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ABSTRACT
Recently, new on-shore acquisition designs have been presented with multi-
component sensors deployed in the shallow sub-surface (20 m–60 m). Virtual source
redatuming has been proposed for these data to compensate for surface statics and
to enhance survey repeatability. In this paper, we investigate the feasibility of replac-
ing the correlation-based formalism that undergirds virtual source redatuming with
multi-dimensional deconvolution, offering various advantages such as the elimination
of free-surface multiples and the potential to improve virtual source repeatability. To
allow for data-driven calibration of the sensors and to improve robustness in cases
with poor sensor spacing in the shallow sub-surface (resulting in a relatively high
wavenumber content), we propose a new workflow for this configuration. We as-
sume a dense source sampling and target signals that arrive at near-vertical propaga-
tion angles. First, the data are preconditioned by applying synthetic-aperture-source
filters in the common receiver domain. Virtual source redatuming is carried out for
the multi-component recordings individually, followed by an intermediate deconvolu-
tion step. After this specific pre-processing, we show that the downgoing and upgoing
constituents of the wavefields can be separated without knowledge of the medium
parameters, the source wavelet, or sensor characteristics. As a final step, free-surface
multiples can be eliminated by multi-dimensional deconvolution of the upgoing fields
with the downgoing fields.

INTRODUCTION

Bakulin and Calvert (2006) introduced the virtual source
method in which sources are redatumed from the Earth’s
surface to a downhole receiver array. Since the required
redatuming operators are actually recorded, this type of
redatuming can be implemented without knowledge of the
propagation velocity above the receivers. Redatumed signals
can be used for migration (Zhou et al. 2006) or travel-time
tomography (Hanafy and Schuster 2007; Byun, Yu, and Seol
2010; Tatanova, Mehta, and Kashtan 2011). Since the virtual
source method is relatively well repeatable, it has also proven
useful for reservoir monitoring (Bakulin et al. 2007; Mehta
et al. 2008; Korneev et al. 2008). Recently, novel onshore
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acquisition designs have been presented that utilize downhole
receivers in shallow sections of the subsurface (20-60m) in
complex karsted desert environments (Berron et al. 2012).
Virtual source redatuming has been proposed for these data as
a means to improve survey repeatability (Bakulin et al. 2012).
Initial tests on synthetic data have shown that multiple reflec-
tions from the free surface can be harsh in this environment
(Alexandrov, Bakulin, and Burnstad 2012). Conventional
demultiple methods, such as surface-related multiple elimi-
nation (SRME) (Verschuur, Berkhout, and Wapenaar 1992;
Kelamis and Verschuur 2000) appear unfavourable due to
the complexity of the upper sub-surface section.

Traditionally, the virtual source method is applied by
cross-correlation (Korneev and Bakulin 2006; Schuster and
Zhou 2006). Free-surface multiples should be eliminated prior
to redatuming, intrinsic losses are not accounted for, and
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significant scattering is required to compensate for one-sided
illumination (Wapenaar 2006). If these assumptions are not
fulfilled, retrieved gathers can be blurred and can contain
spurious events. To deblur the retrieved data and to elim-
inate spurious events, it can be beneficial to replace cross-
correlation by multidimensional deconvolution (Wapenaar
et al. 2011). To facilitate this process, downgoing and up-
going waves should be separated by wavefield decomposition
of the multi-component recordings.

In this paper, we adapt the processing sequence for
multi-dimensional deconvolution for configurations with
shallow downhole receiver arrays. Since the receivers
are buried within the first hundred meters of the sub-
surface, the incident wavefields inherit a relatively high
wavenumber content. Unfortunately, the receiver spacing is
relatively sparse for this configuration (with 30-m spacing
in the example that follows), resulting in severe spatial
aliasing. Since the target signals tend to arrive at the re-
ceiver array with incident angles that are close to vertical
(up to approximately 15◦ in the example) (Alexandrov
et al. 2012) and since sources are densely distributed at the
surface (with 7.5-m spacing in the example) (Bakulin et al.

2012), we can tackle these problems by preconditioning the
data with synthetic-aperture-source filters. Moreover, we
apply wavefield decomposition after an intermediate reda-
tuming step in which we deconvolve the source and receiver
signatures in a natural way. Unlike existing methodologies,
this approach requires no knowledge of the source wavelet,
the medium parameters, or the multicomponent sensor char-
acteristics, resulting in a completely data-driven workflow.

We start the paper with four theoretical sections,
where the concepts of wavefield decomposition, the virtual
source method, multi-dimensional deconvolution, and pre-
conditioning by synthetic-aperture-source filters are briefly
introduced. In the methodology section that follows, these
concepts are combined to build a new workflow for buried
sensor arrays in the shallow subsurface. Finally, we demon-
strate this workflow with a synthetic example that is based on
a recent experiment over an on-shore oilfield in Saudi Arabia.

WAVEFIELD DE C OMPOSI T I ON

Consider a Cartesian coordinate system x = (x1, x2, x3), where
x1 and x2 are horizontal coordinates and x3 is the vertical coor-
dinate. Sources are situated at surface locations xS . Receivers
are situated at x in a horizontal array in the subsurface. Con-
sider the downhole pressure field P (x, xS ; ω) from source xS

to receiver x, given in the frequency-space domain, where ω is

Figure 1 Configuration for the convolution-based representation. In-
tegration volume D is bound by ∂D and the free surface. In state A,
the medium parameters are identical to those of the physical medium
above ∂D and homogeneous below ∂D. In state B, the medium param-
eters are identical to those of the physical medium above and below
∂D. The source location xS and receiver location xB are inside and
outside the integration volume, respectively.

the angular frequency. The pressure field consists of downgo-
ing (superscript +) and upgoing (superscript −) constituents,
according to

P (x, xS ; ω) = P+ (x, xS ; ω) + P− (x, xS ; ω) . (1)

