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Algorithm and code are presented that solve dispersion equations for cylindrically layered media
consisting of an arbitrary number of elastic and fluid layers. The algorithm is based on the spectral
method which discretizes the underlying wave equations with the help of spectral differentiation
matrices and solves the corresponding equations as a generalized eigenvalue problem. For a given
frequency the eigenvalues correspond to the wave numbers of different modes. The advantage of
this technique is that it is easy to implement, especially for cases where traditional root-finding
methods are strongly limited or hard to realize, i.e., for attenuative, anisotropic, and poroelastic
media. The application of the new approach is illustrated using models of an elastic cylinder and a
fluid-filled tube. The dispersion curves so produced are in good agreement with analytical results,
which confirms the accuracy of the method. Particle displacement profiles of the fundamental mode
in a free solid cylinder are computed for a range of frequencies.
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I. INTRODUCTION

Modeling different wave modes propagating along a cy-
lindrical borehole is important for the understanding and
quantitative interpretation of borehole sonic and seismic
measurements. Numerous different modes such as head
waves, trapped modes, and surface waves can be observed in
these structures. All these modes are frequency dependent. In
sonic-logging recordings these modes overlap and are often
hard to identify. In order to separate different borehole
modes it is useful to analyze their dispersive characteristics.

Traditionally, mode dispersion was studied by finding
roots of analytical dispersion equations. The method has a
long history. By the end of the 19th century Pochhammer1

and Chree2 investigated the wave propagation in free elastic
rods. These solutions are presented in detail by Love �Ref. 3,
Sec. 201� and Kolsky �Ref. 4, Chap. 3�. Numerical solutions
to the Pochhammer–Chree equation are presented, for ex-
ample, by Bancroft.5

Another case which was investigated by different au-
thors is that of a hollow6–8 and fluid-filled9–11 cylindrical
shell.

The root-finding method, however, becomes difficult to
implement when the number of cylindrical layers and/or
modes of interest becomes large.12 The separation of differ-
ent roots in the complex plane becomes even more challeng-

ing when inelastic effects need to be taken into account, such
as in the case of a cylinder filled with a viscoelastic fluid13–15

or poroelastic structures.16–18

An alternative approach to model two-dimensional cir-
cular structures was recently introduced by Adamou and
Craster19 based on spectral methods. The idea of this method
is to solve the underlying differential equations by numerical
interpolation using orthogonal polynomials and spectral dif-
ferentiation matrices �DMs�. The advantage of this approach
is that it is much faster and easier to implement than conven-
tional root-finding methods, especially for attenuating, po-
roelastic, or anisotropic structures.

In this paper we extend the concept of the spectral
method for wave propagation along circular cylindrical
structures, and compare the results with known analytical
solutions. In Sec. II, the underlying equations in cylindrical
coordinates and the eigenvalue problem are formulated for a
free solid cylinder. In Sec. III, the solution of the eigenvalue
problem for an elastic cylinder is described using the spectral
method. Numerical results are presented in the form of dis-
persion curves. In Sec. IV the approach is extended to mul-
tiple layers. The dispersion curves are displayed for the case
of a fluid filled tube. In Sec. V, displacement profiles are
computed for various frequencies of the fundamental mode
propagating in the free solid cylinder.

II. THEORY

A. Equations of motion

We first introduce the spectral method for the simplest
case of axisymmetric wave propagation along a free solid
bar. The dynamics of the cylinder is analyzed in cylindrical
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coordinates �r ,� ,z� �Fig. 1�. For axisymmetric motion the
transverse component u� of the displacement field u
= �ur ,u� ,uz� is identically zero, while its radial and axial
components ur and uz are independent of �.

For the analysis of the wave propagation it is convenient
to introduce displacement potentials

ur = �r� − �z��, �1�

uz = �z� + r−1�r�r��� , �2�

where � is the scalar potential and �� is the transverse com-
ponent of the vector potential � ,�x is a shortcut for the par-
tial derivative � /�x. For axisymmetric motion �� is the only
nonzero component of �:

� = �0,��,0�T, �3�

where �� can in turn be written as

�� = − �r� , �4�

so that

� = � � ��ez� , �5�

where ez is the unit vector in z direction.
The equations of axisymmetric motion can be written in

the form �see Ref. 20, Sec. 2.13�

�2� =
1

vp
2 �t

2� , �6�

��2 −
1

r2��� =
1

vp
2 �t

2��, �7�

where vp is the P-wave velocity, vs is S-wave velocity, t is
time, and �2 is Laplace operator,

