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S U M M A R Y
This paper describes a new algorithm based on the spectral method for the computation of
Stoneley wave dispersion and attenuation propagating in cylindrical structures composed of
fluid, elastic and poroelastic layers. The spectral method is a numerical method which requires
discretization of the structure along the radial axis using Chebyshev points. To approximate the
differential operators of the underlying differential equations, we use spectral differentiation
matrices. After discretizing equations of motion along the radial direction, we can solve
the problem as a generalized algebraic eigenvalue problem. For a given frequency, calculated
eigenvalues correspond to the wavenumbers of different modes. The advantage of this approach
is that it can very efficiently analyse structures with complicated radial layering composed of
different fluid, solid and poroelastic layers. This work summarizes the fundamental equations,
followed by an outline of how they are implemented in the numerical spectral schema. The
interface boundary conditions are then explained for fluid/porous, elastic/porous and porous
interfaces. Finally, we discuss three examples from borehole acoustics. The first model is a
fluid-filled borehole surrounded by a poroelastic formation. The second considers an additional
elastic layer sandwiched between the borehole and the formation, and finally a model with
radially increasing permeability is considered.

Key words: Numerical solutions; Downhole methods; Guided waves; Wave propagation;
Acoustic properties.

1 I N T RO D U C T I O N

Modelling propagation of various wave modes in a fluid-filled bore-
hole is an important step in evaluating formation properties. Various
modes propagate in a fluid-filled borehole and are sensitive to dif-
ferent properties of the formation (White 1983; Paillet & Cheng
1991; Sinha & Zeroug 1997). One important aspect of modelling
wave propagation in fluid-filled boreholes is the effect of poroelastic
media on mode signatures. This interest is strongly linked to the oil
industry and the need to estimate the fluid mobility in reservoirs.
Beyond the scope of geophysical applications, the understanding
of wave propagation in cylindrical poroelastic structures is of great
importance in the areas of non-destructive testing, mechanical en-
gineering and civil engineering.

∗Formerly at: Curtin University of Technology, Department of Exploration
Geophysics, GPO Box U1987, Perth,WA 6845, Australia.
†Now at: Schlumberger SKK, Japan.
‡Now at: Saudi Aramco, Dharan, Saudi Arabia.

Over the last three decades great efforts have been made to in-
vestigate wave propagation in poroelastic cylindrical structures. The
effects of dispersion and attenuation in cylindrically layered poroe-
lastic structures were investigated theoretically as well as experi-
mentally. We give a short literature review on the work done for
geophysical applications.

The first fundamental work on this subject was done by Biot and
now is known as Biot’s equations of poroelasticity (Biot 1956a,b,
1962). Then, framework for wave propagation in a fluid saturated
poroelastic cylinder was provided by Gardner (1962) while the
dispersion for the full range of frequencies for open and closed
boundary conditions was studied by Berryman (1983). Later, White
(1986) and Mörig & Burkhardt (1989) measured the dispersion of
the extensional mode in laboratory experiments while Dunn (1986)
wrote a review on extensional, torsional and flexural modes. Later,
Berryman & Pride (2005) utilized torsional waves to estimate the
effect of patchy saturation in a cylinder.

In addition to these general theoretical and experimental works,
the need to estimate fluid mobility in reservoirs triggered studies
on the so-called tube wave or Stoneley wave which propagates in
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the fluid column of the borehole. A special characteristic of tube
waves is their high sensitivity to the fluid mobility. The dispersion
of tube waves propagating in boreholes surrounded by a poroelastic
formation was used to invert for the mobility (Rosenbaum 1974;
Chang et al. 1988; Schmitt et al. 1988; Norris 1989) while Sinha
et al. (2006) proposed an approach to estimate the radial distri-
bution of mobility. In addition to these theoretical developments,
some laboratory-scale experiments have been conducted. This was
modelled by using a hollow poroelastic cylinder submerged into a
fluid (Liu 1988).

All the research work discussed above uses the traditional, ana-
lytic method often referred to as ‘root-finding’. This method finds
general solutions to the underlying equations, which are a combina-
tion of Bessel functions of different order. Substituting the solution
into the boundary conditions yields a homogeneous system of linear
algebraic equations. For this system to have non-trivial solutions,
the determinant of its matrix must be equal to zero. This is called
the frequency equation. The roots of this equation, which have to
be found in the complex plane, yield the dispersion relation.