The vertical particle-velocity field V3 (where subscript 3 de-
notes the vertical direction) is related to the pressure field
through the equation of motion:

V3 (x, xS ; ω) = −1
jωρ(x)

∂3 P (x, xS ; ω) . (2)

Here, j is the imaginary unit, ρ(x) is the density along the re-
ceiver array, and ∂3 is a spatial derivative in the vertical direc-
tion at x. We introduce the one-way wave equation (Fishman
1991; Haines and de Hoop 1996; Wapenaar 1998):

∂3 P± (x, xS ; ω) = ∓ jH1(x; ω)P± (x, xS ; ω) . (3)

In this expression, H1(x; ω) is the square root of the Helmholtz
operator, given by

H1(x; ω) =
√

ω2

c2(x)
+ ρ(x)∂1

1
ρ(x)

∂1 + ρ(x)∂2
1

ρ(x)
∂2, (4)

where c(x) is the space-dependent velocity, and ∂1 and ∂2

are spatial derivatives over horizontal coordinates at x. The
square root of the Helmholtz operator can be computed
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Figure 2 Proposed workflow for data-driven multi-dimensional deconvolution with shallow downhole receiver arrays. Inputs the recorded
pressure P and verticle particle velocity V3. The output is the multiple-free reflection response X0. References to the relevant equations are
given, and a more complete description can be found in the main text.

numerically (Fishman, McCoy, and Wales 1987; Grimbergen,
Dessing, and Wapenaar 1998). We filter the particle-velocity
field with H1(x; ω)−1

ωρ(x) and define the result as

V3P (x, xS ; ω) = H−1
1 (x; ω)ωρ(x)V3 (x, xS ; ω) , (5)

where subscript P denotes (pressure-normalized) filtering. In
this paper, we define filter H−1

1 for propagating waves only.
Additional regularization can be applied to avoid numerical
instability due to horizontal wave propagation. By substi-
tuting equations (1) and (3) into equation (2) and applying
H1(x; ω)−1

ωρ(x) to the result, it follows that

V3P (x, xS ; ω) = P+ (x, xS ; ω) − P− (x, xS ; ω) . (6)

Hence, the filtered particle-velocity field can be interpreted as
the subtraction of the upgoing pressure field from the down-
going presure field. Alternatively, the recorded pressure field
can be interpreted as the addition of these quantities (see
equation 1). By combining equations (1) and (6) in two dif-
ferent ways, it follows that

P± (x, xS ; ω) = 1
2

P (x, xS ; ω) ± 1
2

V3P (x, xS ; ω) . (7)

Thus, we have shown that filtering the particle-velocity field as
in equation (5) and adding the result to the pressure field yield
the downgoing pressure field. Alternatively, subtracting these
fields yields the upgoing field. This is the essence of wavefield
decomposition (Claerbout 1971). In equation (7), pressure

normalization has been imposed, such that the decomposed
fields P± represent downgoing and upgoing pressure fields.
Alternatively, decomposition schemes can be derived to ob-
tain downgoing and upgoing flux-normalized fields that obey
additional reciprocity properties (Wapenaar and Grimbergen
1996). If we assume that the angle of incidence of each wave-
field constituent is close to zero, the horizontal spatial deriva-
tives vanish such that H1(x; ω) ≈ ω

c(x) . In this case, equation
(5) can be approximated by

V3P (x, xS ; ω) ≈ ρ(x)c(x)V3 (x, xS ; ω). (8)

Decomposition by equations (7) and (8) is referred to as dual-
sensor summation since the raw recordings are simply added
and subtracted after scaling with the acoustic impedance
ρ(x)c(x). For applications of this concept, see Barr (1997)
and Mehta et al. (2007).

T H E V I R T U A L S O U R C E M E T H O D

To apply the virtual source method, the incident wavefield
Pinc should be isolated with a time gate. In a strongly hetero-
geneous medium, the incident wavefield can overlap with up-
going reflections, making such a separation not always trivial
(Alexandrov et al. 2012). In this paper, we define the inci-
dent wavefield as the response from the part of the medium
above the receiver level (including the source ghost), as if the
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Figure 3 P-wave velocity in m/s (blue), S-wave velocity in m/s (red)
and density in kg/m3 (green) versus depth in m for the layered synthetic
model. The location of the reservoir is indicated.

medium below the receiver level were homogeneous. In the
virtual source method, the time-gated incident wavefield is
cross-correlated with the total field P, followed by a summa-
tion over sources. We refer to the result of this operation as
the virtual source response CP (Bakulin and Calvert 2006):

CP (xB, x′
A; ω) =

∑
s

P
(
xB, x(s)

S ; ω
)

P∗
inc

(
x′

A, x(s)
S ; ω

)
, (9)

where xB and x′
A are receiver locations, superscript ∗ de-

notes complex conjugation, subscript P denotes pressure,
and s is the source index number. Based on time-reversal
logic or a reciprocity theorem of the correlation type
(Wapenaar, Fokema, and Snieder 2005; Korneev and Bakulin
2006), CP (xB, x′

A; ω) is often interpreted as the response at
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Figure 4 Deep section of a common source gather (with xS fixed in the
centre of the array). (a) particle velocity V3(x, xS ; t) and (b) pressure
P(x, xS ; t). The red ellipses indicate events with high propagation
angles.

xB to a source at x′
A. In this paper, we interpret the virtual

source response differently, based on a reciprocity theorem of
the convolution type.