�2 = �r
2 + r−1�r + �z

2. �8�

The motion of the cylinder can be found from the solu-
tion of Eqs. �6� and �7� subject to the boundary conditions on
the displacements and stress tractions on the free surface of
the cylinder. The displacements are given by Eqs. �1� and
�2�. The normal and tangential stress tractions are related to
displacements using the Hooke’s law,

�rr = �� + 2	�rur, �9�

and

�rz = 	��zur + �ruz� , �10�

where �=�rur+�rr
−1+�zuz denotes the dilatation in cylindri-

cal r–z coordinates, � and 	 are the Lame parameters.
We consider the propagation of an infinite train of sinu-

soidal waves along the z axis of the cylinder, which is a
harmonic function of z and t of the form

� = 
ei�kzz−�t�, �� = �ei�kzz−�t�, �11�

where � is the angular frequency, kz the axial wave number,
and U and W are the amplitudes which are functions of r and
�. From Eq. �11� it follows that �t�=−�� and �z�= ikz�,
etc.

B. Helmholtz equations

The two wave equations �Eqs. �6� and �7�� transformed
into the �–kz domain by introducing Eq. �11� and dropping
ei�kzz−�t� become

�12�

�13�

Equations �12� and �13� are now ordinary differential
equations containing derivatives with respect to r only and
coefficients depending on frequency � and axial wave num-
ber kz. The aim is to find a relation between � and kz. This
means finding a kz for a given � or vice versa. This can be
done by solving Eqs. �12� and �13� as an eigenvalue problem
so that the wave number kz

2 represents the eigenvalue and the
potentials 
�r� and ��r� are the eigenvectors. Alternatively,
we could rearrange Eqs. �12� and �13� so that the terms with
kz appear on the left-hand side and with � on the right-hand
side, which will give an eigenvalue problem for �2. For lin-
ear elasticity both approaches must give identical results.19

However for more complicated media �say, viscoelastic or
poroelastic� it is advantageous to look for kz as a function of
� as coefficients of governing equations may themselves ex-
plicitly depend on �.

C. Boundary conditions

The solution of Eqs. �12� and �13� should be solved
subject to boundary conditions on the surface of the cylinder.
In order to apply the boundary conditions, the displacements
and stress components have to be expressed independent of
the axial wave number kz.

The radial and axial displacement components ur and uz

can be expressed by substituting Eq. �11� into Eqs. �1� and
�2�,

ur = �r
 − �̂ , �14�

�
a

z

uz

ur

displacement u� vanishes

r

FIG. 1. Geometry of a free solid bar, displaying the coordinate system
which reduces to �r ,z� and the displacement field �ur ,uz� for axisymmetric
wave propagation.
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�15�

where �̂= ikz� and ûz= ikzuz.
These expressions are used to make the stress compo-

nents �rr and �rz �Eqs. �9� and �10�� solely dependent on the

potentials 
 and �̂. This yields after some manipulations

�rr = �− ��r−2 +
�2

vp
2 � + 2	�r

2�
 + 2	�r�̂ , �16�

�̂rz = − 2	��r
3 + r−1�r

2 − r−2�r +
�2

vp
2 �r�
 + 	�2�r

2

+ 2r−1�r − 2r−2 +
�2

vs
2 ��̂ , �17�

where �̂rz= ikz�rz. Equations �12�–�17� fully describe the
problem of any vibrating cylindrical structures in the r–z
plane.

The classical way to solve such problems would be the
so-called root-finding approach. A general solution to Eqs.
�12� and �13� is found, which is a combination of Bessel
functions of different order. Substituting the solution into the
boundary conditions yields a homogeneous system of linear
algebraic equations. In order for this system to have non-
trivial solutions, the determinant of its matrix M must be
equal to zero, det M�� ,kz�=0. This is called the frequency
equation. The roots of this equation yield the dispersion re-
lation ��kz�. Since wave solutions in cylindrical coordinates
contain various Bessel functions, it is often quite difficult to
isolate and determine the various roots. Solving the fre-
quency equation gets even more complicated in the case of
leaky modes or lossy structures where solutions of the dis-
persion relation should be found in the complex plane.

In Sec. III an alternative approach, based on the spectral
method, is presented.

III. SPECTRAL METHOD FOR AN ELASTIC CYLINDER

The spectral method bypasses the difficulties and solves
the underlying Helmholtz equations numerically. For elastic
wave propagation this was first implemented by Adamou and
Craster,19 who investigated circumferential waves in an elas-
tic annulus �motion independent of r and z, see Fig. 1�. In
this study we extend the spectral method to axisymmetric
longitudinal modes.

