in Figure 3. In these stencils, the red ball denotes the
central point and does not participate in the approximations. The
respective weights should also sum up to one.
For FD operator 8, the dispersion analysis gives an explicit ex-

pression cphðφ; θ; G; γ1; γ2; γ3; w1; w2; w3; w4Þ for the phase veloc-
ity of a plane wave propagating in a direction defined by spherical

Figure 1. Schematic view of domain ~D ¼ D ∪ DPML. In DPML, the
solution is attenuated by introducing complex valued functions
αiðxiÞ in equation 3. Homogeneous Dirichlet conditions are posed
on boundary ∂ ~D.

x

y

z
(1)

x

y

z
(2)

x

y

z
(3)

Figure 2. Three FD stencils for the approximation of the partial derivative uzz.

Direct 3D Helmholtz solver T209

D
ow

nl
oa

de
d 

01
/0

2/
23

 to
 7

3.
13

6.
10

5.
22

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

S
E

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/g

eo
20

18
-0

46
5.

1



angles φ; θ. Here, G ¼ ωh∕2πc is the reciprocal of the number of
grid points per wavelength. The function

Ψðγ1;γ2;γ3;w1;w2w3w4Þ

¼
Z Z Z

D

����cphðφ;ϑ;G;γ1;γ2;γ3;w1;w2w3w4Þ
c

−1

����
2

dφdθdG;

(9)

represents the squared dispersion error averaged with respect to the
directions and values ofG. The domain of integration in integral 9 is
defined as

D¼ fðφ;θ;GÞ∶0 ≤ φ ≤ 2π;−
π

2
≤ θ ≤

π

2
;Gmin ≤G ≤Gmaxg:

(10)

Minimizing function 9 with respect to the weights, we find the
optimal values. In Table 1, one can find the optimal weights for the
range of frequencies 4–10 Hz.

Dispersion curves for 50 plane waves propagating in randomly
chosen directions are depicted in Figure 4. It is clear that eight points
per wavelength is sufficient to keep the dispersion error at less than
1%. To justify our choice of using a 27-point optimal stencil, we note
that for the classic seven-point approximation to reach the level of 1%
dispersion error, 12 points per wavelength are required. Optimization
of FD stencils for minimization of the numerical dispersion is a popu-
lar topic of many papers (Jo et al., 1996; Hustedt et al., 2004; Operto
et al., 2007).

A system of linear algebraic equations

The FD approximation 7 of boundary value problems 5 and 6
takes the form of a system of linear equations:

Au ¼ f; (11)

where u stands for a column of values uijk at grid points of the
unknown function and f has components fijk. For any grid point
ði; j; kÞ, there are at most 27 nonzero coefficients in equation 7.
In other words, matrix A is sparse, complex valued (due to PMLs),

and symmetric (but not Hermitian). Coefficients
βi;0;j;0;k;0 come to the diagonal of the matrix,
whereas the locations of remaining 26 nonzero
coefficients depend on the ordering of the grid
points.
To order the grid points, we use the ND algo-

rithm characterized by a substantial reduction
in memory consumption (George, 1973; George
et al., 1994; Davis et al., 2016) compared with
conventional ordering. For convenience, we illus-
trate the ND algorithm in Figure 5 in which the
computational domain is depicted as a parallele-

piped. The grid points are not shown for simplicity. The algorithm
deals with subsets of the finite set of grid points, but, for visibility, we
operate with geometric objects and terms. We sequentially divide the
domain into subdomains using separators until the sizes of the sub-
domains reach a computationally manageable level.
At the first step, in Figure 5a, the separator is shown as a hori-

zontal gray plane labeled 15. The plane passes through the grid
points and divides the parallelepiped into approximately equal sub-
domains. The entire set of grid points disjoins into three subsets: the
upper subdomain (the first subset), the lower subdomain (the second
subset), and the separator itself (the third subset).
Let us sequentially order the grid points (subset one, subset two,

and subset three). At this point, the ordering within the subsets is not
specified.
A stencil centered at some grid point ði; j; kÞ connects the center

with 26 neighbors, i.e., points whose grid coordinates differ from
the center coordinates by not more than one. Obviously, for a center
from the upper subdomain, the neighbors belong to the upper sub-
domain, or, possibly to the separator. From this observation, we get
the following block structure

A ¼
0
@ Auu 0 Au;s15

0 All Al;s15
As15;u As15;l As15;s15

1
A; (12)

of the coefficient matrix.

Figure 3. Four stencils for the approximation of k2ðxÞuðxÞ.

Table 1. Values of the optimal parameters for stencil 8.

γ1 0.6558 w1 0.5756

γ2 0.2945 w2 0.1874

γ3 0.0497 w3 0.3588

w4 −0.1219

0 0.02 0.04 0.06 0.08 0.1 0.12

1/G

–0.01

–0.005

0

0.005

0.01

D
is

pe
rs

io
n 

er
ro

r

Figure 4. For 50 randomly chosen directions of propagation of plane
waves, dispersion error curves are plotted as functions of the recip-
rocal of the number of grid points per wavelength. The FD approxi-
mation is defined by operator 8 with optimal parameters from
Table 1.

T210 Kostin et al.

D
ow

nl
oa

de
d 

01
/0

2/
23

 to
 7

3.
13

6.
10

5.
22

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

S
E

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/g

eo
20

18
-0

46
5.

1



The process can be repeated recursively. In Figure 5b, a vertical
gray plane partitions the subdomains. This vertical plane contains
two separators 13 and 14. We order the grid points so that points
from separators 13, 14, and 15 are put at the end of the list and grid
points from four subdomains are arranged first, and we have a block
7 × 7 matrix

A¼

0
BBBBBBBB@

A11 0 0 0 A1;s13 0 A1;s15
0 A22 0 0 A2;s13 0 A2;s15
0 0 A33 0 0 A3;s14 A3;s15
0 0 0 A44 0 A3;s14 A4;s15

As13;1 As13;2 0 0 As13;s13 0 As13;s15
0 0 As14;3 As14;4 0 As14;s14 As14;s15

As13;1 As15;2 As15;3 As15;4 As15;s13 As15;s14 As15;s15

1
CCCCCCCCA
:

(13)

In this formula, matrix block indices 1, 2, 3, and 4 indicate the grid
points from the subdomains, whereas s13, s14, and s15 relate to the
points from the respective separators.
The third-level separators 9, 10, 11, and 12 are shown in Figure 5c.

Every higher level separator partitions the subdomains obtained at the
previous level into two smaller subdomains and the separator itself.
So, k steps of such process produce 2k subdomains and 2k − 1 sep-
arators. The grid points are ordered so that separators in reverse order-
ing follow the points from the subdomains. The coefficient matrix
becomes a block ð2kþ1 − 1Þ × ð2kþ1 − 1Þ matrix.
For k ¼ 3, the structure is depicted in Figure 6a.

LDLT factorization with compression

To solve the system of linear equations 8 with a
sparse complex symmetric coefficient matrix by a
direct method, LDLT factorization is first applied:

Â ¼ P · A · Pt ¼ L · D · Lt; (14)

where P denotes a permutation matrix that ap-
pears due to pivoting, D is a block-diagonal ma-
trix with blocks of size one or two, L is a lower
triangular matrix with units on the diagonal, and
“t” indicates the transposed of the matrix. Factori-
zation 14 is considered as a variant of Gauss elimi-
nation (see, e.g., Bunch et al., 1976; Duff et al.,
1979; Duff and Reid, 1983; Schenk and Gärtner,
2006).
Let the matrix be represented in a block form

as

Â ¼

0
BBB@

A11 A12 · · · A1K

A21 A22 · · · A2K

..

. ..
. . .

. ..
.