Consider the configuration in Fig. 1. An integration vol-
ume D is enclosed by the free surface and ∂D, being located
just above the receiver array. Both boundaries extend to infin-
ity. We introduce the reciprocity theorem of the convolution
type (Fokkema and Van den Berg 1993):∫
D

{pA (x; ω) qB (x; ω) − qA (x; ω) pB (x; ω)}d3x

=
∫
∂D

{pA (x; ω) vi,B (x; ω) − vi,A (x; ω) pB (x; ω)}ni d
2x,

(10)

where an additional integral over the free surface has been
cancelled because of Dirichlet boundary conditions. Here, pA,
vi,A, and qA are the pressure field, the particle-velocity field,
and the source distribution in terms of volume injection rate
density, respectively, in state A. Subscript B refers to the same
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Figure 5 Frequency–wavenumber spectrum of the particle velocity
recordings V3 of a common source gather (with xS fixed in the center
of the array) (a) before and (b) after synthetic-aperture-source filter-
ing in the common receiver domain with equation (32). The white
arrows indicate spatial aliasing. Both gathers are normalized by their
maximum amplitude.

quantities in state B. For the integration path along the re-
ceivers, we find ni = δi3, being a Kronecker delta function. In
state A, we define, pressure field pA (x; ω) = Ginc (x, xS ; ω),
particle-velocity field vi,A (x; ω) ni = −1

jωρ(x) ∂3Ginc (x, xS ; ω),
and source term qA (x; ω) = δ(x − xS), where xS is located in-
side the volume. Here, Ginc is a Green’s function of a refer-
ence medium that is identical to the physical medium above
∂D (including the free surface) and homogeneous below ∂D.
We assume that this Green’s function is related to the time-
gated incident field by Pinc = SGinc, where S is the source
wavelet (hence the subscript inc, indicating the incident field).
In state B, we define, pressure field pB (x; ω) = G (x, xB; ω),
particle-velocity field vi,B (x; ω) ni = −1

jωρ(x) ∂3G (x, xB; ω), and
source term qB (xB; ω) = δ(x − xB), where xB is located out-
side the integration volume. Here, G is a Green’s function
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Figure 6 Synthetic-aperture-source filter B(b) in (a) the space domain
and (b) the horizontal wavenumber domain. This filter is applied in
the common receiver domain with equation (31).

of the physical medium. Substitution of these quantities into
equation (10) yields

G (xS, xB; ω) =
∫
∂D

1
jωρ(x)

[Ginc (x, xS ; ω) {∂3G (x, xB; ω)}

−{∂3Ginc (x, xS ; ω)}G (x, xB; ω)]d2x.

(11)

We separate the downgoing and upgoing fields at x
(i.e., G = G+ + G−) and substitute the one-way wave
equations ∂3G± (x, xB; ω) = ∓ jH1(x; ω)G± (x, xB; ω) and
∂3Ginc (x, xS ; ω) = − jH1(x; ω)Ginc (x, xS ; ω), leading to

G (xS, xB; ω) =
∫
∂D

1
jωρ(x)

[Ginc (x, xS ; ω)

×[ jH1(x; ω){−G+ (x, xB; ω) + G− (x, xB; ω)}]
+ [ jH1(x; ω)Ginc (x, xS ; ω)] {G+ (x, xB; ω)

+ G− (x, xB; ω)}]d2x. (12)

C© 2015 European Association of Geoscientists & Engineers, Geophysical Prospecting, 1–15



6 J. van der Neut, D. Alexandrov and A. Bakulin

−1200   0  +1200

0.8

1

1.2

Offset (m)

T
im

e
 (

s
)

(a)

−1200   0  +1200

0.8

1

1.2

Offset (m)

T
im

e
 (

s
)

(b)

Figure 7 Deep section of a common source gather (with xS fixed in
the centre of the array) after filtering in the common receiver domain
with equation (31). (a) Particle velocity V̄3(x, xS ; t) and (b) pressure
P̄(x, xS ; t).

An important property of operator H1 is its symmetry, in the
sense that

∫
∂D

f [H1g] d2x = ∫
∂D

[H1 f ] gd2x for any f and g

(Wapenaar et al. 2011). As a consequence, the convolutions
of downgoing fields with downgoing fields in equation 12
cancel and the remaining terms can be merged. We can write
the result in two ways:

G (xB, xS ; ω) =
∫
∂D

2
ωρ(xA)

[H1(xA; ω)G− (xA, xB; ω)]

Ginc (xA, xS ; ω) d2xA (13)

or

G (xB, xS ; ω) =
∫
∂D

2
ωρ(xA)

G− (xA, xB; ω) [H1(xA; ω)

×Ginc (xA, xS ; ω)] d2xA, (14)
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Figure 8 Shallow section of a common source gather (with xS fixed in
the center of the array) after filtering in the common receiver domain
with equation (31): (a) Particle velocity V̄3(x, xS ; t) and (b) pressure
P̄(x, xS ; t). The time gate is indicated by the red dashed line.

where we substituted xA = x for notational convenience. We
can separate the wavefield at xB into downgoing and upgoing
constituents, according to

G− (xA, xB; ω) = G−,+ (xA, xB; ω) + G−,− (xA, xB; ω) . (15)

In this representation, G±,± is the downgoing or upgoing
constituent (first superscript) of a Green’s function with a
downward or upward radiating (second superscript) source.
Further, we introduce source–receiver reciprocity, according
to

G−,± (xA, xB; ω) = G∓,+ (xB, xA; ω) . (16)

By substitution of equations (15) and (16) into equation
(13) and multiplication with the source wavelet S, it follows
that

P (xB, xS ; ω) =
∫
∂D

X (xB, xA; ω) Pinc (xA, xS ; ω) d2xA, (17)
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where P = SG is the pressure field, Pinc = SGinc is the incident
pressure field that can be isolated by time gating, and

X (xB, xA; ω) = 2
ωρ(xA)

H1(xA; ω){G+,+ (xB, xA; ω)

+G−,+ (xB, xA; ω)}. (18)