Subsequently the method is straightforwardly extended
to the case of arbitrary n-layered fluid–solid media. The
eigenvectors correspond to the potentials 
 and � which are
used to compute the mode shapes.

A. Polynomial interpolation

In order to solve the eigenvalue problem �12� and �13�
numerically represent functions 
�r� and ��r� by Cheby-
chev polynomials. The advantage of this approach is that the
derivatives of these polynomials can be computed exactly
using so-called differentiation matrices. Consider a function

f�r� evaluated at N interpolation points, which is represented
by a vector f of length N. This interpolated function f�m� is
connected to its mth derivative f through

�18�

This is, the mth derivative of f can be calculated by
multiplying f with the N�N matrix D�m�, which represents
the DM. The N interpolation points, which are, in our case,
evaluated along the radius r of the cylinder, are the N
maxima of the Chebyshev polynomial of the Nth order. The
Chebyshev DMs are calculated using the recursive formula
for the derivatives of Chebyshev polynomials. The advantage
of this approach is that the derivatives of the polynomials
can be computed exactly.

The DMs may be generated using the MATLAB routine
CHEBDIF.21 The discretized r vector and the calculated DMs
are now used to represent the differential operator Lvp as an
N�N matrix,

Lvp
= D�2� + diag�1

r
�D�1� + ��2

vp
2 �I , �19�

where diag�g�r�� represents a matrix with the elements of a
vector g�r� on the leading diagonal and zeros elsewhere. I is
the identity tensor of size N�N. In the same way matrix
representations for all equations of motion as well as dis-
placement and stress components are constructed.

B. Eigenvalue problem

The Helmholtz equations �12� and �13� can be combined
as a matrix equation of the following form:

�20�

To solve Eq. �20� as an eigenvalue problem numerically, the
differential operator matrix L has to be discretized in anal-
ogy to Eq. �19�. Equation �20� can now be expressed in terms
of DMs where L now is a matrix of size 2N�2N matrix,

�21�

where

Lvp = D�2� + diag�1

r
�D�1� + ��2

vp
2 �I, �22�

Lvs = D�2� + diag�1

r
�D�1� − � 1

r2�I + ��2

vp
2 �I. �23�

Furthermore, the boundary conditions, also expressed in
form of DMs have to be substituted. For a free solid bar, the
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stress-free boundary conditions are assumed at r=a, which
means 	�rr	r=a= 	�rr	r=a=0. �rr is the normal stress in radial
direction and �rz is the radial shear stress acting in z direc-
tion.

The expressions for the stress components �rr �Eq. �16��
and �rz �Eq. �17�� can also be expressed using the DMs: The
resulting equations can be written in a matrix form

�24�

where submatrices Sr
Sr�Sz
Sz� are

Sr
 = − ��diag�r−2� + �2/vp
2� + 2	D�2�, �25�

Sz
 = 2	D�1�, �26�

Sr�̂ = − 2	�D�3� + diag�1

r
�D�2�� �27�

� − diag� 1

r2�D�1� + ��2/vp
2�I� , �28�

Sz�̂ = 	�2D�2� + 2 diag�1

r
�D�1�� �29�

� − diag� 1

r2� + ��2/vs
2�I� . �30�

The last step is to embed appropriate boundary condi-
tions in the matrix representation and replace matrix L with

matrix L̃ as shown in Fig. 2. The lines in the L matrix in Eq.
�21� corresponding to r=a will be replaced by the corre-
sponding lines of the S matrix. In order to fulfill the stress
free boundary conditions, the corresponding values on the
right-hand side have to be set equal to zero. In addition, for
the lines at r=0 the same has to be done. The reason for that
is that due to the singularities of the equations at r=0 we
have to consider a hollow cylinder with a very small inner
radius, which is a limiting case for a solid cylinder.

This can be done by introducing a matrix Q on the right-
hand side of Eq. �21�,

L̃� = kz
2Q� , �31�

which is a 2N�2N matrix and defined as follows:

Q = �M 0

0 M
� . �32�

Here M is a diagonal matrix which has the following form:

M =

0

1

�

1

0
� . �33�

Equation �31� is a generalized eigenvalue problem, which
means that we cannot find the inverse M−1 as det�M�=0. But
generalized eigenvalue problems can be solved using the

MATLAB routine EIG�L̃ ,Q� for instance.
In the next section this approach can be extended to n

arbitrary cylindrical fluid and solid layers.