In this paper we introduce a new alternative approach based on
the spectral method first used by Adamou & Craster (2004). The
advantages of this approach are that it is easy to implement and
the computational time is very fast. Karpfinger et al. (2008a, 2010)
expanded the spectral method to axisymmetric waves for an ar-
bitrary number of fluid and solid layers, while in this paper the
same methodology is further applied to the poroelastic case. First,
poroelastic equations in cylindrical coordinates are introduced to-
gether with their formulation in the spectral domain. Then boundary
conditions for all possible poroelastic interfaces are discussed. Fi-
nally, three numerical examples are discussed. First, a borehole sur-
rounded by a poroelastic formation with open and closed boundary
conditions is used as a benchmark. The dispersion and attenuation
are plotted for a range of permeabilities. Even though the formation
parameter which can be estimated from the tube wave dispersion is
the mobility, being the ratio of permeability to fluid viscosity, we
will refer in this work to permeability as the viscosity of the pore
fluid is chosen to be 10−3 Pa s for all calculations. In the second
model, an additional elastic layer is introduced between the fluid
and the poroelastic formation. This allows us to study the impact of
the thickness of this layer on the dispersion of the tube wave. The
third model illustrates the effect of an altered zone with a radial
increase of the permeability.

2 T H E O RY

In this paper we study wave propagation in a fluid-filled borehole
surrounded by a medium composed of fluid, elastic and poroelas-
tic layers. Wave propagation in cylindrical, poroelastic structures is
considered within the framework of Biot’s theory of poroelasticity.
In the next section Biot’s theory for an infinite, poroelastic medium
is reviewed. Fig. 1 illustrates a fluid-filled borehole surrounded by
a poroelastic medium. The structure is infinite in the axial direc-
tion while in the radial one any combination of fluid, elastic and
poroelastic layers can be considered. A radially infinite medium is
modelled by choosing the outer layer to be much bigger than the
borehole radius (we are considering a factor of 10 to be sufficient).
Due to the geometry of the problem we are going to solve, the wave
and the constitutive equations will be expressed using a cylindrical
coordinate system. Throughout this paper the cylindrical coordinate
system will be defined as follows: the z-axis will be aligned with
the axis of the cylinder while r is the radial coordinate (see Fig. 1).

Figure 1. Example for a two-layer cylindrical structure: hollow poroelastic
cylinder filled with fluid.

The motion is independent of the angular displacement. Thus, the
particle motion happens in the r − z plane only, involving radial
and axial displacement. The angular displacement is assumed to be
zero.

To simulate propagating modes in such a system we assume that
a plane wave front is propagating parallel to the axis of the cylinder.
Under these assumptions, stress and displacement components can
be estimated for a multilayered system composed of a combination
of poroelastic, fluid and elastic layers.

2.1 Biot’s theory of poroelasticity: review

Waves propagating in an infinite poroelastic medium satisfy the
following equations (Biot 1962):

∇ · σ = −ω2(ρu + ρ f w), (1)

∇ p = ω2(ρ f u + qw), (2)

where the field variables are given as the bulk displacement u and
the relative solid-fluid displacement w = φ(U − u) with φ being
the porosity. u is the fluid displacement while ρ and ρ f are the den-
sities of porous material and the fluid, respectively. The frequency-
dependent density term q(ω) is defined by Pride & Haartsen (1996)
as

q(ω) = i

ω

η

k(ω)
, (3)

where η is the viscosity and k(ω) the frequency-dependent perme-
ability (Johnson et al. 1987). This complex density is responsible
for the viscous and inertial coupling between the solid and fluid
phases (Biot 1956b). The total stress tensor σ and the fluid pressure
p are related to the field vectors by the constitutive equations

σ = [(H − 2μ)∇ · u + αM∇ · w]I + μ[∇u + ∇uT ], (4)

p = −M∇ · w − αM∇ · u. (5)

In eqs (4) and (5) μ is the shear modulus of the solid frame while
α = 1 − K/Kg is the Biot–Willis coefficient (Biot & Willis 1957).
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K is the drained bulk modulus and Kg is bulk modulus of the grain
material. The so-called pore space modulus is defined as

M =
[

α − φ

Kg
+ φ

K f

]−1

, (6)

where Kf is the fluid bulk modulus.
The P-wave modulus H of the saturated poroelastic medium is

defined as follows

H = Ksat + 4

3
μ , (7)

where K sat is the bulk modulus of the saturated medium which is
related to the drained modulus K by the (Gassmann 1951) equation

Ksat = K + α2 M. (8)