AK1 AK2 · · · AKK

1
CCCA; (15)

with ni × nj-blocks Aij. Diagonal blocks Aii are
square though may have different orders ni. The
block structure of matrices L andD is as follows:

L¼

0
BBB@

L11 · · ·
L21 L22 · · ·
..
. ..

. . .
. ..

.

LK1 LK2 · · · LKK

1
CCCA; D¼

0
BBB@
D1 · · ·

D2 · · ·
..
. ..

. . .
. ..

.

· · · DK

1
CCCA:

(16)

Diagonal blocks Ljj are the lower triangular square matrices of or-
der nj with units on the diagonals and Dj are the diagonal block
matrices with blocks of size one or two.
A pseudocode of a block LDLT algorithm (see Algorithm 1) uses

the function FLDLT that solves the LDLT factorization problem for
diagonal blocks of sizes ni × ni. These problems are considered
“elementary” with respect to the block structure of matrix Â.
In equations 18 and 20, Pj is a permutation matrix that appears

due to “restricted” pivoting applied to diagonal blocks of the matrix
being decomposed to improve the numerical stability. The low impact
on the performance is the main reason why we choose restricted piv-
oting. However, restricted pivoting is expected to be less efficient for
numerical stability than the partial pivoting that involves the elements
of the whole panel. To attest to the method, we refer the reader to
Schenk and Gärtner (2006) where a similar technique is described.
Our numerous experiments confirm numerical stability of the results.
Factorization traverses from the tree bottom to its top. Matrix L

inherits the block structure of the lower triangle of matrix Â, but its
blocks have more nonzero elements than blocks of Â (the fill-in

a) b) c)

Figure 5. A schematic view of the ND algorithm comprising (a) the first-level separator
15 partitioning the domain into the upper and the lower subdomains, (b) second-level
separators 13 and 14 partitioning the domain into four subdomains, and (c) further par-
titioning by third-level separators 9, 10, 11, and 12 resulting in eight subdomains.

12345678

9 101112

13 14

15

A11

A22

A31A32 A33

12345678

9 101112

13 14

15

a) b)

Figure 6. The L factor structure showing (a) the original and (b) the low-rank approxi-
mation. The fill-in is shown by the gray shading. See the respective ET in Figure 7.

Direct 3D Helmholtz solver T211

D
ow

nl
oa

de
d 

01
/0

2/
23

 to
 7

3.
13

6.
10

5.
22

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

S
E

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/g

eo
20

18
-0

46
5.

1



phenomenon). The phenomenon can be easily understood from
equation 19 for Schur updates. The gray shading in Figure 6a is used
to illustrate the “fill-in factor” (ratio of the number of nonzero elements
in the block to the total number of the block elements). The fully zero
blocks are white colored, and those in black mean the fill-in factor is
close to one. As illustrated in Figure 6a, blocks on the lower and right
side of matrix L have bigger fill-in factors and may be larger in size.
Figure 6 depicts the structure of factor L, but to some extent, this

also describes the lower triangle of matrix Â (the upper triangle can
be obtained by reflecting the picture with respect to the main diago-
nal). The elimination tree (ET) for matrix Â has a binary structure
(Figure 7). Recall that for the LDLT factorization, dependencies
among panels are indicated by the ET edges, and these dependen-
cies denote the directions of how updates move from a “son” to its
“father,” “grandfather” and beyond up to the tree “root” along the
tree branches. For example, Figure 7 shows that panel 13 depends
on panels 9 and 10, which in turn depend on 1, 2, 3, and 4. Panel 13
receives updates not only from its “sons” 9 and 10 but also from
“grandsons” 1, 2, 3, and 4. These updates are independent of 9
and 10 — this additional parallelism can be used for performance
optimization.
Fortunately, for the FD approximation of the Helmholtz equation,

matrix L blocks lying below the diagonal possess data sparsity
property; i.e., they are low rank. M × N-matrix B is called data
sparse if it can be approximated by a matrix Br of rank
r ≪ minðM;NÞ. Such an approximation can be written as

B ¼ Br þ δB ¼ U · Vt þ δB; kδBk < εkBk; (21)

with M × r-matrix U, N × r-matrix V, and ε > 0 being some
threshold parameter. Matrices U and V are stored instead of B.
Approximation 21 is used for data compression in the LDLT fac-
torization algorithm we use; the lower the sum r∕M þ r∕N, the big-
ger is the compression effect. The compression also helps to reduce
the floating point operations count.
The low-rank approximation in equation 21 provides a founda-

tion for data compression. For the spectral matrix norm or Frobe-
nius norm, the truncated singular-value decomposition (SVD) (see
Golub and Loan, 1996; Godunov et al., 2013) can be used to solve
the minimization problem:

Br ¼ arg min
rankX¼r

kB − Xk2: (22)

The solution can be considered as the optimal approximation of ma-
trix B by rank r matrices. SVD provides a constructive solution Br

to the approximation problem 22 in the form of matrices U and V
such that Br ¼ U · Vt (see equation 21). The SVD algorithm is nu-
merically stable but time consuming. Many alternative approaches
can be found in the literature. We use an approach based on ran-
domized sampling (Martinsson and Voronin, 2011) because of its
high performance and robustness.
Data sparsity in matrix L blocks is schematically illustrated in

Figure 6b in which some blocks are shown as containing two nar-
row black blocks schematically representing respective matrices U
and Vt that are stored instead of the block they approximate. Usu-
ally these blocks are dense, which is why they are black in the fig-
ure. Obviously, due to some overhead, approximation 21 of matrix
L blocks makes sense for high enough fill-in factors (Figure 6b),
whereas some pale-gray blocks remain “as is.”
There is one more possibility to compress matrix L: Diagonal

blocks of this matrix in Figure 6b can be approximated by HODLR
matrices (Aminfar et al., 2016; Glinskiy et al., 2017; Kostin et al.,
2017). To get this structure, the respective diagonal blocks of L are
represented as 2 × 2 block matrices with subblocks of half-size and
approximation 21 is applied to the off-diagonal subblock. In our
solver, this procedure is applied recursively to the diagonal blocks
several times until a small size is reached.

Solving step

Having defined factors in factorization 11, one can solve the
system of linear equation 14 by inverting triangular matrices

Algorithm 1. Pseudocode of a block version of LDLT
factorization. The sparsity of the matrix is taken into
account by skipping values of indices i and p that
correspond to fully zero blocks in equations 17, 19, and 20.

for j ¼ 1∶K
for p ¼ 1∶j − 1

Ajj ¼ Ajj − LjpDpLt
jp (17)

end

½Ljj;Dj;Pj� ¼ FLDLTðAjjÞ (18)

for i ¼ jþ 1∶K
for p ¼ 1∶j − 1

Aij ¼ Aij − LipDpLt
jp (19)

end

Lij ¼ AijPt
jL

−t
jjD

−1
j (20)

end

end

1 2 3 4 5 6 7 8

9 10 11 12

13 14

15

Figure 7. The ET corresponding to the matrix structure in Figure 6.
The tree nodes correspond to the panels in Figure 6. The depend-
ence of panel node 13 on nodes 9 and 10 is illustrated in Figure 6a
as in the respective substructure of the matrix.

T212 Kostin et al.

D
ow

nl
oa

de
d 

01
/0

2/
23

 to
 7

3.
13

6.
10

5.
22

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

S
E

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/g

eo
20

18
-0

46
5.

