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elastic cylindrical structures
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ABSTRACT

A new spectral-method algorithm can be used to study wave
propagation in cylindrically layered fluid and elastic structures.
The cylindrical structure is discretized with Chebyshev points in
the radial direction, whereas differentiation matrices are used to
approximate the differential operators. We express the problem
of determining modal dispersions as a generalized eigenvalue
problem that can be solved readily for all eigenvalues corre-
sponding to various axial wavenumbers. Modal dispersions of
guided modes can then be expressed in terms of axial wavenum-
bers as a function of frequency. The associated eigenvectors are
related to the displacement potentials that can be used to calcu-

late radial distributions of modal amplitudes as well as stress
components at a given frequency. The workflow includes input
parameters and the construction of differentiation matrices and
boundary conditions that yield the generalized eigenvalue prob-
lem. Results from this algorithm for a fluid-filled borehole sur-
rounded by an elastic formation agree very well with those from a
root-finding search routine. Computational efficiency of the al-
gorithm has been demonstrated on a four-layer completion mod-
el used in a hydrocarbon-producing well. Even though the algo-
rithm is numerically unstable at very low frequencies, it produces
reliable and accurate results for multilayered cylindrical struc-
tures at moderate frequencies that are of interest in estimating
formation properties using modal dispersions.

INTRODUCTION

Modeling various wave modes propagating along a cylindrical
borehole is helpful to understand and allow quantitative interpreta-
tion of borehole sonic and seismic measurements. Various modes
and head waves propagate in a fluid-filled borehole (Sinha and Zer-
oug, 1997). Most notably, this includes compressional and shear
head waves in addition to the flexural, Stoneley, pseudo-Rayleigh,
and leaky modes. Recognizing these head waves and modes further
enhances sonic-log quality and validates the use of dispersion curves
in related applications. To fully understand and analyze the various
modes/head waves present in recorded waveformes, it is of interest to
be able to model their characteristics properly as a function of forma-
tion, fluid parameters, and geometry.

The classic way to solve such problems is to use a root-finding
technique to solve the frequency equation. Although this is not a sig-

nificant problem for simple structures such as solid cylinders (Gazis,
1959a, 1959b; Zemanek, 1972), it becomes more complicated for
multilayered structures because the separation of the different roots
in the complex plane can be a challenging task.

An alternative approach to modeling mode dispersion is to use
spectral collocation methods, which are efficient and accurate tools
for solving partial differential equations. These methods have been
widely used in numerical fluid dynamics (Canuto et al., 1988) as
well as in geophysical modeling (Fornberg, 1987; Kosloff et al.,
1990; Carcione et al., 2002).

Adamou and Craster (2004) introduce an algorithm based on a
spectral Chebyshev scheme that computes the dispersion of circum-
ferential waves in an elastic annulus. Based on this work, Karpfinger
etal. (2008a) have developed an algorithm for axisymmetric modes
propagating in cylindrical structures with an arbitrary number of flu-
id and solid layers. This algorithm efficiently computes dispersion
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and radial profiles of various modes propagating in such structures.

The spectral method, which we introduce in this article, dis-
cretizes the underlying equations with Chebyshev collocation points
and differentiation matrices leading to a set of linear equations. We
then solve the corresponding system of linear equations as a general-
ized eigenvalue problem. Note that the eigenvalues we obtain for a
given frequency correspond to the slownesses of the different
modes.

The purpose of this article is to describe the algorithm and its
MATLAB implementation to compute propagating modes in cylin-
drical structures with arbitrary solid and fluid layers. We briefly dis-
cuss the underlying equations and the basic principles of spectral
collocation methods. Next, we detail the workflow for implementing
the MATLAB code. Following this, we discuss the solution of the
generalized eigenvalue problem, which yields eigenvalues and
eigenvectors. In addition, we show how we separate the eigenvalues
associated with the propagating modes from the nonpropagating
modes and spurious eigenvalues. Subsequently, we illustrate how
related dispersion curves are computed. Furthermore, we show how
eigenvectors, which correspond to the displacement potentials, al-
low one to compute the distribution of the stress and displacement
components along the radius. Finally, we illustrate the results of the
spectral-method algorithm using examples from borehole acoustics
involving two and four layers.