Substituting the constitutive relations eqs (4) and (5) into eqs
(1) and (2), we obtain two coupled wave equations. To decouple
these equations into Helmholtz equations for the three bulk waves
propagating in an isotropic poroelastic medium, the displacements
are written in terms of scalar and vector potentials as

u = ∇ϒ + ∇ × β, w = ∇ψ + ∇ × χ , (9)

where ϒ ,ψ and β, χ are scalar and vector potentials, respectively,.
Substituting eqs (9) into the two coupled wave equations yields for
the shear wave(∇2 + ω2s2

s

)
β = 0, χ = −ρ f

q
β, (10)

providing the expression for the shear wave slowness defined as

s2
s =

ρ − ρ2
f

q

μ
. (11)

The wave equations for the two P waves in an infinite poroelastic
medium are(∇2 + ω2s2

±
)

A± = 0, (12)

where the fast and slow P-wave slownesses are defined as

2s2
± = ρM + q H − 2ρ f C

M H − C2

±
√(

ρM + q H − 2ρ f C

(M H − C2)

)2

− 4
(
qρ − ρ2

f

)
M H − C2

, (13)

with the potential A± defined as

A± = 
±ϒ + ψ, (14)

where


± = ρ f H − ρC

(M H − C2)s2± − (ρM − ρ f C)
. (15)

C is a modulus defined as C = αM . The equations derived above
are valid for most kinds of coordinate systems.

2.2 Poroelastic equations in cylindrical coordinates

To apply Biot’s theory for poroelastic media of cylindrical geom-
etry, as might be expected it is more convenient to use cylindrical
coordinates. For axisymmetric wave propagation, the subject of this
work, the particle motion takes place solely in the r − z plane. Thus
the angular displacement uθ equals zero. Under these assumptions,
components of the stress–strain relations eq. (4) can be expressed
as

σrr = (H − 2μ) + 2μ
∂ur

∂r
− αMζ, (16)

σr z = μ

(
∂ur

∂z
+ ∂uz

∂r

)
, (17)

where  is the dilation defined in cylindrical coordinates as

 = ∂ur

∂r
+ ur

r
+ ∂uz

∂z
. (18)

The fluid increment content is defined as ζ = −∇ · w. To dis-
tinguish between the torsional and extensional components of the
wavefield, the potential β is further decomposed as

β = ẑβ1 + ∇ × ( ẑβ2), (19)

where ẑ is the unit vector in z-direction. Note that for axisymmet-
ric modes only β2 �= 0. Eqs (9)–(19) describe axisymmetric wave
propagation in a poroelastic cylinder.

2.2.1 Helmholtz equations

We are considering an infinite train of sinusoidal waves propagating
along the z-axis of the cylinder. They are a harmonic function of z
and t which take the form

A(r )± = a±(r )ei(kz z−ωt) , β(r )2 = as(r )ei(kz z−ωt), (20)

where ω is the angular frequency, kz the axial wavenumber, and
a±(r ) and as(r ) are amplitude functions of r.

Using eqs (20) the wave equations (eqs 10 and 12) can be ex-
pressed in the ω − kz domain as(

∂2
r + r−1∂r + ω2

v2±︸ ︷︷ ︸
L±

)
a± = k2

z a±, (21)

(
∂2

∂r 2
+ 1

r

∂

∂r
− 1

r 2
+ ω2

v2
s︸ ︷︷ ︸

Ls

)
as = k2

z as . (22)

The term ei(kz z−ωt) is omitted for clarity. The poroelastic
Helmholtz equations are formulated similarly to the elastic case
(Karpfinger et al. 2008a, section 1.B). Now the ordinary differen-
tial equations (eqs 21 and 22) contain derivatives only with respect
to r and coefficients depending on frequency ω and axial wavenum-
ber kz. To find a relation between ω and kz eqs (21) and (22) can be
solved as an eigenvalue problem so that the wavenumber k2

z repre-
sents eigenvalues and the potentials a± and as are the eigenvectors.
For linear elasticity it is possible to find a kz for a given ω or vice
versa (Adamou & Craster 2004). However, for poroelasticity it is
advantageous to look for kz as a function of ω as the bulk slowness
(eqs 11 and 12) depends explicitly on ω.

The three Helmholtz equations of a poroelastic layer can be com-
bined in a matrix equation that has the following form:⎛
⎝ L+ 0 0

0 Lvs 0
0 0 L−

⎞
⎠

︸ ︷︷ ︸
L p

⎛
⎝ a+

as

a−

⎞
⎠

︸ ︷︷ ︸
ap

= k2
z

⎛
⎝ a+

as

a−

⎞
⎠ . (23)

To obtain the dispersion of propagating modes in multilayered
cylindrical structures composed of poroelastic, elastic and fluid
layers, eqs (21) and (22) plus the equivalent equations for fluid and
solid layers need to be solved. A solution for such a system can only
be found if the appropriate interface conditions for such a system are
set. To apply the boundary or interface conditions, the displacements
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and stress components have to be expressed independently of the
axial wavenumber kz to be able to formulate the problem where the
eigenvalue is kz. How this is achieved will be shown in the next
section.