Equation 17 can be inverted for X by least-squares in-
version. With this operation, we remove the incident pressure
field from the recorded pressure data. To show this, we derive
a normal equation by multiplying both sides of equation (17)
with P∗

inc(x
′
A, xS ; ω) and by summing over sources, yielding

CP (xB, x′
A; ω) =

∫
∂D

X (xB, xA; ω) �P (xA, x′
A; ω)d2xA, (19)

where CP is the correlation function as in equation (9) and �P

is defined as the point-spread function for pressure fields:

�P (xA, x′
A; ω) =

∑
s

Pinc

(
xA, x(s)

S ; ω
)

P∗
inc

(
x′

A, x(s)
S ; ω

)
. (20)

As aforementioned, CP (xB, x′
A; ω) is often interpreted as

the reflection response at xB to a virtual source at x′
A (Bakulin

and Calvert 2006). As we can see from equation (19), CP

is indeed related to reflection response X, but this response
is blurred in time and space with the point-spread function.
Hence, the point-spread function �P can be interpreted as
the radiation pattern of the constructed virtual source. Vir-
tual source focusing can be improved when the correlated
data are deconvolved with the point-spread function (Van
der Neut 2013). Similar concepts have also been applied to
more conventional seismic data, where sources and receivers
are both located at the surface. For instance, Henley (2012)
demonstrated that deconvolving these data with so-called sur-
face functions can align reflections in complex environments
where conventional static corrections tend to fail.

Alternatively, the virtual source method can be applied
to the particle velocity records V3 (where V3,inc is the time-
gated incident field). Analogous to equation (9), we define the
virtual source response of the vertical particle-velocity fields
as

CV(xB, x′
A; ω) =

∑
s

V3

(
xB, x(s)

S ; ω
)

V∗
3,inc

(
x′

A, x(s)
S ; ω

)
, (21)

where subscript V denotes particle velocity. As we did for the
pressure fields, the retrieved field CV can be explained with a
convolution-based representation. This is done by substituting
equations (15) and (16) into equation (14) and multiplying
with the source wavelet S. After substituting P = SG and
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Figure 9 Shallow section of a redatumed common virtual source
gather (with xA fixed in the centre of the array): (a) Ȳ(x, xA; t) and (b)
X̄(x, xA; t). Redatuming is applied by equations (9), (20), (21), and
(26), followed by 1D deconvolution of equations (33) and (34). Above
the dashed blue line we find the source functions of the retrieved fields.
We have convolved the gathers with a zero-phase wavelet for visual
purposes.

Pinc = SGinc, we arrive at

P (xB, xS ; ω) = 2
∫
∂D

{G+,+ (xB, xA; ω) + G−,+ (xB, xA; ω)}

×V3,inc (xA, xS ; ω) d2xA, (22)

where V3,inc (xA, xS ; ω) = 1
ωρ(xA)H1(xA; ω)Pinc (xA, xS ; ω) is the

incident particle-velocity field that can be isolated from
the data with a time gate. Finally, we apply −1

jωρ(xB)∂
B
3 to

equation (22) (where superscript B indicates that the partial

C© 2015 European Association of Geoscientists & Engineers, Geophysical Prospecting, 1–15
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derivative is evaluated at xB), and we substitute equation (2)
(with x = xB). This eventually leads to

V3 (xB, xS ; ω) =
∫
∂D

Y (xB, xA; ω) V3,inc (xA, xS ; ω) d2xA, (23)

with

Y (xB, xA; ω) = 2
ωρ(xB)

H1(xB; ω){G+,+ (xB, xA; ω)

−G−,+ (xB, xA; ω)}, (24)

where ∂ B
3 G±,+ (xB, xA; ω) = ∓ jH1(xB; ω)G±,+ (xB, xA; ω) (the

one-way wave equation) has been substituted. We derive the
normal equation of this problem by multiplying equation (23)
by V∗

3,inc(x
′
A, x(s)

S ; ω) and summing over the sources, yielding

CV(xB, x′
A; ω) =

∫
∂D

Y (xB, xA; ω) �V(xA, x′
A; ω)d2xA, (25)

with the point-spread function for particle-velocity fields:

�V(xA, x′
A; ω) =

∑
s

V3,inc

(
xA, x(s)

S ; ω
)

V∗
3,inc

(
x′

A, x(s)
S ; ω

)
. (26)

It can be concluded that, when the virtual source method
is applied with pressure fields, we find the sum of the downgo-
ing and upgoing field at xB from a downward radiating source
at xA, filtered with 2

ωρ(xA)H1(xA; ω) and �P (equations (18) and

(19)). Alternatively, when the virtual source method is applied
to particle-velocity fields, we find the difference of the down-
going and upgoing fields, filtered with 2

ωρ(xB)H1(xB; ω) and �V

(equations (24) and (25)). Note that both X and Y could be
retrieved from (equations (19) and (25) by inversion.

MULTIDIMENSI ON A L D EC ON V OL UT I ON

Although the virtual source method has proven to be very
effective to remove statics and to improve source repeatabil-
ity (Bakulin et al. 2007), interactions with the free surface
are not addressed. Using multi-dimensional deconvolution,
we are able to address these interactions during the redatum-
ing process (Wapenaar et al. 2011). In this case, we solve the
following forward problem

P− (xB, xS ; ω) =
∫
∂D

X0 (xB, x; ω) P+ (x, xS ; ω) d2x, (27)

with

X0 (xB, x; ω) = 2
jωρ(x)

∂3G0 (xB, x; ω) . (28)

In equation (27), ∂D is the receiver array, and xB is located
just below this array (in practice, we generally evaluate xB
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Figure 10 Shallow section of a decomposed common virtual source
gather (with xA fixed in the center of the array). (a) X̄+(x, xA; t) and
(b) X̄−(x, xA; t). Decomposition is applied by equation (37) with Ȳ =
ȲX. Above the dashed blue line is the source functions of the retrieved
fields. Note that the upgoing field contains no source function, as
expected. We have convolved the gathers with a zero-phase wavelet
for visual purposes.