THEORY

We develop the theory to compute dispersion curves in cylindrical
structures with arbitrary fluid and solid layers using the spectral ap-
proach in Karpfinger et al. (2008a). The underlying equations used
for the numerical scheme are provided in Appendix A. Equations for
an elastic solid and a nonviscous fluid are, respectively, presented in
equations A-1-A-10.

For each layer of the considered structure, we compute the differ-
ential operator of the fluid £, (equation A-7) or solid layer. The elas-
tic solid matrix consists of two differential operators as aresult of the
two differential equations: £p (equation A-1) is the P-wave and £
(equation A-2) is the S-wave differential operator. These differential
operators are combined in a diagonal block matrix £. In the case of a

Ny, oy, ey, 00 @

Figure 1. Input parameters for fluid-filled tube — two-layer system.
For each layer 7, the P-wave velocities Vp,;, S-wave velocities Vy;,
densities p;, number of collocation points V;, and radii a; must be
known.

fluid-solid structure (i.e., two-layer system; see Figure 1), the £ ma-
trix has the form

£, 0 0
e=lo0 g o] (1)
0 0 £

After discretizing all constitutive equations and introducing relat-
ed boundary conditions, the problem can be expressed as an algebra-
ic generalized eigenvalue problem:

LO = iM®O, 2)

where L is given by equation 1 combined with the stress and dis-
placement components of the boundary conditions. In the diagonal
unit matrix M, the stress and displacement components introduced
in L are set to zero. This introduces the boundary conditions into the
matrix eigenvalue problem. Solving this eigenvalue problem yields
the unknown squared axial wavenumber k2. The axial wavenumber
k.is used to compute the phase velocity of the different modes propa-
gating in the structure, and the displacement potential vector @ gives
the potential for each collocation point along the radial direction and
allows computation of stress and displacement components along
the radius. For a detailed description of how the eigenvalue problem
is formulated and how the L matrix is constructed, see Karpfinger et
al. (2008a).

There are two main differences between the implementation of
the spectral method in Karpfinger et al. (2008a) and our implementa-
tion in this paper. First, in this paper, we describe fluid layers using
the acoustic equation of motion (equations A-7-A-10) rather than
the limiting case of the elastic equations. Second, we have discarded
the boundary conditions in the center of the structure. Boyd (2001, p.
382-383) shows that no boundary conditions need be set in the cen-
ter of the structure; for spectral methods, this boundary condition is
fulfilled automatically.

SPECTRAL METHOD

Differential equations can be very efficiently solved with spectral
collocation methods. Orthogonal polynomials of high degree are
used as global interpolants to approximate the unknown functions of
the considered differential equations. The discrete matrix operator,
which approximates the differential operator, is called a differentia-
tion matrix. The computation of differentiation matrices can be
based on Chebyshev, Fourier, Hermitian, or other interpolants,
which can be differentiated exactly. Here, we use the Chebyshev dif-
ferentiation matrices provided by Weideman and Reddy (2000). The
global interpolant evaluated at N interpolation points is connected to
its first derivative by a matrix vector product.

Functions interpolated by orthogonal polynomials in evenly
spaced points fail to converge for N — . This is known as the Runge
phenomenon; it can be avoided by using unevenly spaced points
(Trefethen, 2000). To avoid this effect, Chebyshev points are used to
interpolate unknown functions as follows:

_(G=vm\
xj—cos( Vo1 ), j=1,...,N. (3)

The N interpolation points x; are the extrema of the Chebyshev poly-
nomials computed on the interval [ —1,1]. The collocation points
cluster at both ends of the interval.
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Chebyshev points used to discretize an unknown function f(x) in-
terpolated at N nodes f(x;) can be approximated using interpolant
polynomials ¢ (x):

N+1

)= 2 fx) ). (4)

k=1

Thus, the €th derivative of f(x) can be obtained by

o N+1 d(
m»=2;¢mwmm (5)
k=1

If the exact expression of the interpolant polynomial is known, its
derivative is obtained exactly. This results in an N X N differentia-
tion matrix DM:

dl
DM} = 5 ,(x). (6)

Equation 6 is used to approximate differential operators and there-
fore can serve to discretize differential equations. Entries of the ma-
trix D, and the related code are provided in Trefethen (2000). The
nth derivative is computed by n matrix multiplications of the first de-
rivative differentiation matrix. The differentiation matrix can be
computed with very high spectral accuracy. Nevertheless, round-off
errors can be a problem for an increasing number of collocation
points. A discussion on how to minimize such errors can be found,
for example, in Baltensperger and Trummer (2002).