2.2.2 Displacement components

Displacement components need to be expressed independently of
kz. To achieve this, eq. (19) with β1 = 0 and the expressions

ϒ = A+ − A−

+ − 
−

, ψ = A−
+ − A+
−

+ − 
−

, (24)

are used to express the solid displacement u (eq. 9) as

u = 1


+ − 
−︸ ︷︷ ︸



∇ A+ − 1


+ − 
−︸ ︷︷ ︸



∇ A− + ∇ × (∇ × (ẑβ2)). (25)

The relative displacement can be written in a similar form to
eq. (25) as

w = −
−
∇ A+ + 
+
∇ A− − ρ f

q
∇ × (∇ × (ẑβ2)). (26)

For three differential equations with three unknowns it is suffi-
cient to use three displacement components: the radial ur and axial
uz solid displacement components plus the radial wr component of
the relative displacement

ur = 
∂r a+ − as − 
∂r a−, (27)

ūz = −
k2
z a+︸︷︷︸

L+a+

+
(

∂r + 1

r

)
as + 
k2

z a−︸︷︷︸
L−a−

, (28)

wr = −
−
∂r a+ + ρ f

q
as + 
+
∂r a−, (29)

where as = ikzas and ūz = ikzuz . These equations reduce to elasticity
for a− = 0, 
 = 1 and wr = 0 (see eqs 13 and 14 and Karpfinger
et al. 2008a).

The displacement components of a poroelastic layer are com-
bined in the following matrix equation:⎛
⎜⎝ ur

uz

wr

⎞
⎟⎠ =

⎛
⎜⎝ T+

ur
Ts

ur
T−

ur

T+
uz

Ts
uz

T−
uz

T+
ur

Ts
ur

T−
wr

⎞
⎟⎠

︸ ︷︷ ︸
T p

·

⎛
⎜⎝ a+

as

a−

⎞
⎟⎠ , (30)

where the matrix Tp is composed of the coefficients of the displace-
ment potential obtained from eqs (27)–(29). These coefficients will
be discretized using differentiation matrices as will be explained
later on.

2.2.3 Stress components

Stress components σ rr, σ rz and the fluid pressure p can now be
written as functions of the potentials a± and as. For the radial stress
we get the following expression:

σrr = 2μ
∂2
r a+ − (H − 2μ)


ω2

v2+
a+ + C

−

ω2

v2+
a+ − 2G∂r as

− 2μ
∂2
r a− + (H − 2μ)


ω2

v2−
a− − C

+

ω2

v2−
a− .

(31)

The shear stress is expressed as

σ̄r z = −2μ


(
∂3

r + 1

r
∂2

r − 1

r 2
∂r + ∂r

ω2

v2+

)
a+

+
[

2μ

(
∂2

r + 1

r
∂r − 1

r 2

)
+ ρω2

]
as

+ 2μ


(
∂3

r + 1

r
∂2

r − 1

r 2
∂r + ∂r

ω2

v2−

)
a− , (32)

while for the fluid pressure (compare eq. 5) we get

−p =
[
−M

−

ω2

v2+
+ C


ω2

v2+

]
a+

+
[

M

+
ω2

v2−
− C


ω2

v2−

]
a− , (33)

where σ̄r z = ikzσr z . Note that eqs (31)–(33) are derived from eqs
(16), (17) and (5) by substituting the displacement components eqs
(27)–(29).

Stress components are expressed in a matrix form similarly to
the displacement components⎛
⎜⎝

σrr

σr z

−p

⎞
⎟⎠ =

⎛
⎜⎝

S+
σrr

Ss
σrr

S−
σrr

S+
σr z

Ss
σr z

S−
σr z

S+
−p Ss

−p S−
−p

⎞
⎟⎠

︸ ︷︷ ︸
S p

·

⎛
⎜⎝

a+

as

a−

⎞
⎟⎠ , (34)

where Ss
−p is zero, as in the fluid no shear stress exists.

The Helmholtz equations eqs (21)–(23) together with the dis-
placement eqs (27)–(30) and stress eqs (31)–(34) components de-
scribe the propagation of waves in a cylindrical, poroelastic layer.
They are presented in a way that it is possible to formulate an
eigenvalue problem which gives for a given frequency ω the axial
wavenumber kz as the eigenvalue. Presented in this form the dis-
placement and stress components eqs (27)–(34) can be utilized to
incorporate any boundary and interface conditions for cylindrical
poroelastic structures.