at ∂D). Source locations xS are situated at the surface above
∂D. Furthermore, G0 (xB, x; ω) represents the Green’s function
with a source at x and a receiver at xB in a reference medium
(subscript 0) that is identical to the physical medium below
the receiver level and homogeneous above this level. The un-
known field X0 can be retrieved by least-squares inversion of
equation (27) for example, see Wapenaar et al. (2011) for ex-
amples. This approach allows us to eliminate all interactions
with the free surface and overburden since X0 is the response
to a medium that is homogeneous above the receiver array.
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PRECONDITIONING

To allow inversion, the receiver spacing should be dense
enough to avoid spatial aliasing. Therefore, the following
Nyquist criterion should be met:

ω

ca
<

π

�x
. (29)

Here, �x is the receiver spacing, and ca = c/ sin αmax is the
minimum apparent velocity, with αmax being the maximum
propagation angle in the data. In modern acquisition designs,
as presented by Berron et al. (2012), �x is insufficiently small
to satisfy equation (29). As a consequence, the data are spa-
tially aliased, and straightforward inversion is not possible
if no additional preconditioning is carried out. We imple-
ment such preconditioning by introducing synthetic-aperture
sources, being inspired by a similar idea that was recently
introduced for an analogous problem in controlled source
electromagnetic exploration (Fan et al. 2010; Hunziker et al.

2012). We make use of the fact that the source array is not
spatially aliased. Synthetic-aperture-source data are generated
by applying a blurring filter to the forward problem. The blur-
ring filter is constructed by defining the following Gaussian
weighting function:

B(b) = 1√
2πγ 2

exp
(−b2

γ 2

)
, (30)

where parameter γ controls the width of the synthetic-aper-
ture sources and b is an integer. Filter B(b) is applied to the
data in the following way:

P̄±
(
x, x(s)

S ; ω
)

=
∑

b

P±
(
x, x(s−b)

S ; ω
)

B(b), (31)

where the bar indicates blurred data and s is the source index
number. We apply the blurring filter to both sides of equation
(27), yielding the preconditioned forward problem:

P̄− (xB, xS ; ω) =
∫
∂D

X0 (xB, x; ω) P̄+ (x, xS ; ω) d2x. (32)

Essentially, the filter B(b) suppresses the high-wavenumber
content by blending sources. This reduces the maximum prop-
agation angle αmax in the data, such that equation (29) is satis-
fied. As we will show later, X0 can be retrieved from equation
(32) with relatively poor receiver spacing, which is not pos-
sible with equation (27) due to spatial aliasing. Velocity fil-
tering is another option that could be applied to remove high
wavenumber content prior to inversion. However, velocity fil-
tering often results in additional artefacts, which are naturally
avoided by the smooth synthetic-aperture-source filter.

METHODOLOGY

The most straightforward way to retrieve X0 is to apply wave-
field decomposition with equation 7, followed by inversion of
equation (27). Although this strategy appeared to be relatively
successful when the receiver array is deep and relatively well
sampled (Wapenaar et al. 2011), the situation is slightly differ-
ent in cases with coarsely spaced shallow receivers. Moreover,
variations in sensor characteristics, coupling, and 3D effects
tend to obstruct our workflow. It is particularly hard to pre-
serve the incident wavefield, which is extremely important for
the success of multi-dimensional deconvolution (Van der Neut
et al. 2012). For these reasons, we prefer to develop an alter-
native workflow by combining different concepts that were
discussed in the previous section.

Geophone and hydrophone recordings have different fre-
quency characteristics and therefore should be calibrated. In
ocean-bottom cable (OBC) technology, adaptive decomposi-
tion schemes are often applied (Schalkwijk, Wapenaar, and
Verschuur 2003; Muijs, Robertsson, and Holliger 2004). For
borehole data, it is common to apply data matching prior
to decomposition (Mehta et al. 2010). In practice, however,
it appears favorable to apply wavefield decomposition after
an intermediate redatuming step. This can be understood in-
tuitively since variations in statics and sensor coupling are
removed during redatuming, forcing the signals to align, as
they should for a successful wavefield decomposition.

Our workflow utilizes wavefields X and Y, rather than
the recorded data P and V3. This has two advantages. First,
each sensor type is deconvolved independently prior to wave-
field decomposition. Second, decomposition can be applied
without additional knowledge of the medium properties, mak-
ing the workflow fully data driven. Our scheme assumes wave
propagation of the target signals to be close to normal inci-
dence. This assumption is believed to be well fulfilled for this
type of data (Alexandrov et al. 2012). Medium variations
along the receiver array are neglected. If these variations are
significant and known, an additional filter is proposed.

Ideally, we would like to retrieve X and Y by inversion of
equations (17) and (23). However, since the receiver spacing
is relatively poor and the reflecting signals propagate close to
vertical for this configuration (with incident angles up until
15◦ only), we prefer to ignore all off-diagonal elements of the
point-spread function (being those entries where x′

A �= xA).
This can be done since the point-spread function of the inci-
dent wavefield tends to be diagonally dominant. By assuming
that �P (xA, x′

A; ω) = 0 for any x′
A �= xA, equations (19) and

(25) can be approximated by (Van der Neut 2013)
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CP (xB, xA; ω) ≈ X (xB, xA; ω) �P (xA, xA; ω) , (33)

and

CV (xB, xA; ω) ≈ Y (xB, xA; ω) �V (xA, xA; ω) , (34)

which can be solved by 1D deconvolution. For more details
on this approximation (that has also been referred to as diag-
onal deconvolution) and its relation to other deconvolution-
based applications of seismic interferometry, see Van der Neut
(2013). This approach appears to be less sensitive to noise than
inversion. Spatial aliasing effects are avoided, which is partic-
ularly beneficial for the data that we consider in this paper,
being sparsely sampled at the receiver side.