In the following sections, we show how Chebyshev collocation
points and differentiation matrices are used to compute dispersion
and radial profiles of waves propagating in cylindrical structures.

STRUCTURE AND ORGANIZATION
OF CODE

Computing dispersion curves in cylindrical structures with arbi-
trary fluid and solid layers requires various steps, as illustrated in
Figure 2. Each step is related to its corresponding MATLAB subrou-
tine:

1) The input parameters of the considered model are set in the
DefineModelParams_# .minputfile.

2) Frequency-independent quantities such as differentiation ma-
trices and geometry are subsequently computed in the Struc-
tureParameters .msubroutine.

3) Parameters set in previous subroutines are the input of the ma-
trices.msubroutine. This function computes and constructs
the matrices for Helmholtz equations L, stress components S,
and displacement components T.

4)  After these matrices are constructed, the related boundary con-
ditions are set using the eigen.m function. This eigenvalue
problem is solved using the standard MATLAB eigenvalue
solvereig.

5) Outputs of the computation are the squared eigenvalues and
eigenvectors, i.e., k2 and @ for each frequency.

6) By repeating this workflow (ComputeDispersion.m) for
a chosen interval of frequencies, dispersion curves are con-
structed and plotted with PlotDispersion.m.

7) For a single frequency, eigenvectors are utilized to construct
and plot radial profiles (radialprofile.m) as a function of
radius structure.

In the following sections, the various steps are described in detail,
and we show how they are implemented in the final program.

Input file

The first step is to set parameters for a certain model. All input pa-
rameters are defined in DefineModelParams_# . m. For each lay-
er, we define the material parameters: Vp, Vs, and p. The geometry of
the model is represented by the outer radius a; of each layer (Figure
1). The number of Chebyshev points N for computing differential
operators are defined individually for each layer. In addition to these
elastic and geometric parameters, we must define the minimum,
maximum, and step frequency as wmin, wmax, and ws tep, respec-
tively.

Furthermore, additional parameters must be set. To account for
an elastic or a rigid structure, the surface boundary conditions
of the structure are set as stress free s =0 or rigid s=1.
Limits for the highest SelectmaxVel =maxvel and lowest
SelectminVel = minvel phase velocity can be set to choose a
velocity interval of interest.

All of these parameters are entered into a MATLAB structure for
code clarity. For a model composed of j layers, the parameter struc-
ture has the following form:

Par .N=[N1..Nj]l; % number of collocation
points in each layer

Par.vp= [vpl..vpj]l; % P-wave velocity of
each layer

(DINPUT
0=[a).) |——————[DefineModelParams_#.m|

Ve, Vs
Pjpj ¥ Nf’aj

I—i
’J |®DM‘”” T |—~| StructureParameters.ml
1

L, 0 0
L={0 L, O
0 0 L,
— s, 00
€ s=[o s o .
_S 0o 0s matrices.m
[
b T, 0 0
) T=|0 T, o}
% 0 0T
g !
§)| [@ to-kao
OUTPUT @ PlotDispersion.m
Eigenvalues: k4
Eigenvectors: 61 radialprofile.m
S

Figure 2. Workflow of the code to compute dispersion and radial pro-
files. The left side displays how the matrices that define the general-
ized eigenvalue problem are constructed from the input parameters.
Each step is related to its corresponding MATLAB routine on the
right side.
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Par.vs= [vsl..vsj]; % S-wave velocity of
each layer

Par.rho= [rhol..rhojl; % density of each
layer

Par.a=[le—4,al.ajl; % center radius of
each layer

Par .wmin = wmin; Par .wstep =wstep; Par.wmax

= wmax;

Par.s=0o0r1l;

Par . SelectmaxVel = maxvel;

Par . SelectminVel =minvel;

All corresponding parameters are set in a vector whose length cor-
responds to the number of layers, where the elements of this vector
are sorted from the center to the surface of the structure. Because of
the singularity of the Laplace operator in cylindrical coordinates, the
inner radius of the structure must be different from zero. An initial
radius with a value of 0.01% of the outside radius of the structure
was appropriate for most cases.