C. Dispersion curves

Let us illustrate the results produced by this approach in
the form of dispersion curves �Fig. 3�. To compare with pre-
vious results obtained by root-finding techniques, we use a
model presented by Davies.22 In Fig. 3 the dispersion curves
for a free solid bar are computed �circles� with the param-
eters shown in the picture. These curves are in good agree-
ment �lines� with the dispersion curves provided in Davies,22

�Fig. 4� which were calculated analytically using root-finding
techniques. The fundamental mode L�0,1� behaves like a
pure extensional mode for low frequencies and propagates
with the velocity �E /
 where E is the Young’s modulus and

 is density. For higher frequencies the mode propagates like
a Rayleigh wave on the cylinder surface. The higher modes
�L�0,1� . . .L�0,n�� have cut-off frequencies, which means
they do not exist below these frequencies. For very high
frequencies they tend to propagate close to the Rayleigh ve-
locity.

IV. MULTIPLE LAYERS

The above-described approach can be extended to n cy-
lindrical fluid and solid layers �see Fig. 4�. Each of the n

Lvs0

0Lvp
2N

0

r
0

r

�r (inner BC,Line 1)

�r (outer BC,Line N)

�z (inner BC,Line N+1)

�z (inner BC, Line 2N)

2N

FIG. 2. Structure of the L̃ matrix for a cylinder.
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L(0,4)

L(0,3)L(0,2)

v
p

=1618 m/s
v

s
=880 m/s

ρ = 5000 kg/m3 , r= 1m

FIG. 3. �Color online� Dispersion curves of an elastic cylinder �circles�. x
axis: Wave-number-radius product, y axis: Phase velocity vph=� /kz normal-
ized by the bar velocity v0

2=E /
 where E is the Young’s modulus and 
 is
density �compare with Davies �Ref. 22, Sec. 11, Fig. 13, lines��.
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layers has P- and S-wave velocities �vp1
, . . . ,vpn

,vs1
, . . . ,vsn

�
and densities 
1 , . . . ,
n. In this work we represent the fluid
layers as solids with very small shear velocity. For each of
the layers the matrix Ln is constructed in analogy to Eq. �21�.
These matrices are combined in a diagonal matrix of the size
n2N�n2N which has the form

L = 
L1 0 0

0 � 0

0 0 Ln
� . �34�

The same procedure has to be followed for the stress com-
ponents Sn �see Eq. �24�� and for each layer n which are
finally combined in a matrix S of same size as L. A similar
matrix U is computed for the displacement components.

For the case of layering, additional conditions of conti-
nuity of displacements and stresses have to be introduced,

	��rr�	r=ri
= 	��rz�	r=ri

= 0, �35�

	�ur�	r=ri
= 	�uz�	r=ri

= 0, �36�

where ri indicates the position of the interface of the nth
layer with i=a ,b , . . ..

The interface conditions are introduced as the vanishing
differences of the displacements and stresses of the corre-
sponding layers. It is convenient to apply the conditions as
illustrated in Fig. 5, which shows in which lines of the L
matrix for n layers all boundary conditions have to be intro-
duced. The stress-free boundary conditions on the inner and
outer boundary are introduced in the L matrix the same way
as for a free cylinder in the rows �1, N+1, n2N−N and n2N�.

This means that the elements of S and U representing
the interpolation points of the inner and outer boundary and
the interfaces replace the corresponding rows in the L matrix,

which is now referred to as L̃. The eigenvalue problem can
now be formulated analogous to Eq. �31� and solved using a
generalized eigenvalue routine.

Dispersion curves: Fluid-filled cylinder. The second ex-
ample �Fig. 6� is a two-layer model: A fluid-filled cylinder.
The dispersion curves were originally calculated by Del
Grosso and McGill.9 Here the dispersion curves �lines� were
computed by Sidorov using the root-finding technique analo-

gous to that of Ref. 9. Again we were able to reproduce these
results accurately using the spectral method. The dispersion
curves referred to as ETn are for stress free surface boundary
conditions, while the Rn modes were computed for rigid sur-
face boundary conditions.

In the case of a stress free surface there exist two fun-
damental modes starting from zero frequency: The first one
�ET0� is commonly referred to as a tube wave or Stoneley
wave, while the second �ET1� is an analog of a �longitudinal�
plate or extensional wave. Mode ET1 only weakly depends
on the fluid properties and disappears when the thickness of
the cylinder wall increases to infinity or the outer boundary
of the cylinder becomes rigid �Rn�.

r

n=1
n=2

n=3
n=4

r=ra

r=rb

r=rc

r=rdvs3,vp3,�4

vs4,vp4,�4

vfl,�fl

vfl,�fl

FIG. 4. Geometry of a model with four cylindrical layers. The layer index is
n=1–4 numbered from the center to the surface of the bar. The layers are
either nonviscous fluid �vfl ,
fl� or elastic solid �vpn ,vsn ,
fl�.
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FIG. 5. Structure of the matrix L̃ for n layers.