1



w ¼ D−1L−1Pf; u ¼ PtL−tw: (23)

In a case of several right sides, vectors f; y; z; u should be treated as
matrices comprised of the respective column vectors, and compu-
tations 23 can be parallelized with respect to the columns.
During computation of factorization 14, matrix L is compressed

to reduce memory consumption. The compressibility factor de-
pends on threshold ε, frequency ω; and some other parameters;
in our experiments, the compressibility factor varied from 3 to 7.
Due to compression, equation 14 is no longer valid and should
be replaced with

Â ¼ L · D · Lt þ δÂ; (24)

where δÂ denotes a perturbation due to compression errors. The
solution obtained by formula 21 may become inaccurate. To im-
prove the accuracy, one can carry out a few steps of the iterative
refinement (Wilkinson, 1964). Having computed factorization 14,
the overhead due to inclusion of the iterative refinement in the
solving process is low.
Provided that the norm of perturbation δÂ is small enough and

the coefficient matrix is “not-too-badly-conditioned,” the iterative
refinement converges. The threshold ε directly impacts the com-
pressibility factor — the bigger its value, the bigger the compress-
ibility factor, suggesting that the threshold value should be
increased. However, a larger threshold value implies an increase in
the norm of perturbation δÂ in equation 24, which may lead to a
loss of convergence of the iterative refinement, or at least it may
require more iterations to converge. Therefore, unjustifiably large
threshold values should be avoided. Due to this trade-off, in prac-
tice, the threshold value is established by trial and error.

SOFTWARE IMPLEMENTATION DETAILS

Some standard functionality needed for our solver is taken from
the Intel(R) Math Kernel Library (Intel(R) MKL, 2019). This library
provides highly optimized Basic Linear Algebra Subroutines (BLAS)
(BLAS, 2017) and Linear Algebra Package (LAPACK) (LAPACK,
2017) functions. In our solver, we use Open Multi-Processing
(OpenMP) parallelization implicitly by calling threaded versions of
BLAS and LAPACK functions. This is the only way of using
OpenMP threading in the solver; there is no explicit OpenMP paral-
lelization in it.
Our solver is targeted for distributed memory systems (clusters)

using MPI. The binary structure of the ETof the LDLT factorization
algorithm provides goodMPI parallelization opportunities. Figure 8
shows mapping of the ET structure on compute nodes for the case of
four nodes. Each subtree (denoted by the dashed ellipses) is as-
signed to a particular compute node. The nodes are assumed to have
big enough RAM to contain the respective input data and results. It
is clear that up to the level 3 (in Figure 8, this level is marked with a
dashed line passing the ET nodes) of the ET, the compute nodes
process their portions of data independently and there is no data
exchange between them.
However, this kind of parallelism decreases while the process tra-

verses up along the tree, and at a particular level of the tree, the
number of nodes becomes less than the number of cluster nodes.
Moreover, while moving up along the ET, fill-in factors of the re-
spective panels increase with increasing memory requirements and
numbers of floating point operations.

Upon reaching the level in which the ETwidth becomes less than
the number of cluster nodes, finer granulation of the matrix being
processed is applied. In other words, the panels are subdivided into
subpanels, which are assigned to separate cluster nodes. Unfortu-
nately, such a subdivision does not provide a binary structure of the
ET suitable for parallelization. However, it allows delegating com-
putation of some Schur updates to the lower part of the tree, thus
improving the parallelism.
One of the costly operations in the LDLT factorization is the

Schur update

Aij ¼ Aij −
X
p

LipDpLt
jp (25)

(see the p-loop in Algorithm 1). For jth node of the ET, equation 25
means gathering this node updates from sons, grandsons, etc. The
number of summands in this formula may be rather large, and
matrices Lip are given factorized in products of “thin” matrices
and they are distributed along different cluster nodes. To apply the
Schur update 25, we use different strategies depending on the
position of the ET node with respect to the dashed line.
For the ET nodes lying above the dashed line, or, equivalently, for

the values j, we split the total number of updates (i.e., indices p)
into pairs. Each pair is summed up on a separate cluster node. The
process is repeated several times until all updates are summed up.
Finally, the sum of all updates is added to block Aij. The number of
steps is proportional to the logarithm of the total number of updates.
For the ET nodes below the dashed line, all operations are per-

formed on the same compute node but there are also some peculi-
arities. As was already mentioned above, nonzero subdiagonal
blocks in the leftmost panels of the triangular factor are stored as
is, without applying the low-rank approximation. This is beneficial
from the performance and memory consumption points of view. So,
to compute Schur update 25 with blocks in the conventional format,
standard BLAS functionality (with some modifications due to the
sparsity of the blocks) is needed.
Starting from some level, the low-rank approximation is applied

to the blocks and the low-rank arithmetic is switched on. Let

Figure 8. Mapping of the ET to the cluster nodes. The dashed
ellipses denote the ET nodes combined together and assigned to the
same cluster node.

Direct 3D Helmholtz solver T213

D
ow

nl
oa

de
d 

01
/0

2/
23

 to
 7

3.
13

6.
10

5.
22

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

S
E

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/g

eo
20

18
-0

46
5.

1



m1 × n-block Lip andm2 × n-block Ljp be represented by low-rank
approximants Uip · Vt

ip and Ujp · Vt
jp, where Uip and Vip have

sizes m1 × r1 and n × r1, whereas Ujp and Vjp have sizes m2 × r2
and n × r2, respectively. Assuming r1 ≤ r2, update LipDpLt

jp be-
comes a product of m1 × r1-matrix Uip and r1 ×m2-matrix
ðUjpðVt

jpðDt
pVipÞÞtÞt (if the opposite inequality r1 > r2 takes

place, matrix LipDpLt
jp is decomposed in a product of m1 × r2-

matrix and r2 ×m2-matrix).
Summing up rank r1 update U1 · Vt

1 and rank r2 update U2 · Vt
2

can be obtained by the concatenation of matrices

U1 · Vt
1 þ U2 · Vt

2 ¼ ðU1 U2 ÞðV1 V2 Þt: (26)

The result has the desired form but probably the representation is
not optimal — matrices ðU1 U2 Þ and ðV1 V2 Þ have r1 þ r2
columns that may be greater than their ranks. In other words, the
product needs to be recompressed

ðU1 U2 ÞðV1 V2 Þt ¼ UVt: (27)

This is the same problem as the compression problem.

3D NUMERICAL EXPERIMENTS

In this section, we describe a few numerical experiments to val-
idate our implementation. The experiments were performed on the
Linux supercomputer Shaheen II (n.d.) at the King Abdullah
University of Science and Technology (KAUST, Saudi Arabia).
Top 500 List (2018) Linpack performance of this cluster is 5.5
Pflops/s. Each compute node is supplied with two Intel Xeon
CPU processors E5-2698 v3 @ 2.3 GHz (32 cores in total) and
128 GB RAM; this configuration provides theoretical peak perfor-
mance of 1.2 Tflops/s per node.
The threshold parameter was taken from the range 10−5 to 10−4.

We used one MPI process per cluster node. The stopping criterion for
the iterative refinement was set to achieve the following inequality:

kAu − fk
kfk < 10−5: (28)

Models

To demonstrate the accuracy of the method, first we compare
the numerical solution for a homogeneous model to the analytical
solution. For a synthetic model with the velocity being linearly
dependent on the depth, we compare solutions obtained with differ-
ent grid steps.

The second subsurface model is a marine transition zone
model referred below as the TZ model with dimensions of
18; 000 × 23; 500 × 7000 m. In this model, the velocity varies
between 1042 and 7626 m∕s (Figure 9). FD discretization with a
grid size of 30 m results in a system of 1.3 × 108 linear equations.
As a third subsurface model, we use a portion of the SEG over-

thrust (referred to below as OT) model (Aminzadeh et al., 1997)
with dimensions of 9870 × 9870 × 4620 m. In this model, the
velocity varies between 2286 and 6000 m∕s. FD discretization with
a grid of 30 m in all directions results in a system of 2.4 × 107 linear
equations.