Chebyshev points and differentiation matrices

The chebdi f . m routine produces interpolation points and dif-
ferentiation matrices for the interval [ —1,1]. For the case of cylin-
drical structures, which is considered here, we must transform the in-
terpolation points and differentiation matrices for the minimum and
maximum radii of each layer. Each component of the vector
Par . Nj corresponds to the number of interpolation points in each
layer. All inner and outer radii of the structure are contained in the
Par . aj,;. Both quantities are used to compute the Chebyshev
points and differentiation matrices for each layer of the input model.

We transform the interpolation points x; calculated in equation 3
into radial points r; for each layer j by

_ (ajH - aj)xi + (lj + aj+1
2

()

We do the same for the differentiation matrices produced by the
function chebdi £, which approximates the mth derivative d”/dx™
and can be transformed into a radial dependence d”/ dr™ as

2 m
D" = —( ) D" (8)
Par.aj;, —Par. a;

The radius vector, like the differentiation matrices, is frequency
independent and thus computed in SetStructureParam-
eters .mlike all other nonfrequency-dependent parameters.

Construction of matrices

The underlying equations describing axisymmetric wave propa-
gation in solid and fluid media are provided in Appendix A. A de-
tailed derivation of the equation for solids is given in Karpfinger et
al. (2008a).

The equations of motion A-1, A-2, and A-7 are ordinary differen-
tial equations containing derivatives with respect to r only and coef-
ficients depending on frequency w and axial wavenumber k.. The
aim is to find a relation between w and k., which means finding a k.
for a given w, or vice versa. This can be done by solving the equa-
tions of motion as an eigenvalue problem so that k2 represents the ei-
genvalue. Alternatively, we could formulate the problem as a gener-
alized eigenvalue problem in w?. To do so, we must rearrange equa-
tions A-1, A-2, and A-7 so that the terms with k, appear on the left

side only. For linear elasticity, both approaches must give identical
results. However, for more complicated media (say, viscoelastic or
poroelastic), it is advantageous to look for k. as a function of w be-
cause coefficients of governing equations may themselves explicitly
depend on w.

The wave equations as well as the stress and displacement compo-
nents, being independent of k, on the left side, are discretized for
each layer using Chebyshev interpolation points and differentiation
matrices. The matrices of each layer are finally combined in three
bigger diagonal block matrices in the matrices .msubroutine.

Helmholtz equation matrix L

Equation A-7 is the Helmholtz equation for a fluid, whereas equa-
tions A-1 and A-2 represent P- and S-wave equations for a solid. The
differential operators £, £,, and £, are discretized using the differ-
entiation matrices, the radial collocation points r;, and the material
parameters. This results in fluid layers in an N X N matrix L; for
solid layers, P- and S-wave operators are combined ina 2N X 2N ma-

trix:
L 0
L= ( . ) 9)
0 Ly

Finally, all matrices, L, and L, of all layers are combined in one
matrix. In the case of a fluid-filled tube, the size of the final matrix LL
is 3N X 3N and has the form

_ (L O
) w

Matrices with stress and displacement components

After we have built the matrix L representing the differential op-
erators of Helmholtz equations, it is necessary to perform the same
operation for the stress and displacement equations (see Appendix
A). For a solid layer, the displacement components are equations
A-3 and A-4; the stress components are equations A-5 and A-6. The
fluid displacement components are equations A-8 and A-9, and the
radial stress in the fluid is given by equation A-10. The matrices for
the displacement and stress components are constructed in a similar
manner to the L matrix (equation 10).

Stress components for a solid layer (defined in Appendix A) can

be expressed as
(Urr) _(Srcb Sr‘If) @
&rz Sztf) Sz‘l’ lj’
%{_J

A

(11)

Displacement components (defined in Appendix A) are

(ur ) ( Trd) Tr‘I’ ) @
i, T.o T,y P
-—

T

(12)
Similarly to the L matrix, a 3NV X 3N matrix SS combining all stress
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coefficients of all layers is constructed:

S O
I
SS = ( ) . 13
0 s (13)
Likewise, the corresponding displacement coefficient matrix TT
can be written as
T 0
TT = ( fe ) (14)
0 T,

SS and TS are 2N X 2N matrices (see equations 11 and 12). Each
matrix, i.e., L, SS, and TT, is normalized by the absolute value of
its largest element.