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

b k
z

c p/c
r

ET0

ET1

ET2 ET3 ET4 ET5 ET6 ET7

R0

R1
R2

R3
R4 R5

fluid: v
p
= 1.5 km/s, v

s
=0 km/s, ρ=1000kg/m3

solid: v
p
= 3.7 km/s, v

s
=2 km/s, ρ=8500kg/m3

a=1m, b= 1+1/8 m

FIG. 6. �Color online� Dispersion curves for a hollow cylinder filled with
nonviscous fluid. Thickness of the cylinder wall: 0.125 m. Modes in elastic
tube with stress-free outer boundary: ETn, whereas modes for pipe with rigid
outer boundary: Rn. Phase velocity vph is normalized by the velocity of the
fluid �vp,fl� �compare with Del Grosso and McGill �Ref. 9�, lines�.
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V. PARTICLE DISPLACEMENT PROFILES

In addition to eigenvalues representing dispersion
curves, we also obtain eigenvectors representing the poten-
tials 
 and �. They allow the computation of the mode
shapes, that is the distribution of field quantities for each

mode like displacements, stresses, power flow, etc., along the
radius of the cylinder. Figure 7 shows the displacements
�ur ,uz� which can be easily computed using the eigenvectors
and Eqs. �4� and �5�. In order to display the particle displace-
ment profiles ur and uz are calculated along the radius for a
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FIG. 7. �Color online� Particle displacement profiles of the fundamental longitudinal mode L�0,1� for �a� 500 Hz, �b� 2000 Hz, �c� 5000 Hz, �d� 10 000 Hz.
x axis: Normalized ur= 	ur	 �triangle� and uz= i	uz	 �circle� displacement. y axis: Bar radius from 0 m �center of bar� to 1 m �surface of bar�.
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certain frequency. These values are normalized by the maxi-
mum absolute value of the uz displacement. Finally the radial
displacement is plotted as ur= 	ur	 and the longitudinal dis-
placement as uz=Im	uz	.

For the illustration of the displacement profiles we have
chosen the fundamental mode L�0,1� propagating in a free
solid cylinder �see Fig. 1�. The particle motions ur and uz are
computed for four different frequencies. Figures 7�a�–7�d�
display the displacement profiles for ur and uz for the differ-
ent frequencies.

For low frequencies �500 Hz� �Fig. 7�a�� the wave
propagates like a longitudinal body wave. Consequently the
particle motion is in the axial direction mainly and uniform
throughout the radius of the cylinder. The radial displace-
ment is very small.

In Fig. 7�b� we can see that for 2000 Hz the ur displace-
ment has already significantly increased all over the cross
section. It only remains zero in the center of the cylinder. At
the same time the uz displacement decreases but keeps its
maximum value in the center.

For a higher frequency �5000 Hz; Fig. 7�c�� it can be
observed that the shape of the displacement profiles evolves
slowly toward the typical pattern of Rayleigh modes. Close
to the surface �r=0.85–1 m� the motion is already Rayleigh-
like. Only toward the center of the bar is the uz component
still relatively strong.

Finally in Fig. 7�d� we get the typical particle motion
profile of Rayleigh waves. In contrast to Fig. 7�c� obviously
the amplitudes of both displacement components decrease
significantly for r�0.8 m.

VI. CONCLUSIONS

We extended and implemented the spectral method for
propagation of axisymmetric modes in a cylindrical bar. The
method was also generalized to n-layered cylindrical fluid–
solid structures. Numerical examples for a free solid cylinder
and a fluid-filled tube were given in the form of dispersion
curves and particle displacement profiles. Traditional tech-
niques require finding complex roots of nonlinear equations
that involve special functions. In contrast, spectral method
demands only solving generalized eigenvalue problem with-
out involving special functions. This represents a great sim-
plification that becomes particularly advantageous for com-
plex rheologies like viscoelastic, anisotropic, and poroelastic
structures.

There are a lot of directions for further work. One scope
is the extension to more complicated media like viscoleast-
icity and poroelasticity. The approach can also be extended
for anisotropic and heterogeneous media. Of great impor-
tance will also be to allow unbounded structures, represent-
ing a borehole surrounded by infinite rock formation. Finally
it would be of great importance to be able to compute the full
wave form using the spectral method.
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