2.3 Boundary conditions on poroelastic interfaces

For finite cylindrical structures with arbitrary fluid, solid and poroe-
lastic layers, conditions of continuity across the layer interfaces
have to be introduced as well as boundary conditions on the free
surface.

For poroelastic interfaces the relevant conditions to be discussed
are (Deresiewicz & Skalak 1963; Gurevich & Schoenberg 1999):

(i) poroelastic/poroelastic (p1 − p2),
(ii) poroelastic/solid (p − s),
(iii) poroelastic/fluid (p − f ).

For case (i) (p1 − p2) all stress and displacement components,
are assumed to be continuous therefore

ur |p1 = ur |p1, uz |p1 = uz |p2, wr |p1 = wr |p2

σrr |p1 = σrr |p2, σr z |p1 = σr z |p2, p|p1 = p|p2. (35)

Case (ii) (p − s) is governed by the following conditions:

ur |p = ur |s, uz |p = uz |s, wr |p = 0,

σrr |p = σrr |s, σr z |p = σr z |s . (36)

All quantities are continuous across the interface except the rel-
ative displacement wr which is zero in the solid.
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For case (iii) (p − f ) two cases have to be considered. Either
the pores are open and fluid freely moves across the interface (open
pores) or they are closed and no fluid flow can exchange between
both layers (closed pores). For both cases the continuity of radial
stress and the radial displacement is required as well as the vanishing
of the shear stress in the fluid

σrr |p = σrr | f , σr z |p = 0, ur |p − wr |p = u| f . (37)

The index f indicates a fluid layer. For the open pores case, the
fluid pressure is continuous across the surface

p|p = p| f , (38)

while in the closed pores case the relative displacement is zero in
the fluid layer

wr |p = 0. (39)

The conditions of interfaces between solid–solid, solid–fluid and
fluid–fluid media are given in Karpfinger et al. (2008a).

In addition, surface boundary conditions on the outside layer of
the cylindrical structure must be set. Open-pore boundary condi-
tions on the free surface of the cylinder r = a are

σrr |r=a = σr z |r=a = −p f |r=a = 0. (40)

In addition to the zero stress, the fluid pressure is zero on the
surface and fluid can thus flow across the interface. For a closed
surface, the boundary conditions become

σrr |r=a = σr z |r=a = 0, wr |r=a = 0. (41)

The pore pressure condition is replaced by the condition that
relative motion of fluid with respect to solid is zero on the surface
of the cylinder. For a single poroelastic cylinder these boundary
conditions are discussed by Berryman (1983) and Karpfinger et al.
(2008b).

3 S P E C T R A L M E T H O D

The spectral method is an alternative numerical approach to obtain
the dispersion and attenuation of modes propagating in cylindrical
structures. This method was initially introduced for axisymmetric
waves in elastic cylindrical structures by Karpfinger et al. (2008a).
In this approach, the cylindrical structure is discretized globally
using Chebyshev points while differential operators are computed
using differentiation matrices (Weideman & Reddy 2000; Adamou
& Craster 2004). The eqs (21)–(23) have to be individually dis-
cretized for each poroelastic layer using Chebyshev points as well
as differentiation matrices. For the case of a free poroelastic cylin-
der, the dispersion of the axisymmetric modes has been presented
by Karpfinger et al. (2008b). In this paper we extend this approach
for an arbitrary number of fluid, elastic and poroelastic layers. In the
following sections it is outlined how the generalized matrix eigen-
value problem is formulated for n-layers. Finally, the computation of
the phase velocities and attenuation from the computed eigenvalues
is explained.

3.1 Eigenvalue problem for multiple layers

The Lp-matrix eq. (23) can be combined with the matrix equations
of a fluid layer L f or a solid layer Ls for any number n of layers in

the following form:⎛
⎜⎜⎜⎜⎜⎝

Lξ1 0 0 0

0 Lξ2 0 0

0 0
. . . 0

0 0 0 Lξn

⎞
⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
L

⎛
⎜⎜⎜⎜⎜⎝

aξ1

aξ2

...

aξn

⎞
⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
�

= k2
z

⎛
⎜⎜⎜⎜⎜⎝

aξ1

aξ2

...

aξn

⎞
⎟⎟⎟⎟⎟⎠ , (42)

where ξ = p, f , s stands, respectively, for a poroelastic, fluid or
solid layer.

The differential operators Lξn are discretized for each layer using
the r vector as well as the differentiation matrices. The discretization
of the differential operators is done the same way as for the elastic
case (Karpfinger et al. 2008a, sec. III A).