Implementing boundary conditions

While formulating an eigenvalue problem, we must set boundary
conditions on the interfaces between layers and on the free surface of
the cylinder. The surface and interface boundary conditions are dis-
cussed by Karpfinger et al. (2008a). The main emphasis here is to il-
lustrate the implementation of various boundary conditions in the
code. The row indices of the matrix L in which the boundary condi-
tions are introduced are independent of frequency. Thus, we com-
pute these indices in the subroutine SetStructureParam-
eters.m. The addition of the boundary conditions into the L. ma-
trix for each individual interface is performed in eigen . m. This re-
sultsin L.

Figure 3 presents the indexing for an n-layered system. The inter-
face of interest is between the layers j and j + 1, which have
Par .Nj and Par .N;., interpolation points. In the following
equations, we discard Par . for simplicity. To compute the indices
of the matrix elements where we want to enter the boundary condi-
tions, we must know the quantity NA;_,, the size of the matrix up to
the last interface between layers j — 1 and j. It is computed as

j—1
NA;_; = 2 N,p. (15)

n=1

where p is a vector of length j — 1. By convention, components of p
are one if the layer is fluid or two if the layer is solid. Knowing NA; _
for each interface, we can set the boundary condi-

”rlj,j+1:NAj71 +N]+ l, (19)

O'rz|j,j+l:NAj71+Nj+Nj+l+1- (20)

For a solid/fluid interface, the same interface conditions are consid-
ered, but the indices change to

O-rr|j,J+1NAj71 +Nj’ (21)
u,|j,j+1NAj,1 +2Nj’ (22)
O-rz|j,j+1:NAj*1+2Nj+1' (23)

For a solid/solid interface, the following field quantities are continu-
ous: axial and radial displacement as well as normal and shear stress.
The indices for such an interface are

oplije1:NA; L+ N, (24)
Layer index Collocation points
A
n=1 N,
il
NA, =) N,p
n=1
v =J -1 N -1
Interface ___ | _ _ _ — — S / -
considered — 7
n=j+1 141

Figure 3. Computation of indices for an interface between layer n
= jandn = j + 1: to be able to introduce the interface conditions at
these layers the size of the matrix from layern=1upton=j—1
needs to be known: NA; ;.

continuity of radial stress: o g - Grrsolid : row N1

continuity of radial displacement: Urs - Ursoia: row N1 + 1

L, ]_ =

surface boundary condition: o, row N1 + N2

vanishing of shear stress: o, . ;q: row N1 + N2 + 1

S

tions for any combination of solid and fluid layers
atthe interface between the layers jand j + 1. Z

For a fluid/fluid interface, the required bound-
ary conditions are the continuity of radial stress =

and displacement. They are introduced in the fol-
lowing rows: o
=

0pljje1:NA; - + N, (16)

surface boundary condition: 6,,: row N1 + 3*N2

u,|]!]+1NA]_1+NJ+1 (17)

For a fluid/solid interface, in addition to the conti-
nuity of radial stress and displacement, the shear
stress vanishes in the fluid. The three indices for
such an interface are

Opljjr 1:NA; 1+ N, (18)

L

O{oﬁ%ooﬁ,oo.

Figure 4. Structure of the matrices L and Q for a borehole surrounded by an elastic forma-
tion. The L matrix is built of the discretized differential operators of the Helmholtz equa-
tions arranged in a diagonal block matrix: fluid layer (blue) and solid layer (yellow); the
differential operators of the stress and displacement components corresponding to the
boundary conditions for the interface and the surface are set in the orange rows; Q is a di-
agonal matrix of the same size as L, where the elements corresponding to the boundary
conditions are set equal to zero and the other diagonal elements contain the unknown
squared axial wavenumber kZ.
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Mr|],]+1NAJ,1 +2N], (25)
uz|j,j+l:NAj—1 + 2N] + 1, (26)
O-rz|j,j+1:NAj*l+2Nj+Nj+l+1' (27)

Figure 4 illustrates an example of a fluid-solid interface. The inter-
face is indicated with a red horizontal line. The matrix of the fluid
(blue) is interpolated by N, points, and the matrix of the solid (yel-
low) is 2N, X 2N,. As discussed, three interface conditions are re-
quired for this boundary: continuity of radial stress and displace-
ment as well as the vanishing of the shear stress. The boundary con-
ditions are represented by the orange sections. To compute the cor-
rect indices for such boundary conditions, we use equations 18-20,
where j = 1 for the fluid and j = 2 for the solid layer. We can com-
pute the indices of the interface boundary conditions with NA = 0.
Thus, the components of the displacement and stress components
are introduced.