We apply ρ−1 (xA)H1(xA; ω)H−1
1 (xB; ω)ρ (xB) to Y(xB,

xA; ω) and refer to this result as

YX (xB, xA; ω) = ρ−1 (xA)H1(xA; ω)H−1
1 (xB; ω)ρ (xB)

×Y (xB, xA; ω) . (35)

By substitution of equation (24) into equation (35) it follows
that

YX (xB, xA; ω) = 2
ωρ(xA)

H1(xA; ω){G+,+ (xB, xA; ω)

−G−,+ (xB, xA; ω)}. (36)

By combining equations (18) and (36) in two different ways,
we find

X± (xB, xA; ω) = 1
2

X (xB, xA; ω) ± 1
2

YX (xB, xA; ω) , (37)

where X+ and X− are the downgoing and upgoing con-
stituents, respectively, of X. Hence, it follows that the
downgoing field X+ can be obtained by adding X and YX.
Alternatively, the upgoing field X− can be obtained by sub-
tracting these fields. To allow for such a decomposition, a
filter should be constructed to obtain YX from Y. This can
be done by numerical computation of the square-root op-
erators in equation (35) (Fishman et al. 1987; Grimbergen
et al. 1998). Alternatively, we can assume that fields propa-
gate close to normal incidence, such that the approximations
H1(xA; ω) ≈ ω

c(xA) and H1(xB; ω) ≈ ω

c(xB) can be applied. Insert-
ing these approximations into equation (35) yields

YX (xB, xA; ω) ≈ ρ(xB)c(xB)
ρ(xA)c(xA)

Y (xB, xA; ω) . (38)

If the medium parameter variations can be neglected at the
receiver level, we find from equation (35) that YX ≈ Y. This
approximation has the advantage that no additional informa-
tion on the propagation velocity and density along the receiver
array is required to decompose the wavefields.

Now that we can retrieve the quantities X− and X+, we
aim to extract the desired reflection response X0 by multi-
dimensional deconvolution. To do this, we revise forward
problem (27). This is done by decomposition of equation (17)
at xB into downgoing and upgoing constituents and substitut-
ing the result into equation (27), yielding∫

∂D

X− (
xB, xA; ω

)
Pinc

(
xA, xS ; ω

)
d2xA

=
∫
∂D

X0
(
xB, x; ω

)⎡
⎣∫

∂D

X+ (
x, xA; ω

)
Pinc

(
xA, xS ; ω

)
d2xA

⎤
⎦ d2x.

(39)

We can deconvolve the incident fields at both sides of this
equation, bringing us at

X− (
xB, xA; ω

) =
∫
∂D

X0
(
xB, x; ω

)
X+ (

x, xA; ω
)

d2x. (40)

Theoretically, this equation can be inverted for X0. Based on
this insight, a new workflow for multi-dimensional deconvo-
lution of data from shallow downhole receivers can be derived.

Our workflow is illustrated in Fig. 2. First, the recorded
pressure and particle velocity fields are preconditioned by ap-
plying a synthetic-aperture-source filter, as in equation (31),
to eliminate constituents of the wavefields at high propaga-
tion angles. We emphasize that the filter acts on the common
receiver gathers, which are assumed to be sampled densely.
Next, we isolate the incident fields with a time gate and com-
pute C̄P , �̄P , C̄V , and �̄V with equations (9), (20), (21), and
(26) (where bars are added to the field quantities because
of the synthetic-aperture-source filter). We refer to this step
as virtual source redatuming. Now that the fields are reda-
tumed, we apply single-trace deconvolution of equations (33)
and (34), yielding the estimates of X̄ and Ȳ that we require for
wavefield decomposition (once more, with the imprint of the
synthetic-aperture-source filter). We can filter Ȳ as in equation
(38), if an estimate of the impedance contrasts along the re-
ceiver array is available. We can also neglect these variations,
such that ȲX ≈ Ȳ, making the processing scheme fully data
driven. Wavefield decomposition can now proceed by adding
and subtracting X̄ and ȲX without further calibration, as in
equation (37). Finally, multi- deconvolution can be applied to
the decomposed fields X̄− and X̄+ by multi-trace inversion of
equation (40). This yields the desired reflection response X0.
Note that the imprint of the synthetic-aperture-source filter is
effectively removed by the inversion (in a similar way as in
equation (32)). The advantage of this methodology is that the
source signature is not required, the incident wavefield has not
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been touched by any decomposition operator, and the sensor
characteristics are aligned in a natural way by deconvolution
without knowledge of the subsurface parameters at the re-
ceiver level. In this sense, we deviate from existing workflows
(Wapenaar et al. 2011), where wavefield decomposition is ap-
plied before redatuming, requiring knowledge of the medium
parameters and fine receiver sampling.

EXAMPLE

The following numerical example is based on a recent ex-
periment over an on-shore oilfield in Saudi Arabia that is
described in more detail by Alexandrov et al. (2012). At the
surface, 641 sources are situated with 7.5-m spacing. In an
array that is located 30 m below the surface, 81 receivers
are deployed with 30-m spacing. The target reservoir is lo-
cated much deeper in the sub-surface, at 2000m (see Fig. 3).
The medium is laterally homogeneous but is characterized by
strong vertical contrasts. Because of these contrasts, the down-
hole responses contain a multitude of horizontally propagat-
ing waves, as indicated by the red ellipses in the raw common
source gathers of particle velocity and pressure in Fig. 4. Since
many constituents of the wavefield have low apparent ve-
locities and the receiver spacing is relatively large, the com-
mon source gathers are spatially aliased, which can be seen
in the frequency–wavenumber domain, as indicated by the
white arrows in Fig. 5(a). However, due to the finer source
spacing (7.5 m versus 30 m), the common receiver gathers
are not spatially aliased. We design a synthetic-aperture-
source filter based on equation (30). In Figure 6(a) we show
the filter in the space domain. This filter is applied to the
common receiver gathers as demonstrated by equation (31),
essentially describing a spatial convolution process. Spatial
convolution corresponds to multiplication in the wavenum-
ber domain with the spatial Fourier transform coefficients
of the filter that are shown in Fig. 6(b). Note that the filter
indeed suppresses high wavenumbers, particularly above the
Nyquist wavenumber that follows from the receiver spacing
(1/(2 ∗ 30m) ≈ ±0.0167m−1). Assuming that the reflection
response that we aim to retrieve does not contain constituents
that are spatially aliased, multi-dimensional deconvolution
will remove the imprint of the filter from the data later in the
processing sequence, as we will show. The data after synthetic-
aperture-source filtering are shown in Fig. 7. Note that the
high wavenumber noise (indicated by the red elipses in Fig. 4)
has been suppressed. In Figure 5(b) we show the frequency–
wavenumber spectrum of the particle-velocity field after fil-
tering. Note that, indeed, the aliased constituents (indicated
by the white arrows in Fig. 5a) have been eliminated.