To solve this eigenvalue problem, the interface conditions eqs
(25)–(39) for each layer of the system are introduced, as well as
open- or closed-pore boundary conditions on the surface of the
structure.

3.2 Boundary conditions

The matrix for the stress S and the displacements T for a multilay-
ered system are constructed as presented in eq. (42). The boundary
conditions for poroelastic interfaces discussed above are introduced
into the eigenvalue problem eq. (42) in a similar manner to how
they were introduced for fluid and elastic layers in Karpfinger et al.
(2008a, sec. IV). In Karpfinger et al. (2009), it is illustrated for the
case of a fluid-filled borehole surrounded by a poroelastic formation
how the interface boundary conditions are set.

Stress and displacement coefficient components corresponding
to the boundary conditions are introduced in lines of eq. (42) which
correspond to the collocation points of the inner and outer surfaces
of each layer. A diagonal matrix Q is constructed where elements
corresponding to lines with boundary condition coefficients are set
to zero. For more information regarding this construction, the reader
can refer to Karpfinger et al. (2009) where it is explained in detail
how the boundary conditions are set for a fluid-poroelastic interface.

After setting all boundary conditions, the following eigenvalue
problem needs to be solved

L̃� = k2
z Q�, (43)

where L̃ is the L matrix from eq. (42) with coefficients of the bound-
ary conditions introduced in the corresponding lines. Eigenvalues
are the squared wavenumbers k2

z while phase velocities can be ob-
tained from their real part as

vph = ω

Re(kz)
. (44)

The corresponding attenuation Q−1 is defined as

Q−1 = Im(kz)

Re(kz)
. (45)

Solving this generalized eigenvalue problem (eq. 43) for a range of
frequencies allows the computation of the dispersion and attenuation
of all modes propagating in the considered structure.

Eigenvectors corresponding to the displacement potentials � can
be used to compute the radial distribution of the displacement and
stress components. This can be done by multiplying the potential
vectors for each mode with the corresponding matrix coefficients
of stresses S and displacements T .
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4 A P P L I C AT I O N T O B O R E H O L E
A C O U S T I C

In borehole acoustics it is of great importance to model dispersion
of guided modes such as tube and flexural waves (Schmitt 1988a;
Sinha & Asvadurov 2004). In this paper, our focus is on tube waves
propagating in a fluid-filled borehole surrounded by a layered poroe-
lastic formation. Tube wave signatures are sensitive to mobility of
the surrounding formation e.g. (Chang et al. 1988; Liu 1988; Norris
1989; Paillet & Cheng 1991).

In the following section we discuss three well-known examples
from borehole acoustics, computed with the spectral method. In all
three models we have a layered poroelastic cylinder of radius 2 m,
with a fluid-filled borehole in the centre (radius: 0.1 m). Because
the radius of the structure is 20 times the radius of the borehole,
the tube wave signatures are the same as for infinite formation. The
formation, borehole fluid and pore fluid parameters are described in
Table 1. Note that the borehole fluid as well as the pore fluid have
the same properties.

The first example discussed is a fluid-filled borehole surrounded
by a poroelastic formation. This example is widely discussed in
literature, for example (Chang et al. 1988; Liu 1988; Norris 1989;
Paillet & Cheng 1991) and we use the results to benchmark the
solution obtained with the spectral method. Dispersion and attenu-
ation for closed- and open-pore boundary conditions are computed
and displayed. The second example is a more complex three-layer
model with an elastic layer sandwiched between the fluid and the
poroelastic formation. In the existing literature only a few mod-
els with poroelastic structures existing of more than two layers are
discussed (Schmitt 1988b; Liu & Johnson 1997). Using the spec-
tral method, the computation of waves propagating in a three-layer
model is straightforward. The third example considers an altered
zone around the borehole which has a radius of to 2–3 borehole
diameters. This zone will be modelled as layers with reduced per-
meability. This zone is altered by the drilling process and thus has
reduced permeability (Sinha et al. 2006). A similar model using a
three-layer model (fluid–altered zone–formation) has been already
discussed by Schmitt (1988b). Here we consider a radial increase
of the permeability by dividing the altered zone in up to eight sub-
layers. This requires us to obtain the dispersion for a system with
up to 10 layers which can be solved using the spectral method in
less than 1 min.

4.1 Fluid-filled borehole surrounded
by poroelastic formation

First, let us consider the dispersion and attenuation of a tube wave in
a borehole surrounded by a poroelastic medium. An analytical low-
frequency approximation as well as the exact solution are discussed

Table 1. Material parameters of the formation
used for all discussed examples.