Formation:

Ve = 4878 m/s
Vs = 2600 m/s
p= 2160 kg/m?®

Water:
Vp = 1500 m/s
p = 1000kg/m3

Figure 5. Schematic illustration of a borehole; the borehole is mod-
eled as a finite structure where the outer boundary is 20 times the
borehole radius; on the surface, rigid boundary conditions are intro-
duced.

1460 T T T T T T T T T

1450

hiogtinindlyg ~—Spectral method

Tube wave in borehole

1390~ surrounded by a 1
elastic formation
1 380 1 i 1 1 i 1 i 1 1
0 1 2 3 4 5 6 7 8 9 10

Frequency (kHz)

Figure 6. Velocity dispersion of the tube wave computed with the pa-
rameters from the model in Figure 5.

To set the boundary condition, we built an identity M matrix the
same size as L. This matrix is normalized with the same value as L is
normalized. In rows where the stress and displacement components
are introduced in L, the value of M is set equal to zero. In a similar
manner, we set boundary conditions for all possible interfaces (fluid/
fluid, fluid/solid, solid/fluid, and solid/solid).

After all interface conditions are introduced, it only remains to
consider conditions for the surface of the structure. Surface condi-
tions can be selected in the DefineModelParams_#.m file as
stress free (o, = 0 and o,. = 0) or rigid (1, = 0 and u, = 0). These
conditions are then set in the rows corresponding to the interpolation
points of the surface of the structure. We refer now to the matrix con-
taining all the coefficients for the boundary conditions as f(see Fig-
ure 4).

Eigenvalue problem

After we have set the boundary conditions, we need to solve a gen-
eralized eigenvalue problem of the following form:

LO = i’MO. (28)

We are using the eig eigenvalue solver provided by MATLAB:
eig. For each frequency w, the eigenvalues correspond to the
squared axial wavenumber k2. The number of obtained eigenvalues
corresponds to the size of the matrix L. It is not straightforward to
separate the values of interest from spurious values. The nonpropa-
gating modes, which are not spurious but also not of interest in this
study, are excluded by deleting those eigenvalues whose real part is
either negative or smaller than the imaginary part. The remaining
spurious eigenvalues are easy to distinguish from the desired values
because they usually are significantly smaller in the phase velocity
domain. Solving the eigenvalue problem for an interval of frequen-
cies gives the dispersion curves of all obtained modes. These curves
are constructed and plotted in PlotDispersion.m.

Solving the eigenvalue problem also provides the eigenvectors
corresponding to the displacement potentials 6. They can be used to
compute the radial distribution of the stress and displacement com-
ponents along the radius of the structure (step 7, Figure 2). This can
easily be achieved by multiplying the potential 6 of each mode with
the of the stress and displacement components, SS and TT. The re-
sulting vectors are reshaped in the radialprofile.m subroutine.
At the moment, the displacement and stress profiles are computed
for an equal number of interpolation points in each layer. The pro-
files of all different modes for a fixed frequency can be displayed.
Radial profiles can help us to better understand the physics of differ-
ent modes propagating in elastic cylindrical structures.

EXAMPLES

In our software package, we include two examples. The first is a
fluid-filled borehole surrounded by an elastic formation. The medi-
um parameters and the dimensions are given in Figure 5. To compute
the dispersion, the parameter file DefineModelParams_la.m
needs to be called in ComputeDispersion.m. The formation is mod-
eled as a finite structure. For an outer radius 20 times bigger than the
borehole radius, the tube-wave dispersion is the same as for an un-
bounded formation.

The result of the eigenvalue problem for a borehole surrounded by
an elastic formation is illustrated in Figure 6. The dispersion of the
tube wave is computed up to 10 kHz with a frequency step of
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0.2 kHz. We have chosen rigid surface-boundary conditions, so no
extensional mode is observed. If we choose the surface-boundary
conditions to be stress free, the dispersion of the tube wave will not
change. The difference will be that an additional mode, the exten-
sional or Young’s modulus mode, will be added and the cutoff fre-
quencies of the higher-order modes will be shifted toward slightly
higher frequencies. Because these modes are related to finite struc-
tures only, we do not consider this effect in our study.