In Figure 8, we zoom in on a shallow section of a com-
mon source gather, after filtering in the common receiver do-
main. We time-gate the incident pressure and particle-velocity
fields, as indicated by the dashed red lines in this figure. Vir-
tual source redatuming is applied by equations (9), (20), (21),
and (26), followed by 1D deconvolution of equations (33)
and (34). Shallow sections of the retrieved fields Ȳ and X̄

are shown in Fig. 9, containing the retrieved source function
around t = 0s. Because the medium parameters are constant
along the receiver array, it follows that ȲX = Ȳ. Therefore, the
fields X̄ and Ȳ can simply be added and subtracted to retrieve
the down- and upgoing wavefields, as described by equation
37. The result of this operation is shown in Fig. 10. Note that
the downgoing field contains the source function and multi-
ples from the free surface, whereas the upgoing field contains
only reflections (primaries and multiples), as expected. Note
that we have not utilized any knowledge of the medium pa-
rameters or source signature to achieve this.

Finally, multi-dimensional deconvolution is applied
to retrieve the desired multiple-free data X0. This is done
by multi-trace inversion of equation (40). In Fig. 11(a) we
show a common virtual source gather as retrieved with the
conventional virtual source method (Alexandrov et al. 2012).
Although the target reflector, indicated by the red arrow, can
be identified, multiple reflections pollute the gather. This can
be seen when comparing this result with a reference response
that was modeled by placing an active source at the virtual
source location in a reference medium that is identical to
the physical medium below ∂D and homogeneous above ∂D

(see Fig. 11b). In Fig. 12(a), we show the retrieved upgoing
field X̄−. Note that the target reflector can be identified at its
correct kinematic position (comparable to Fig. 11a) since the
incident field has been removed from the propagation history
by virtual source redatuming. We observe various multiple
reflections, which can be eliminated by multi-dimensional
deconvolution with the downgoing field, yielding X0 (see Fig.
12b). The spatial imprint of the synthetic-aperture-source
filter that is imposed on the gather in Fig. 12(a) is also
removed by this operation. Finally, note the good agreement
of various events in Fig. 12(b) with those in Fig. 11(b).
Horizontally propagating modes have not been retrieved
by multi-dimensional deconvolution since they have been
eliminated by the synthetic-aperture-source filter.

D I S C U S S I O N

Receiver undersampling is one of the main challenges in ap-
plying multi-dimensional deconvolution to data recorded by
shallow downhole receiver arrays. Ideally, we would like to
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Figure 11 (a) Deep section of a retrieved common virtual source
gather (with xA fixed in the center of the array) CP (x, xA; t) by the
virtual source method (Alexandrov et al. 2012). (b) Reference shot
record X0(x, xA; t) obtained by direct modeling in a medium that is
identical to the physical medium but homogeneous above the receiver
level. The red arrow indicates the target reflector. We have convolved
the gather in panel (b) with a zero-phase wavelet for visual purposes.

satisfy the sampling criterion that was presented in equation
(29), but economical reasons often prevent us from doing so.
We overcame receiver undersampling with synthetic-aperture-
source filters, but this solution is not ideal. We relied heav-
ily on the fact that propagation angles are close to vertical
(Alexandrov et al. 2012) and that the source array is well
sampled. In case of dipping interfaces and lateral heterogene-
ity, propagation angles at the source and receiver sides can
be rather different, and filtering at the source side (as we did)
cannot solve the full problem at the receiver side. Another
concern is posed by 3D effects. Although implementations in
2D might be a good compromise in some cases, lateral hetero-
genetiy in the unsampled dimension is not taken into account
and can break the validity of the forward problem that we
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Figure 12 Deep section of a retrieved common virtual source gather
(with xA fixed in the center of the array). (a) X̄−(x, xA; t) and (b)
X−

0 (x, xA; t) (obtained by multi-trace inversion of equation 40). The
red arrow indicates the target reflector. We have convolved the gathers
with a zero-phase wavelet for visual purposes.

aim to invert. These problems may be overcome by improving
the acquisition design with finer receiver spacing and by de-
ploying downhole measurements on a 2D grid. It might also
be worthwhile to investigate the feasability of reconstructing
wavefields in between the receivers by utilizing the horizontal
receiver components, using methodologies that have recently
been presented for towed-streamer data (Robertsson et al.