Accuracy

First, we benchmark numerical solution of the Helmholtz
equation:

ðΔþ k2Þv ¼ −δðxÞ (29)

with the analytical solution available for a homogeneous medium

vðx; y; zÞ ¼ e−ik
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2þz2

p

4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p : (30)

We compute numerical solutions for different values of the grid
step. Accuracy of the approximate solution uhðx; y; zÞ is measured
by metrics

βkðrÞ ¼
kuhðx; y; zÞ − vðx; y; zÞkBðr0;rÞ;k

kvðx; y; zÞkBðr0;rÞ;k
(31)

depending on the size r of the domain. In definition 31, index k
stands for the type of the norm (k ¼ 1; 2) and

Bðr0; rÞ ¼
�
ðx; y; zÞjr0 ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

q
≤ r

�
(32)

denotes the concentric spherical layer in which the norms are com-
puted. Parameter r0 is used to exclude the small singularity region
around the origin. Metrics βkðrÞ are simple relative accuracies of
the solution for the respective norms. Note that the accuracy also
depends on the grid step h.
We provide numerical results for the homogeneous model

with dimensions of 5120 × 5120 × 2560 m and sound velocity
c0 ¼ 1280 m∕s. The wavefield was excited by a monochromatic
4 Hz point source placed at the center of the model (2560, 2560,
and 1280 m). We used three different grid steps h ¼ 64, 32, and 16 m
that correspond to 5, 10, and 20 points per wavelength, respectively.
The width of the PMLs was taken to be 15 grid steps. In Figure 10,
one can find graphs of functions βkðrÞ for the described problem
setting. It is clear that halving the grid step results in a four times
reduction of the relative errors β1 and β2, which confirms the second-
order approximation of the method.
For the second test, we used a 3D model with the velocity being a

linear function of depth and investigated convergence of the solu-
tion with a decreasing grid step. For the same velocity model, we
computed solutions uh; uh∕2, and uh∕4 for steps h; h∕2, and h∕4,Figure 9. Cross sections of the TZ velocity model.

T214 Kostin et al.

D
ow

nl
oa

de
d 

01
/0

2/
23

 to
 7

3.
13

6.
10

5.
22

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

S
E

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/g

eo
20

18
-0

46
5.

1



respectively. The solution uh∕4 was used as a substitute for the exact
solution. In Figure 11, one can find the respective functions βkðrÞ,
which in this case provide information on the deviation of solutions
uh; uh∕2 from uh∕4. The second-order approximation is clearly con-
firmed for β1 and β2.

Strong scaling

For a problem that can be solved with an MPI solver and paral-
lelization on different numbers of cluster nodes, the “scaling factor”
is defined as ratio tseq∕tP where runtimes tseq and tP stand for one
and P cluster nodes, respectively.
For the OT velocity model and different values of frequencies, we

measured the scaling factors of our solver (Figure 12). The fre-
quency-domain FD (FDFD) solver scales well for moderate cluster
sizes, but scaling becomes worse as the number of cluster nodes
increases beyond approximately four to eight nodes. In addition,
scaling factors deteriorate with increasing frequency. The problem
size also impacts the scaling, with better scaling for larger models as
illustrated in Figure 13 in which scaling factors for the OT model
and the TZ models are compared.
Scaling behavior can be explained as follows. The ET is less

balanced on lower levels than on upper levels. The amount of

computations defined by the dashed ellipses in Figure 8 may vary
from one ellipse to another. In other words, different cluster nodes
are assigned different amounts of work, becoming unbalanced. Spa-
tial variations of the sound velocity may cause unbalancing because
the numerical ranks depend on the local velocity and the frequency.
At the highest level of the ET, the subtrees represent big parts of the
domain that appear as results of the ND algorithm. Most likely, the
“average velocity” for these big parts experiences minor variation
from one part to another. However, if we move down along the tree,
the granulation becomes finer and variation of the velocity becomes
higher. This leads to the larger difference of numerical ranks and the
associated unbalancing of the cluster nodes.
A similar cause of unbalancing also appears at lower levels of

the ET when the parts of the computational domain become small
parallelepipeds. These parallelepipeds have faces of two different
types — the faces that are parts of the outer boundary of the domain
and the faces that are parallel to separators. A small parallelepiped

0 2000 4000

r (m)

0

0.05

0.1

0.15

0.2
1(r)

5 ppw

10 ppw

20ppw

0 2000 4000

r (m)

0

0.05

0.1

0.15

0.2
2(r)

5 ppw

10 ppw

20ppw

Figure 10. Relative errors of numerical solutions computed for grid
steps h; h∕2, and h∕4 (64, 32, and 16 m) in a homogeneous medium
as a function of the domain radius r.

0 1000 2000 3000
r (m)

0

0.01

0.02

0.03

0.04
1(r)

u(h/2)

u(h)

0 1000 2000 3000
r (m)

0

0.01

0.02

0.03

0.04
2(r)

u(h/2)

u(h)

Figure 11. Relative deviation of solutions uh; uh∕2 from uh∕4 for a
model with the velocity being a linear function of the depth.

1 2 4 8 16 32 64 128 256

P

1

2

4

8

16

32

S
ca

lin
g 

fa
ct

or

4 Hz

8 Hz

20 Hz

Figure 12. The scaling factors for the direct solver as functions of
the number P of cluster nodes shown for the OT velocity model.

32 64 128 256

P

1

1.2

1.4

1.6

1.8

2

S
ca

lin
g 

fa
ct

or

TZ 3 Hz

TZ 7 Hz

OT 4 Hz

OT 8 Hz

OT 20 Hz

Figure 13. Scaling factors t32∕tP for the TZ (1.8 × 108 equations)
and OT models (2.4 × 107 equations). Observe the higher scalabil-
ity for the larger TZ model.

Direct 3D Helmholtz solver T215

D
ow

nl
oa

de
d 

01
/0

2/
23

 to
 7

3.
13

6.
10

5.
22

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

S
E

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/g

eo
20

18
-0

46
5.

1



may have from zero to three faces that are parts of the outer boun-
dary and from six to three faces parallel to the separators. These
differences cause different amount of computations associated with
the different nodes of the ET.
Solution of a problem with the TZ model requires at least 32 clus-

ter nodes, and we cannot use the definition of the scaling factor
described above. In Figure 13, we show graphs of the ratios t32

tP
;

where t32 stands for runtime on 32 cluster nodes. Figure 13 also
shows data for the smaller OT model revealing that scaling and
hence performance are better for larger systems of equations using
the FDFD approach.

Comparison to a time-domain solver

We compare our solver with a time-domain FD (TDFD) solver
developed by the SEISCOPE Consortium (2019). To simulate wave
propagation in the time domain, the initial-boundary value problem
for the wave equation is solved by TDFD. To eliminate reflection of
waves from the boundaries, the domain is surrounded with PMLs.
The differential equation is approximated using a fourth-order
explicit FD scheme. The MPI implementation of the TDFD solver
uses parallelization with respect to shots, so that one shot is as-
signed per single cluster compute node. No data exchange between
nodes is performed because the solutions for different shots are fully
independent of each other. Dependence of the TDFD solver runtime
on the number of seismic shots and the number of compute nodes
can be described by the formula

tTDFDðNnodes; NshotsÞ ¼ tTDFDð1; 1Þ
�
Nshots

Nnodes

	
; (33)

where ½a� stands for the least integer greater than or equal to a and
tTDFDð1; 1Þ depends on some other parameters such as the problem
size, the sound velocity variability, and the hardware parameters.
To get the solution in the frequency domain, the Fourier trans-

form is applied to the time domain solution. In TDFD, the frequency
spectrum of the shots contains all time frequencies, so multiple fre-
quency components are obtained all at once.
To underline the different approaches, our method is referred

to as the FDFD solver. Results of accuracy tests are provided in

Figure 14 (the OT model) and Figure 15 (the TZ model) in terms
of functions βkðrÞ introduced in the previous section. In Figures 14
and 15, these functions are used to demonstrate the difference
between the solution obtained with TDFD solver and the solution
obtained with the FDFD solver.
For both models, solutions were computed using the parameters