In Figure 6, we compare the results of the spectral method (red
dots) with a dispersion curve obtained from root finding (black line).
The root-finding algorithm used to obtain the analytical results is
from Sinha and Asvadurov (2004). Both results are in very good
agreement. In addition to the tube wave, higher-order modes result-
ing fromreflections on the outer surface of the structure are obtained.
These modes are not shown because they are irrelevant for a bore-
hole model. To account for an infinite structure and to avoid the high-
er-order modes, absorbing boundary conditions will have to be im-
plemented in the future.

For the fluid-filled borehole, the displacement and stress profiles
are displayed for 1.5 kHz in Figure 7. The radial distributions of the
radial and axial displacement as well as the normal and shear stress
along the radius are shown. In this case, the parameter file in
ComputeDispersion.m needs to be named DefineModel
Params_1b.m. These quantities are plotted as a function of r/a,
where r is the radius vector and a is the radius of the structure. All ra-
dial profiles are normalized by their maximum value. The dashed
line indicates the borehole wall. The four plots show that the field
quantities are almost zero at a distance of 20 borehole radii. Thus, the
tube wave is unaffected by the finite structure.

The second example is a four-layer model shown in Figure 8.
Here, ComputeDispersion.m needs to be named De-
fineModel-Params_2 .m. Such geometry is used by Bakulin et
al. (2008b) to simulate a well completion in a

the borehole, the structure is discretized with 10 points in the fluid
layer and 40 in the formation. For the four-layer case, the best result
can be achieved for eight points in the solid layers and 20 points in
the fluid layers. Obviously, more points are needed to model a bore-
hole structure than a four-layer tube. The accuracy of the results can
decrease significantly if the number of collocation points is in-
creased. This is especially a problem if some of the layers are very
thin, such as the four-layer example. Increasing the number of collo-
cation points for this example by a factor of two or three will make
the result more unstable, especially for the higher-order modes. This
problem must be considered when implementing new models be-
cause the right number of collocation points will most likely require
several runs of the same model. In general, for elastic modeling, this
is aminor issue because the computing time in most cases is less than
20 s.

DISCUSSION

In elasticity theory, dispersion equations for guided waves usually
are solved for a given wavenumber k, with an unknown frequency
(Ewing, 1957; Kolsky, 1963). The same approach can be used in the
spectral method, where the equations of motion can be written for k,
and the eigenvalues are squared frequencies w or velocities (w/k.)>.
A limitation of this approach is that it cannot be extended to more
complex media where coefficients of the constitutive equations ex-
plicitly depend on frequency (such as poroelastic media, discussed
below). To design an algorithm that might be extended to such me-
dia, we have reformulated the elastic problem in such a way to for-
mulate the eigenvalue problem with frequency w as a (given) param-
eter and squared wavenumbers k2 [or slownesses (k./ w)?] as eigen-
values.

physical modeling experiment. In our computa- a) ¢)
tion, we take the elastic parameters from Bakulin 5 :) 9 (1) 9
et al. (2008b). The resulting dispersion is dis- £ os I e 08
played in Figure 9. Because of the presence of E o7 2 07
two fluid columns, two tube waves are supported & 06 % 0.6
by this configuration. The fast tube wave is sup- g‘ 0.5 § 0.5
ported mainly by the outer tube; the slow tube g 04 = 04
wave is supported by the inner tube. In contrast to £ 03 g 03
the first example, we have chosen stress-free sur- g g'f z g'f
face boundary conditions. This adds two modes z 0' 0.
that propagate from zero frequency. These modes 0 10 15 20 0 5 10 15 20
are called extensional and propagate for low fre- va va
quencies with the phase velocity of a bar V, b)1.2 d)1
= JE/p, where E is the Young’s modulus of each 3, L 0.9
solid layer. @ o 08
Radial profiles can be computed in the same % 08 é 07
manner as for the borehole case. In this example, ?:1 0.6 Z g'g
the low-frequency/high-velocity eigenvalues are g 0.4 S 0: 4
unstable. Our attempts to overcome this numeri- 8 oo g 0.3
cal instability have been unsuccessful, and the in- g S 02
stability remains to be addressed. We think our g 0 0.1
present results give reasonable estimates. Be- -0.2; 10 15 20 05 : 10 " 20
cause dispersion is very small up to 5 kHz, it is /a r/a

possible to extrapolate the results to the correct

low-frequency velocity.
For both examples, it is interesting to look at
the number of discretization points. In the case of