Grain density ρgrain = 2875 kg m −3

Shear modulus G = 8.85 GPa
Drained bulk modulus K = 10.8 GPa
Grain modulus Kg = 48 GPa
Viscosity η = 10−3 Pa s
Tortuosity a∞ = 1.91
Fluid density ρf = 1000 kg m−3

Porosity φ = 0.2
Fluid bulk modulus Kf = 2.3 GPa
Permeability κ = 1D

Figure 2. Tube wave dispersion in a fluid-filled borehole surrounded by a
poroelastic formation; top curve shows poroelastic formation with closed
boundary conditions; other curves correspond to open boundary conditions
with varying permeabilities.

in Chang et al. (1988) and Norris (1989). In Karpfinger et al. (2009)
the exact solution is computed with the spectral method and is
compared to the low-frequency approximation proposed by Chang
et al. (1988) in the case of open-pore boundary conditions. For
the closed-pore boundary conditions case, numerical results were
compared to the equivalent Gassmann model obtained with the
elastic spectral method (Karpfinger et al. 2008a). Here the influence
of the formation mobility on the dispersion curve is illustrated. Fig. 2
presents dispersion curves computed for a range of permeabilities
from 1 mD to 1000 mD and a frequency range from 1 Hz to 5000 Hz.
When the permeability is decreasing, the low frequencies part of the
dispersion curve decreases and is, at 1 mD, almost indistinguishable
from the closed boundary condition case.

For high frequencies, the dispersion curve for 1000 mD has higher
velocities compared to the one computed for lower permeabilities.
For high enough frequencies tube wave for open-pore boundary
condition travels faster than the tube wave for the equivalent elastic
medium (closed BC). Qualitatively it is observed that for increasing
permeability the frequency where the elastic dispersion equals the
poroelastic dispersion shifts towards lower frequencies. This result
can be understood because the high-frequency limit of the tube wave
in a poroelastic formation tends towards the Scholte velocity of a
fluid-poroelastic interface which is faster than its elastic equivalent
(Feng & Johnson 1983). In Fig. 3 the attenuation Q−1 as a function
of frequency is plotted for the same model. Here it can be observed

Figure 3. Tube wave attenuation in a fluid-filled borehole surrounded by
a poroelastic formation; bottom curve shows poroelastic formation with
closed boundary conditions; other curves correspond to open boundary
conditions with varying permeabilities.
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Figure 4. Tube-wave dispersion for an elastic layer with varying thickness
sandwiched between the fluid and the poroelastic layer; top curve: two layer
case fluid-poroelastic with close-pore boundary conditions on the interface;
increasing thickness of sandwiched elastic layer show decrease of tube wave
velocity; for thicknesses bigger than 20 cm the dispersion is only guided by
the properties of the elastic layer.

that for decreasing permeability the attenuation gets smaller. For
closed boundary conditions the attenuation is zero.

4.2 Effect of an elastic layer between fluid
and poroelastic formation

The second example investigates the effect of the thickness of
an elastic layer sandwiched between the fluid-filled borehole and
the poroelastic formation. For the elastic layer we have used the
Gassmann velocities of the poroelastic formation. For a very thin
elastic layer the dispersion is equivalent to the case of closed-pore
boundary conditions. The pores on the borehole wall are effectively
closed and no fluid flow can occur, therefore the dispersion is the
same as for an equivalent elastic model. The dispersion due to closed
boundary conditions is compared to the dispersion with an elastic
layer. The effect of the thickness of the elastic layer is considered
especially.

In Fig. 4 the dispersion of a tube wave propagating for such a
model is illustrated.

The thickness of the elastic layer ranges from 0 cm (closed BCs)
to 20 cm. At low frequencies all dispersion curves tend towards the
same limit, that is, the low-frequency limit of tube waves propagat-
ing in a borehole surrounded by an elastic formation. One drawback
of the spectral method becomes visible here; the results for low fre-
quencies become numerically unstable and the dispersion curves are
not perfectly smooth. Nevertheless the low-frequency limit can still
be estimated reasonably well. At high frequencies the thickness of
the elastic layer causes a difference in the observed dispersion. For
layer thicknesses of 5 cm the difference with the closed boundary
conditions case is approximately 8 m s−1. As the thickness of the
elastic layer becomes bigger than 5 cm the tube wave signatures do
not significantly change anymore and are therefore not influenced
by the surrounding poroelastic formation.