listed in Table 2. Note that, for each model, the solutions were com-
puted for three different frequencies. The corresponding numbers of
grid steps for the FDFD solver are shown in columns Nx, Ny, and
Nz, whereas the total number of grid points is in column N, and the
number of points per wavelength is listed under the “ppw” column.
For the TZ model, snapshots of the real part of the solution com-
puted along the horizontal plane at a depth of one grid step are
shown in Figure 16.
The time-domain solution obtained via the TDFD solver contains

components that correspond to all three values of the frequency. So,
the solver was run once with a grid step of 30 m. The modeling time
interval was [0, 10 s].
For particular pairs of values ðNnodes; NshotsÞ, the measured run-

times (in s) are provided in Tables 3 and 4 in the form of fractions,
where the runtime tTDFD ¼ tTDFDðNnodes; NshotsÞ is put as the nu-
merator, whereas tFDFDðNnodes; NshotsÞ is put as the denominator.
Note that the value of time for FDFD comprises the sum of the run-
time to solve the problem for all three frequencies. Ideal scalability
of the TDFD solver with respect to Nnodes was assumed to fill in the
table instead of repeating multiple shot.
Tables 3 and 4 summarize computation times of the two solvers

in terms of Nshots and Nnodes (Figure 17). For few shots, TDFD

0 2000 4000 6000
r (m)

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
1(r)

15 Hz

7 Hz

5 Hz

0 2000 4000 6000
r (m)

0.08

0.09

0.1

0.11

0.12

0.13
2(r)

15 Hz

7 Hz

5 Hz

Figure 14. For the OT model, the relative deviations of the solu-
tions obtained with the TDFD and FDFD methods.

0 5000 10000

r (m)

0

0.05

0.1

0.15

0.2
1(r)

7 Hz

3 Hz

2 Hz

0 5000 10000

r (m)

0

0.02

0.04

0.06

0.08

0.1

0.12
2(r)

7 Hz

3 Hz

2 Hz

Figure 15. The same as Figure 14 but for the TZ model.

Table 2. Parameters of the numerical experiments.

Model ν (Hz) h (m) ppw Nx Ny Nz N ¼ NxNyNz

OT 5 90 5.1 110 110 52 629,200

7 60 5.4 165 165 78 2,123,550

15 30 5.1 330 330 155 16,879,500

TZ 2 90 5.8 200 261 77 4,019,400

3 60 5.8 300 391 116 13,606,800

7 30 5.0 600 781 231 108,246,600

T216 Kostin et al.

D
ow

nl
oa

de
d 

01
/0

2/
23

 to
 7

3.
13

6.
10

5.
22

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

S
E

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/g

eo
20

18
-0

46
5.

1



solvers are relatively efficient, but for larger numbers of shots and
nodes, FDFD becomes relatively more efficient per shot. The thick
line (Figure 17) is the “line of equal performance” of the two solv-
ers. For a given number of Nnodes, this line defines the number of
shots that is “big enough” to fully reap the benefits of the FDFD
solver and reach or exceed the numerical performance of TDFD
solvers. For example, for a problem with a comparatively small
number of shots that has to be solved on a particular cluster (a point
close to point C of line segment CD), the fastest way would be using
the TDFD solver. As the number of shots increases (the point moves
to D along CD), starting from some number of shots, the FDFD
direct solver becomes faster than the TDFD
solver. Another way to look at it is to fix the num-
ber of shots, such as defined by horizontal line
AB. Then moving from point A toward point B
along horizontal segment AB means solving the
same problem on clusters with increasing number
of nodes. For a fixed number of shots, the FDFD
direct solver would usually be faster for compara-
tively smaller clusters, but on bigger clusters the
TDFD solver performs better. Such behavior can
be explained with the help of the following rea-
soning. For the TDFD solver, the runtime is
roughly proportional to Nshots with coefficient
tTDFDð1; 1Þ∕Nnodes (see equation 33). The runtime
for the FDFD solver can be described by a sum
tfactðNnodesÞ þ tsolveðNnodes; NshotsÞ representing
time for the factorization and time for the solving
step correspondingly. In this sum, the first sum-
mand does not depend on the number of shots.
To some extent, the dependence of the summand
can be thought of as approximately linear
tsolveðNnodes; NshotsÞ ≅ tsolveðNnodes; 1Þ · Nshots. The values of coeffi-
cients tTDFDð1; 1Þ∕Nnodes and tsolveðNnodes; 1Þ can be taken from
Table 3 or 4. For example, for the OT model tTDFDð1; 1Þ ¼ 161,
tsolveð16; 1Þ ¼ 0.4. This simple insight explains that if the number
of shots increases, then FDFD starts to win from a certain value
of shots.
In general, the necessary and sufficient condition for the existence

of points ðNnodes; NshotsÞ where the FDFD wins is the following:

tTDFDð1; 1Þ
Nnodes

> tsolveðNnodes; 1Þ: (34)

To satisfy this condition, the right side of this inequality should be
inversely proportional toNnodes, or, in other words, the solving step is
MPI parallelized.

Performance: Comparison to Intel® MKL parallel
direct sparse solver for clusters

To estimate the efficiency of a solver, its performance data in giga
flops per second (GFlops) are used. Among other parameters (the
hardware, software, number of MPI processes, etc.), these data de-
pend on the problem (more precisely, the size of the model and
some parameters that characterize the problem). To get performance
data for the solver, one has to count the number of floating point
operations used to compute the solution of the problem and measure
the runtime. This approach works well for comparatively simple
algorithms in which the flops counts can be calculated. The sparsity

of the matrix, use of the low-rank approximation, incorporating the
iterative refinement in computations makes impossible rigorous
counting of the floating point operations.
Comparison to another solver is an alternative approach to get

an impression on the solver efficiency. We compared our solver
with parallel direct sparse solver for clusters from Intel(R) MKL
(Intel(R) Parallel Studio XE 2017 Update 4) referred to below as
PARDISO. The comparison was made on a small homogeneous
model of size 201 × 201 × 101 referred to below as SH and the
medium size OT model described above (see Table 5). RAM data
in Table 5 are the peak memory usage per node. It is clearly seen

Figure 16. Horizontal snapshots of the real part of the solution for the TZ model.
(a) Frequency υ ¼ 2 Hz, depth 90 m and (b) υ ¼ 7 Hz, depth 30 m.

Table 3. The OT model: Computation times for different
combinations of Nnodes and Nshots.

Nshots

1 128 512 1280

Nnodes 2 161/7377 10,304/7755 41,216/8899 103,040/11,186

4 161/4294 5152/4475 20,608/5023 51,520/6117

8 161/3295 2576/3387 10,304/3666 25,760/4223

16 161/2927 1288/2978 5152/3132 12,880/3439

Table 4. The TZ model: Computation times for different
combinations of Nnodes and Nshots.

Nshots

1 128 1280 12800

Nnodes 32 1066/8416 4298/8565 42,737/9917 427,370/23,435

64 1066/6920 2159/7014 21,384/7865 213,840/16,379

128 1066/6093 1099/6169 10,747/6858 107,470/13,752

256 1066/6093 1099/6130 5450/6475 54,500/9922

Direct 3D Helmholtz solver T217

D
ow

nl
oa

de
d 

01
/0

2/
23

 to
 7

3.
13

6.
10

5.
22

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

S
E

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/g

eo
20

18
-0

46
5.

1



that our solver has an essential advantage in memory usage but has
worse performance on small problems. Starting from moderate-size
problems, the solver outperforms the MKL Cluster PARDISO.