2008). Theoretically, multi-dimensional deconvolution can be
extended to 3D, although this might be computationally ex-
pensive. To meet affordable computational costs, processing
could be applied in the plane-wave domain under a layered-
medium assumption. Wang et al. (2010) have demonstrated
that such an approach is computationally feasible in 3D for
up/down deconvolution of OBC data.
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Isolating the incident wavefield may also not be straight-
forward. If the shallow subsurface is notoriously complex, the
incident wavefield as defined in this paper could contain mul-
tiple reverberations that may not be separated from upgoing
reflections. For a more thorough discussion on the practice of
time-gating in strongly heterogeneous media, see Alexandrov
et al. (2012). Upgoing constituents of the wavefields may leak
into the time-gated gathers, and downgoing constituents that
belong to the incident fields may be accidentally excluded.
In the proposed methodology, we assume that the time-gated
fields inherit the sensor characteristics, such that these could
be deconvolved from the field measurements. In case of poor
gating, it is questionable how valid this assumption will be.
To improve the quality of time-gating, it is recommended to
place the receivers in a part of the medium that is relatively
homogeneous.

To allow wavefield decomposition without the require-
ment of additional information on the medium parameters,
we have neglected the variations of these parameters along
the receiver array. This approach might be reasonable at near
offsets, but at far offsets, a different strategy is probably pre-
ferred. If estimates of the medium parameters can be provided,
these could be incorporated within the proposed scheme, as
we suggested. Adding measurements at multiple depth levels
or at the surface is another option to constrain the wavefield
decomposition problem. Van der Neut et al. (2013) presented
a data-driven workflow that utilizes measurements at multi-
ple depth levels, and Grobbe et al. (2013) extended this work-
flow for elastodynamic wave propagation. If an estimate can
be made of the propagation velocity between the free surface
and the receiver level, the free-surface boundary conditions
can also be included as an additional constraint for wavefield
decomposition. The latter has proven to be an effective strat-
egy for decomposition of towed-streamer data, particularly at
low frequencies (Day et al. 2013).

With multi-dimensional deconvolution, we aim to re-
move free-surface multiples from the data by inversion. This
method is closely related to the multiple elimination method
of Amundsen (2001) that has previously been applied to elim-
inate multiples from OBC data (Amundsen et al. 2001) and
towed-streamer data (Majdanski et al. 2011). From the ma-
rine case, it is well known that the underlying inverse prob-
lem is rather ill-posed and that additional constraints in terms
of sparsity promotion are very useful (Van Groenestijn and
Verschuur 2009; Lin and Herrmann 2013). On a similar note,
sparsity promotion can also bring benefits for inverting the
type of problem that we discuss in this paper (Van der Neut
and Herrmann 2013).

Alternatively, free-surface multiples can be eliminated by
prediction and subtraction, as is done in SRME (Verschuur
et al. 1992). Theoretically, the application of SRME requires
knowledge of the source wavelet, which is generally estimated
by imposing a minimum-energy criterion on the output gath-
ers. Multiple elimination by inversion does not require infor-
mation on the wavelet but assumes that the full wavefield
(including the incident field) is recorded (Amundsen 2001).
In equation (40), we have deghosted the forward problem
at the source and receiver sides, and we have removed the
source wavelet. Rather than inverting this relation, it could
be solved by prediction and subtraction of the free-surface
multiples. Unlike in conventional SRME, knowledge of the
source wavelet is not required in this case since the source
wavelet has already been removed by incident-field decon-
volution. To illustrate this, we write the downgoing field as
X+ = X+

inc + X+
sc, where X+

inc is the incident downgoing field,
and X+

sc is the scattered downgoing field (being the full field mi-
nus the incident field). By inspection of equation (17) (where
P = Pinc + Psc and decomposition can be applied at xB), it fol-
lows that X+

inc (x, xA; ω) should be a band-limited delta func-
tion δ (x − xA) along the horizontal coordinates x and xA.
Substituting these quantities into equation (40) yields

X− (xB, xA; ω) =
∫
∂D

X0 (xB, x; ω) (δ (x − xA)

+ X+
sc (x, xA; ω))d2x. (41)

Equation (41) is a Fredholm equation of the second kind that
can be expanded as a Neumann series (Van Borselen et al.,
1996), yielding

X0 (xB, xA; ω) =
∞∑

k=0

(−1)k Kk{X− (xB, xA; ω)}, (42)

where K0{X− (xB, xA; ω)} = X− (xB, xA; ω), and K is the fol-
lowing convolutional integral operator:

K{X− (xB, xA; ω)} =
∫
∂D

X− (xB, x; ω) X+
sc (x, xA; ω) d2x. (43)

In SRME, it is common practice to compute only the first
iteration of this scheme (Kelamis and Verschuur 2000), lead-
ing to a gather with predicted multiples X−

M (xB, xA; ω) =
K{X− (xB, xA; ω)} (where subscript M stands for “multiples”)
that can be subtracted adaptively from X− (Verschuur and
Berkhout 1997). A similar approach might be applicable to
data from shallow receiver arrays, after virtual source reda-
tuming and deconvolution.
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CONCLUSION

Virtual source redatuming to a shallow downhole receiver
array can be attractive for improving signal quality and re-
peatability. When this methodology is applied to pressure
fields, we retrieve a filtered sum of downgoing and upgo-
ing waves. When applied to vertical particle velocity fields,
we retrieve a filtered difference of downgoing and upgoing
waves. This observation allows us to decompose downgo-
ing and upgoing wavefields after virtual source redatuming.
Knowledge of the medium parameters at the receiver level
is not required with this approach since the sensors can be
naturally calibrated by an intermediate deconvolution step.
After virtual source redatuming and decomposition of the up-
going and downgoing waves, surface-related effects can be
removed by a multi-dimensional deconvolution of the upgo-
ing fields with the downgoing fields. Unlike in conventional
free-surface demultiple methods, the source wavelet does not
need to be estimated as it is effectively removed during decon-
volution. We have developed a workflow for virtual source
redatuming, wavefield decomposition, and multidimensional
deconvolution, which we designed particularly for the record-
ings by horizontal receiver arrays in the shallow subsurface
(20 m–60 m). Because these recordings typically have a high
wavenumber content and sparse receiver distributions, we ap-
plied preconditioning with a synthetic-aperture-source filter
to avoid spatial aliasing.
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