Figure 7. Radial profiles of the tube wave from Figure 6 computed at 1.5 kHz; the radial
profiles are normalized by their maximum value of the displacements and stresses, re-
spectively; r/a is the radial position r normalized by the radius of the structure a. (a) Ra-
dial displacement; (b) axial displacement; (c) radial stress; (d) shear stress.
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In an earlier work (Karpfinger et al., 2008a), the fluid is modeled
as a limiting case of an elastic solid with a small shear velocity (say,
Vs =1 m/s). This approach results in several additional spurious
modes corresponding to fictitious shear waves in the fluid. No diffi-
culties result when the problem is formulated for k, because in this
case the eigenvalues (squared velocities) corresponding to the spuri-
ous modes are very small and can be ignored. However, in the case of
input frequency, the eigenvalues obtained are squared slownesses.
For the spurious modes, these slownesses are extremely high. This
makes the eigenvalues of interest; they have a much smaller slow-
ness, are numerically unstable and are thus difficult to recover. To
obtain results that are more numerically stable, the equations for an
ideal fluid (equations A-7-A-10) were implemented in the present
algorithm, eliminating these spurious modes altogether. This also re-
sulted in smaller matrices and hence faster computations.

To account for fluid flow across the layer boundaries, we have ex-
tended the spectral method to poroelasticity (Karpfinger et al.,
2008b). This allows us to model acoustic response of realistic situa-
tions such as a completed borehole surrounded by a formation with a

Outer tube: Water:

Vo =6100 m/s _ Ve = 1500 m/s
Vs=3080 m;ss r=0.1095m r=0.1032m p =1000 kg/m?
p =2700 kg/m

r=0.0667 m

r=0.0635 m

Inner tube:

Vp = 5600 m/s
V5 =2800 m/s
p = 2480 kg/m3

Figure 8. Geometry and elastic parameters of the four-layer model
with stress-free surface boundary conditions on the outer layer of the
structure.
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Figure 9. Dispersion of the two extensional modes and two tube
waves.

radial variation of permeability. Such modeling potentially may be
used to monitor reservoir production using permanent acoustic sen-
sors (Bakulin et al., 2008a).

The algorithm presented here is limited to structures of finite radi-
us. Infinite structures, such as a fluid-filled borehole surrounded by
an infinite formation, are approximated by a finite structure with a
large radius. The down side of this approach is that it produces high-
er-order modes corresponding to the reflection at the outer boundary
of the structure. To avoid these higher-order modes and to be able to
model attenuated leaky modes, absorbing boundary conditions must
be introduced. This can be the subject of future work. The algorithm
also can be extended to flexural waves and anisotropy.

CONCLUSIONS

We have presented a new algorithm, based on the spectral method,
that computes wave propagation in elastic cylindrical structures
with an arbitrary number of fluid and solid layers. We discretized the
medium in the radial direction using Chebyshev points. We then ap-
proximated differential operators by Chebyshev differentiation ma-
trices. The problem was then formulated as an algebraic generalized
eigenvalue problem, where the eigenvalues correspond to the axial
wavenumbers and the eigenvectors to the displacement potentials.
We used the obtained displacement potentials to display radial pro-
files, which are the variation of displacement and stress along the ra-
dius of the structure. Creating an input file for multilayer models is
very straightforward, and the results are obtained very efficiently.
The algorithm is very fast because of the computational efficiency of
the spectral method. It is not straightforward to choose the optimum
number of collocation points because there is no parameter to con-
trol the accuracy. It will require some runs to get an optimal picture.
The two examples indicated how to choose the number of points.

It is not easy to give a general rule; but after running the program
for some examples, experience will help users obtain the best possi-
ble result. The algorithm works for any number of layers and down
to a layer thickness of 0.5% relative to the thickness of the structure.
The drawbacks are that for an increasing number of layers, comput-
ing time increases significantly; for very thin layers, accuracy de-
creases. For most models of interest, the algorithm works very effi-
ciently and is easy to use.
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APPENDIX A

UNDERLYING EQUATION
Equations for solid media

The P- and S-wave Helmholtz equations for an isotropic elastic
solid expressed in terms of displacement potentials are
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i (A-1)

and

arr  ror r*V ‘
N >
~
v (A-2)

The radial and axial displacement in such a medium can be ex-
pressed as

= 0,0 — W, (A-3)

.= — k2D + (9, +r YW,

—

L ® (A-4)

where @ = ik.®. The radial normal stress and the axial shear stress
are
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Equations for fluid media
The equivalent equations for an ideal fluid are
.
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