CONCLUSION

We present a direct method for parallel solution of the acoustic
wave equation in 3D heterogeneous media. To reduce memory con-
sumption, the method uses intermediate data sparsity for compression.
The compression technique is based on low-rank approximation of
fill-in blocks. It is applied directly to blocks lying below the diagonal
of the triangular factor. The diagonal blocks are also compressed using
the HODLR format. These methods help to solve a system of approx-
imately 109 equations corresponding to the large velocity models of
interest to geophysical exploration. The strong scalability of the solver
is good for a moderate number of cluster nodes and large enough
problems. This direct solver is successfully used for geophysical mod-
eling applications, and some challenges remain to be resolved. Poor
MPI scalability of the LDLT factorization for the number of compute
nodes beyond 16 is one of the challenges.
Comparing the FDFD solver with a TDFD solver reveals that

each method has its strengths and weaknesses. Detailed numerical
experiments with real-world scenarios using a transition zone model
and Shaheen II supercomputer demonstrate the existence of the
line of equal performance defined in terms of number of shots
and available nodes. The time-domain solver performs better for

comparatively large ratios of Nnodes∕Nshots, whereas the direct
solver is relatively more efficient for smaller ratios of Nnodes∕Nshots.
Although generally larger number of nodes become available

with time (as computing power becomes cheaper), seismic acquis-
ition experiences significant growth in trace density per square
kilometer enabled by larger number of sources and receivers. The
concurrent “data tsunami” and increase in computing power may
lead to diverse scenarios that the geophysical community needs to
be prepared to handle. Depending on the available computing
power and number of shots for a particular imaging or FWI prob-
lem, one or the other solver may be significantly more efficient.
Therefore, the optimal FWI toolbox should contain both solvers and
apply the most efficient for the specific scenario based on the line of
equal performance.
In the future, the techniques used for solving the Helmholtz

equation are planned to be extended to more complicated media (elas-
ticity with possible anisotropy and viscosity). The current version of
the solver can solve approximately 109 equations. Additional optimi-
zation of the factorization step should allow computations for larger
models in the near future.

ACKNOWLEDGMENTS

We are thankful to KAUST for providing us access to the super-
computer Shaheen II. We greatly appreciate editors V. Socco and
S. Hestholm and the anonymous reviewers whose comments helped
to improve the quality of the paper.

DATA AND MATERIALS AVAILABILITY

Data associated with this research are confidential and cannot be
released.

REFERENCES

Amestoy, P. R., C. Ashcraft, O. Boiteau, A. Buttari, J.-Y. L’Excellent, and C.
Weisbecker, 2015, Improving multifrontal methods by means of block
low-rank representations: SIAM Journal on Scientific Computing, 37,
A1451–A1474, doi: 10.1137/120903476.

Aminfar, A., S. Ambikasaran, and E. Darve, 2016, A fast block low-rank
dense solver with applications to finite-element matrices: Journal of Com-
putational Physics, 304, 170–188, doi: 10.1016/j.jcp.2015.10.012.

Aminzadeh, F., J. Brac, and T. Kuntz, 1997, 3-D salt and overthrust models:
SEG, SEG/EAGE Modelling Series.

Bakulin, A., M. Dmitriev, V. Kostin, and S. Solovyev, 2018, Benchmarking 3D
time-and frequency-domain solvers for FWI applications for different cluster
sizes and variable number of sources: 88th Annual International Meeting,
SEG, Expanded Abstracts, 3888–3892, doi: 10.1190/segam2018-2994516.1.

Belonosov, M., M. Dmitriev, V. Kostin, D. Neklyudov, and V. Tcheverda,
2017, An iterative solver for the 3D Helmholtz equation: Journal of Com-
putational Physics, 345, 330–344, doi: 10.1016/j.jcp.2017.05.026.

Belonosov, M., V. Kostin, D. Neklyudov, and V. Tcheverda, 2018, 3D
numerical simulation of elastic waves with a frequency-domain iterative
solver: Geophysics, 83, no. 6, T333–T344, doi: 10.1190/geo2017-0710.1.

Berenger, J.-P., 1994, A perfectly matched layer for the absorption of electro-
magnetic waves: Journal of Computational Physics, 114, 185–200, doi: 10
.1006/jcph.1994.1159.

Bermúdez, A., L. Hervella-Nieto, A. Prieto, and R. Rodríguez, 2007, An
optimal perfectly matched layer with unbounded absorbing function for
time-harmonic acoustic scattering problems: Journal of Computational
Physics, 223, 469–488, doi: 10.1016/j.jcp.2006.09.018.

BLAS, 2017, Basic Linear Algebra Subprograms, www.netlib.org/blas/, ac-
cessed 20 April 2019.

Bunch, J. R., L. Kaufman, and B. N. Parlett, 1976, Decomposition of a
symmetric matrix: Numerische Mathematik, 27, 95–109, doi: 10.1007/
BF01399088.

Chandrasekaran, S., M. Gu, and T. Pals, 2006, A fast ULV decomposition
solver for hierarchically semiseparable representations: SIAM Journal
on Matrix Analysis and Applications, 28, 603–622, doi: 10.1137/
S0895479803436652.

Table 5. Performance and memory comparison of our solver
and the MKL Cluster PARDISO.

Model Measured data Our solver PARDISO

SH Factorization time (s) 967 543

RAM (GB) 8.1 23

OT Factorization time (s) 836 2615

RAM (GB) 17.9 49

Note: Data obtained on 129 compute nodes using 129 MPI processes and 20 OMP
threads. Each node has 128 GB RAM. The threshold for our solver was 10−4.

BA

C

D

FDFD direct
solver wins

TDFD
solver wins

Nnodes

N
sh

ot
s

Figure 17. Relative performance of the TDFD and FDFD solvers
shown with the number of shots (vertical axis) versus the number of
nodes (the horizontal axis). The thick line defines the line of equal
performance.

T218 Kostin et al.

D
ow

nl
oa

de
d 

01
/0

2/
23

 to
 7

3.
13

6.
10

5.
22

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

S
E

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/g

eo
20

18
-0

46
5.

1

http://dx.doi.org/10.1137/120903476
http://dx.doi.org/10.1137/120903476
http://dx.doi.org/10.1016/j.jcp.2015.10.012
http://dx.doi.org/10.1016/j.jcp.2015.10.012
http://dx.doi.org/10.1016/j.jcp.2015.10.012
http://dx.doi.org/10.1016/j.jcp.2015.10.012
http://dx.doi.org/10.1016/j.jcp.2015.10.012
http://dx.doi.org/10.1016/j.jcp.2015.10.012
http://dx.doi.org/10.1190/segam2018-2994516.1
http://dx.doi.org/10.1190/segam2018-2994516.1
http://dx.doi.org/10.1190/segam2018-2994516.1
http://dx.doi.org/10.1016/j.jcp.2017.05.026
http://dx.doi.org/10.1016/j.jcp.2017.05.026
http://dx.doi.org/10.1016/j.jcp.2017.05.026
http://dx.doi.org/10.1016/j.jcp.2017.05.026
http://dx.doi.org/10.1016/j.jcp.2017.05.026
http://dx.doi.org/10.1016/j.jcp.2017.05.026
http://dx.doi.org/10.1190/geo2017-0710.1
http://dx.doi.org/10.1190/geo2017-0710.1
http://dx.doi.org/10.1190/geo2017-0710.1
http://dx.doi.org/10.1006/jcph.1994.1159
http://dx.doi.org/10.1006/jcph.1994.1159
http://dx.doi.org/10.1006/jcph.1994.1159
http://dx.doi.org/10.1006/jcph.1994.1159
http://dx.doi.org/10.1016/j.jcp.2006.09.018
http://dx.doi.org/10.1016/j.jcp.2006.09.018
http://dx.doi.org/10.1016/j.jcp.2006.09.018
http://dx.doi.org/10.1016/j.jcp.2006.09.018
http://dx.doi.org/10.1016/j.jcp.2006.09.018
http://dx.doi.org/10.1016/j.jcp.2006.09.018
www.netlib.org/blas/
www.netlib.org/blas/
www.netlib.org/blas/
http://dx.doi.org/10.1007/BF01399088
http://dx.doi.org/10.1007/BF01399088
http://dx.doi.org/10.1007/BF01399088
http://dx.doi.org/10.1137/S0895479803436652
http://dx.doi.org/10.1137/S0895479803436652
http://dx.doi.org/10.1137/S0895479803436652


Dablain, M. A., 1986, The application of high-order differencing to the
scalar wave equation: Geophysics, 51, 54–66, doi: 10.1190/1.1442040.