4.3 Effect of an altered zone between fluid
and poroelastic formation

Reservoir engineers know well that altered zone around boreholes
often experiences ‘formation damage’ (i.e. permeability reduction).
In some cases an altered zone can have distinct mechanical prop-
erties, but almost always it suffers from a permeability reduction

Figure 5. Geometry of the model of a borehole surrounded by a invaded
zone of reduced permeability and an untouched formation.

due to mechanical and chemical factors caused by well drilling
and completion processes. Permeability reduction causes problems
when extracting oil and gas from hydrocarbon reservoirs. The prob-
lem of an altered zone with reduced permeability has been discussed
by various authors (Schmitt 1988b; Sinha et al. 2006).

The last example considers a borehole surrounded by such an
altered zone. The geometry is illustrated in Fig. 5, where the altered
zone has a thickness of 0.24 m. To consider the effect of the reduced
permeability on the tube wave signatures, a radial change in perme-
ability is included. In Fig. 6 the black curve represents the dispersion
of a tube wave in a borehole surrounded by an unaltered formation
with a permeability of 1000 mD. The curves in magenta, green and
red take the effect of the altered zone into account with different
radial permeability profiles. The magenta curve is the dispersion
considering an altered zone as a single layer with a permeability of
200 mD. The green dispersion curve was computed for an invaded
zone composed of four layers of 6 cm thickness with a permeability
increasing stepwise (200 mD, 400 mD, 600 mD and 800 mD). The
red line separates the invaded zone into eight layers of 3 cm thick-
ness where the radial change in permeability is (200 mD, 300 mD,
400 mD, 500 mD, 600 mD, 800 mD and 900 mD).

As one can see, there is a significant change in dispersion from
no invaded to an invaded zone with one layer and a permeability

Figure 6. Tube wave dispersion of a borehole surrounded by an invaded
zone of reduced permeability and an untouched formation; altered zone has
a thickness of 24 cm; we consider several models which consist of no (black),
single (violet), four (green) and eight (red) sublayers of equal thickness; in
all cases the permeability of the inner layer is 200 mD.
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Figure 7. Same as Fig. 6 but zoomed in for low frequencies; displayed here
is an invaded zone with a single sublayer (violet) and eight (red) sublayers;
the effect of the sublayers is most significant for frequencies between 100 Hz
and 400 Hz; in all cases the permeability of the inner layer is 200 mD.

reduced to 200 mD. However, for a radial permeability change
within the invaded zone the difference between one and eight layers
is not significant. The fluid flow causing the tube wave dispersion
mostly depends on the permeability of the layer adjacent to the
borehole, therefore the flow between the different poroelastic layers
does not significantly influence the tube wave dispersion.

In Fig. 7 the dispersion curve for an altered zone with one in-
ternal layer is compared to the eight-layer case. On a smaller scale
it becomes obvious that for a frequency range from 100 Hz to
400 Hz the difference is up to 10 m s−1. It might be possible to use
this low-frequency range to invert for the radial distribution of the
permeability.

5 C O N C LU S I O N S

In this study we have introduced a new numerical approach called
the spectral method which allows the computation of mode signa-
tures propagating in a fluid-filled borehole surrounded by a cylin-
drically layered poroelastic formation. The fundamental equations
for cylindrical poroelastic structures are derived on the basis of
Biot’s theory and presented in the context of the spectral method.
It is outlined how these equations are used to construct a gener-
alized matrix eigenvalue problem for an arbitrary number of fluid,
elastic and poroelastic layers. To illustrate the numerical scheme,
we discussed three examples from borehole acoustics. First we val-
idated the spectral method on a well-known example of fluid-filled
borehole surrounded by a poroelastic medium. Two remaining ex-
amples illustrated cases with additional cylindrical layering of up
to 10 layers. The number of layers was no limitation for the spectral
method and could still be computed very time efficiently (in less
than 1 min).

The spectral method successfully allows obtaining the dispersion
for all examples easily and time efficiently. It has been shown that the
spectral method is a very powerful alternative method for the com-
putation of wave propagation in complicated poroelastic structures.
This provides the opportunity to obtain more accurate descriptions
of realistic borehole conditions and thus achieve a better character-
ization of petrophysical properties of subsurface formations.

Future work can be focused on the implementation of absorbing
boundary conditions to model a real infinite medium. This will also
allow obtain the dispersion of leaky modes and eliminates higher
order modes that only propagate in finite structures. Absorbing
boundary conditions will also help to reduce the number of colloca-

tion points. In the example with the altered zone only one parameter,
the permeability, was changed. It would be of interest to see how the
dispersion would be influenced if various parameters were changed
such as, for example, the shear modulus. This, as well as, for ex-
ample, the effect of anisotropic media can also be considered in the
future.
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