Davis, T. A., S. Rajamanickam, and W. M. Sid-Lakhdar, 2016, A survey of
direct methods for sparse linear systems: Acta Numerica, 25, 383–566,
doi: 10.1017/S0962492916000076.

Duff, I. S., and J. K. Reid, 1983, The multifrontal solution of indefinite
sparse symmetric linear systems: ACM Transactions on Mathematical
Software, 9, 302–325, doi: 10.1145/356044.356047.

Duff, I. S., J. K. Reid, N. Munksgaard, and H. B. Nielsen, 1979, Direct sol-
ution of sets of linear equations whose matrix is sparse, symmetric and
indefinite: IMA Journal of Applied Mathematics, 23, 235–250, doi: 10
.1093/imamat/23.2.235.

Erlangga, Y. A., and R. Nabben, 2008, On a multilevel Krylov method for
the Helmholtz equation preconditioned by shifted Laplacian: Electronic
Transactions on Numerical Analysis, 31, 403–424.

Etienne, V., T. Tonellot, P. Thierry, V. Berthoumieux, and C. Andreolli,
2014, Optimization of the seismic modeling with the time-domain
finite-difference method: 84th Annual International Meeting, SEG,
Expanded Abstracts, 3536–3540, doi: 10.1190/segam2014-0176.1.

George, A., 1973, Nested dissection of a regular finite element mesh:
SIAM Journal of Numerical Analysis, 10, 345–363, doi: 10.1137/
0710032.

George, A., J. Liu, and E. Ng, 1994, Computer solution of sparse linear
systems: Academic Press.

Ghysels, P., X. S. Li, F.-H. Rouet, S. Williams, and A. Napov, 2016, An
efficient multicore implementation of a novel HSS-structured multifrontal
solver using randomized sampling: SIAM Journal on Scientific Comput-
ing, 38, S358–S384, doi: 10.1137/15M1010117.

Glinskiy, B., N. Kuchin, V. Kostin, and S. Solovyev, 2017, Parallel compu-
tations for solving 3D Helmholtz problem by using direct solver with low-
rank approximation and HSS technique: Springer, Lecture Notes on Com-
puter Sciences 10187, 342–349.

Godunov, S. K., A. Antonov, O. Kiriljuk, and V. Kostin, 2013, Guaranteed
accuracy in numerical linear algebra: Springer Science and BusinessMedia.

Golub, G., and C. V. Loan, 1996, Matrix computations, 3rd ed.: The Johns
Hopkins University Press.

Hustedt, B., S. Operto, and J. Virieux, 2004, Mixed-grid and staggered-grid
finite-difference methods for frequency-domain acoustic wave modelling:
Geophysical Journal International, 157, 1269–1296, doi: 10.1111/j.1365-
246X.2004.02289.x.

Intel(R) MKL, 2019, Intel(R) Match Kernel Library, https://software.intel
.com/en-us/intel-mkl, accessed 20 April 2019.

Jo, C.-H., C. Shin, and J. H. Suh, 1996, An optimal 9-point, finite-difference,
frequency-space, 2-D scalar wave extrapolator: Geophysics, 61, 529–537,
doi: 10.1190/1.1443979.

Kostin, V., S. Solovyev, H. Liu, and A. Bakulin, 2017, HSS cluster-based
direct solver for acoustic wave equation: 87th Annual International Meet-
ing, SEG, Expanded Abstracts, 4017–4021, doi: 10.1190/segam2017-
17443086.1.

LAPACK, 2017, Linear Algebra Package, www.netlib.org/lapack/, accessed
20 April 2019.

Liu, Y., and M. K. Sen, 2011, Finite-difference modeling with adaptive var-
iable-length spatial operators: Geophysics, 76, no. 4, T79–T89, doi: 10
.1190/1.3587223.

Martinsson, P.-G., and S. Voronin, 2011, A randomized blocked algorithm
for efficiently computing rank-revealing factorizations of matrices: SIAM
Journal on Scientific Computing, 38, S485–S507, doi: 10.1137/
15M1026080.

Mulder, W., and R.-E. Plessix, 2004, How to choose a subset of frequencies
in frequency domain finite-difference migration: Geophysical Journal
International, 158, 801–812, doi: 10.1111/j.1365-246X.2004.02336.x.

Operto, S., J. Virieux, P. Amestoy, J. Y. L’Excellent, L. Giraud, and H. Ben
Hadj Ali, 2007, 3D finite-difference frequency-domain modeling of
visco-acoustic wave propagation using a massively parallel direct solver:
A feasibility study: Geophysics, 72, no. 5, SM195–SM211, doi: 10.1190/
1.2759835.

Ourabah, A., J. Keggin, C. Brooks, D. Ellis, and J. Etgen, 2015, Seismic ac-
quisition, what really matters?: 85th Annual International Meeting, SEG,
Expanded Abstracts, doi: 10.1190/segam2015-5844787.1.

Pichon, G., E. Darve, M. Faverge, P. Ramet, and J. Roman, 2018, Sparse
supernodal solver using block low-rank compression: Design, performance
and analysis: Journal of Computational Science, 27, 255–270, doi: 10.1016/
j.jocs.2018.06.007.

Plessix, R.-E., 2007, A Helmholtz iterative solver for 3D seismic-imaging
problems: Geophysics, 72, no. 5, SM185–SM194, doi: 10.1190/1.2738849.

Plessix, R.-E., 2017, Some computational aspects of the time and frequency
domain formulations of seismic waveform inversion: Birkhauser, Modern
Solvers for Helmholtz Problems, 159–187.

Schenk, O., and K. Gärtner, 2006, On fast factorization pivoting methods for
sparse symmetric indefinite systems: Electronic Transactions on Numeri-
cal Analysis, 23, 158–179.

SEISCOPE Consortium, 2019, https://seiscope2.osug.fr, accessed 20 April
2019.

Shaheen II, n.d., https://www.hpc.kaust.edu.sa/content/shaheen-ii, accessed
20 April 2019.

Shin, C., and Y. H. Cha, 2008, Waveform inversion in the Laplace domain:
Geophysical Journal International, 173, 922–931, doi: 10.1111/j.1365-
246X.2008.03768.x.

Top 500 List, 2018, https://www.top500.org/, accessed 20 April 2019.
Vainberg, B. R., 1966, Principles of radiation, vanishing attenuation and
limit amplitude in the general theory of partial differential equations: Us-
pekhi Matematicheskhi Nauk, 21, 115–194.

Vigh, D., and E. W. Starr, 2008, Comparisons for waveform inversion, time
domain or frequency domain?: 78th Annual International Meeting, SEG,
Expanded Abstracts, 1890–1894, doi: 10.1190/1.3059269.

Virieux, J., and S. Operto, 2009, An overview of full-waveform inversion in
exploration geophysics: Geophysics, 74, no. 6, WCC1–WCC26, doi: 10
.1190/1.3238367.

Virieux, J., S. Operto, H. Ben-Hadj-Ali, R. Brosssier, V. Etienne, F. Sourber,
L. Giraud, and A. Haidar, 2009, Seismic wave modeling for seismic im-
aging: The Leading Edge, 28, 538–544, doi: 10.1190/1.3124928.

Wang, S., M. de Hoop, and J. Xia, 2011, On 3D modeling of seismic wave
propagation via a structured parallel multifrontal direct Helmholtz solver:
Geophysical Prospecting, 59, 857–873, doi: 10.1111/j.1365-2478.2011
.00982.x.

Wang, S., X. S. Li, F.-H. Rouet, J. Xia, and M. V. de Hoop, 2016, A parallel
geometric multifrontal solver using hierarchically semiseparable struc-
ture: ACM Transactions on Mathematical Software, 42, 1–21, doi: 10
.1145/2935754.

Wilkinson, J. H., 1964, Rounding errors in algebraic processes: Prentice Hall.
Xia, J., 2013, Efficient structured multifrontal factorization for large sparse
matrices: SIAM Journal on Scientific Computing, 35, A832–A860, doi:
10.1137/120867032.

Xia, J., S. Chandrasekaran, M. Gu, and X. S. Li, 2010, Fast algorithms for
hierarchically semiseparable matrices: Numerical Linear Algebra with
Applications, 17, 953–976, doi: 10.1002/nla.v17.6.

Direct 3D Helmholtz solver T219

D
ow

nl
oa

de
d 

01
/0

2/
23

 to
 7

3.
13

6.
10

5.
22

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

S
E

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/g

eo
20

18
-0

46
5.

1

http://dx.doi.org/10.1190/1.1442040
http://dx.doi.org/10.1190/1.1442040
http://dx.doi.org/10.1190/1.1442040
http://dx.doi.org/10.1017/S0962492916000076
http://dx.doi.org/10.1017/S0962492916000076
http://dx.doi.org/10.1145/356044.356047
http://dx.doi.org/10.1145/356044.356047
http://dx.doi.org/10.1145/356044.356047
http://dx.doi.org/10.1093/imamat/23.2.235
http://dx.doi.org/10.1093/imamat/23.2.235
http://dx.doi.org/10.1093/imamat/23.2.235
http://dx.doi.org/10.1093/imamat/23.2.235
http://dx.doi.org/10.1190/segam2014-0176.1
http://dx.doi.org/10.1190/segam2014-0176.1
http://dx.doi.org/10.1190/segam2014-0176.1
http://dx.doi.org/10.1137/0710032
http://dx.doi.org/10.1137/0710032
http://dx.doi.org/10.1137/0710032
http://dx.doi.org/10.1137/15M1010117
http://dx.doi.org/10.1137/15M1010117
http://dx.doi.org/10.1111/j.1365-246X.2004.02289.x
http://dx.doi.org/10.1111/j.1365-246X.2004.02289.x
http://dx.doi.org/10.1111/j.1365-246X.2004.02289.x
http://dx.doi.org/10.1111/j.1365-246X.2004.02289.x
http://dx.doi.org/10.1111/j.1365-246X.2004.02289.x
http://dx.doi.org/10.1111/j.1365-246X.2004.02289.x
http://dx.doi.org/10.1111/j.1365-246X.2004.02289.x
https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-mkl
http://dx.doi.org/10.1190/1.1443979
http://dx.doi.org/10.1190/1.1443979
http://dx.doi.org/10.1190/1.1443979
http://dx.doi.org/10.1190/segam2017-17443086.1
http://dx.doi.org/10.1190/segam2017-17443086.1
http://dx.doi.org/10.1190/segam2017-17443086.1
http://dx.doi.org/10.1190/segam2017-17443086.1
www.netlib.org/lapack/
www.netlib.org/lapack/
www.netlib.org/lapack/
http://dx.doi.org/10.1190/1.3587223
http://dx.doi.org/10.1190/1.3587223
http://dx.doi.org/10.1190/1.3587223
http://dx.doi.org/10.1137/15M1026080
http://dx.doi.org/10.1137/15M1026080
http://dx.doi.org/10.1137/15M1026080
http://dx.doi.org/10.1111/j.1365-246X.2004.02336.x
http://dx.doi.org/10.1111/j.1365-246X.2004.02336.x
http://dx.doi.org/10.1111/j.1365-246X.2004.02336.x
http://dx.doi.org/10.1111/j.1365-246X.2004.02336.x
http://dx.doi.org/10.1111/j.1365-246X.2004.02336.x
http://dx.doi.org/10.1111/j.1365-246X.2004.02336.x
http://dx.doi.org/10.1190/1.2759835
http://dx.doi.org/10.1190/1.2759835
http://dx.doi.org/10.1190/1.2759835
http://dx.doi.org/10.1190/1.2759835
http://dx.doi.org/10.1190/segam2015-5844787.1
http://dx.doi.org/10.1190/segam2015-5844787.1
http://dx.doi.org/10.1190/segam2015-5844787.1
http://dx.doi.org/10.1016/j.jocs.2018.06.007
http://dx.doi.org/10.1016/j.jocs.2018.06.007
http://dx.doi.org/10.1016/j.jocs.2018.06.007
http://dx.doi.org/10.1016/j.jocs.2018.06.007
http://dx.doi.org/10.1016/j.jocs.2018.06.007
http://dx.doi.org/10.1016/j.jocs.2018.06.007
http://dx.doi.org/10.1016/j.jocs.2018.06.007
http://dx.doi.org/10.1190/1.2738849
http://dx.doi.org/10.1190/1.2738849
http://dx.doi.org/10.1190/1.2738849
https://seiscope2.osug.fr
https://seiscope2.osug.fr
https://seiscope2.osug.fr
https://www.hpc.kaust.edu.sa/content/shaheen-ii
https://www.hpc.kaust.edu.sa/content/shaheen-ii
https://www.hpc.kaust.edu.sa/content/shaheen-ii
https://www.hpc.kaust.edu.sa/content/shaheen-ii
https://www.hpc.kaust.edu.sa/content/shaheen-ii
http://dx.doi.org/10.1111/j.1365-246X.2008.03768.x
http://dx.doi.org/10.1111/j.1365-246X.2008.03768.x
http://dx.doi.org/10.1111/j.1365-246X.2008.03768.x
http://dx.doi.org/10.1111/j.1365-246X.2008.03768.x
http://dx.doi.org/10.1111/j.1365-246X.2008.03768.x
http://dx.doi.org/10.1111/j.1365-246X.2008.03768.x
http://dx.doi.org/10.1111/j.1365-246X.2008.03768.x
https://www.top500.org/
https://www.top500.org/
https://www.top500.org/
http://dx.doi.org/10.1190/1.3059269
http://dx.doi.org/10.1190/1.3059269
http://dx.doi.org/10.1190/1.3059269
http://dx.doi.org/10.1190/1.3238367
http://dx.doi.org/10.1190/1.3238367
http://dx.doi.org/10.1190/1.3238367
http://dx.doi.org/10.1190/1.3124928
http://dx.doi.org/10.1190/1.3124928
http://dx.doi.org/10.1190/1.3124928
http://dx.doi.org/10.1111/j.1365-2478.2011.00982.x
http://dx.doi.org/10.1111/j.1365-2478.2011.00982.x
http://dx.doi.org/10.1111/j.1365-2478.2011.00982.x
http://dx.doi.org/10.1111/j.1365-2478.2011.00982.x
http://dx.doi.org/10.1111/j.1365-2478.2011.00982.x
http://dx.doi.org/10.1111/j.1365-2478.2011.00982.x
http://dx.doi.org/10.1145/2935754
http://dx.doi.org/10.1145/2935754
http://dx.doi.org/10.1137/120867032
http://dx.doi.org/10.1137/120867032
http://dx.doi.org/10.1002/nla.v17.6
http://dx.doi.org/10.1002/nla.v17.6
http://dx.doi.org/10.1002/nla.v17.6
http://dx.doi.org/10.1002/nla.v17.6

