
Predicting sonic and density logs from drilling parameters 
using temporal convolutional networks

Abstract
Sonic and bulk density logs are crucial inputs for many 

subsurface tasks including formation identification, completion 
design, and porosity estimation. Economic and operational 
concerns restrict the acquisition of these logs, meaning the 
overburden and sometimes entire wells are completely unlogged. 
In contrast, parameters that monitor drilling operations, such 
as weight on bit and torque, are recorded for every borehole. 
Previous studies have applied supervised machine learning 
approaches to predict these missing logs from the drilling 
parameters. While the results are promising, they often do not 
investigate the importance of different features and the corre-
sponding practical implications. Here, we explored the feasibility 
of predicting compressional slowness and bulk density logs using 
various combinations of formation markers, gamma-ray logs, 
and drilling data recorded at the rig. Our tests utilized a temporal 
convolutional network to allow the model to learn from sequences 
of input features. Bayesian-based hyperparameter tuning found 
the optimum set of parameters for each experiment before 
producing the final log predictions. Finally, a permutation feature 
importance analysis revealed which input variables contributed 
most to the outputs. Although drilling parameters contain some 
insight into the mechanical rock properties, we found that they 
cannot produce the high-quality log predictions required for 
many tasks. Supplementing the drilling parameters with a 
gamma-ray log and formation data produces good-quality log 
predictions, with the additional inputs helping to constrain the 
model outputs.

Introduction
Geoscientists and drilling engineers rely on sonic (compres-

sional and shear slowness) and bulk density logs for numerous 
subsurface tasks. In addition to forming the basis of reservoir 
characterization studies, these geophysical logs enable the deriva-
tion of geomechanical parameters such 
as compressive strength. However, 
wireline log acquisition involves placing 
sensors in the borehole to measure the 
physical properties of the rock, making 
them expensive and logistically chal-
lenging to acquire. As a result, logging 
is usually restricted to the reservoir 
interval, with many wells having no 
measurements at all. Conversely, drill-
ing parameters (such as the rate 
of penetration [ROP], weight on bit 
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[WOB], and torque [TOR]) are routinely recorded for the entire 
length of every well.

Intuitively, we expect some relationship between the drilling 
parameters and the mechanical rock properties. For example, to 
achieve a constant ROP, more downward force or TOR is required 
to drill through rocks with higher compressive strength. Although 
models for ROP have been developed based on controlled labora-
tory experiments (e.g., Teale, 1965; Hareland and Nygaard, 2007), 
the conditions encountered in the field are more complex. Drilling 
parameters often vary significantly between adjacent wells due to 
factors such as inefficient drilling, use of different rig equipment, 
and actions of rig operators. 

Machine learning methods may help uncover these complex 
relationships to enable log prediction from data acquired while 
drilling. Such a data-driven solution would provide engineers 
with additional information where log data would usually be 
unavailable. Several studies have reported on this topic, including 
Gan et al. (2019), who applied a neural network to generate 
synthetic logs in the Gulf of Mexico. Meanwhile, Kanfar et al. 
(2020) used a technique based on a temporal convolutional network 
(TCN) (Bai et al., 2018) to predict sonic and porosity logs from 
drilling parameters. The TCN is a deep neural network used for 
sequence modeling tasks such as translating text or audio from 
one language to another. The use of input sequences allows the 
TCN to learn from trends in the input time (or depth) series, 
rather than relying on point measurements. The authors showed 
promising results on 25 ft sections. However, they did not produce 
predictions for the entire well or consider practical scenarios where 
different input data may be available. 

We build upon the existing work by investigating the feasibility 
of a TCN to predict compressional slowness and density logs 
using different sets of input features. Table 1 shows three scenarios 
that span the best to worst case in data availability, allowing us 
to assess the potential range of the predicted log quality. Ideally, 
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golikov@aramco.com; nasher.benhasan@aramco.com.
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Table 1. Different scenarios investigated in this study.

Scenario Real time? Input data Potential use cases

Log prediction in the 
reservoir zone

No Drilling parameters, gamma-
ray log, and formation top 
picks

Geophysical characterization 
study

Real-time log prediction Yes Drilling parameters and 
gamma-ray log

Drilling optimization

Log prediction in the 
overburden

Either Drilling parameters only Seismic imaging, seismic 
to well tie, and formation 
identification
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the drilling parameters are supplemented with a gamma-ray log 
and formation top picks (scenario 1). However, obtaining detailed 
formation picks may require cuttings analysis or log data. Hence, 
they may only be available for non-real-time use cases such as 
geophysical characterization. Conversely, drilling engineers need 
information in real time to optimize the drilling program. If 
acquired, real-time measurement-while-drilling (MWD) or 
logging-while-drilling (LWD) gamma-ray logs can be combined 
with the drilling dynamics to make real-time slowness and density 
estimates (scenario 2). The last case uses only drilling data as input 
(scenario 3), which allows us to determine what information the 
data contain about the rock properties. In addition to producing 
full log predictions for each scenario, we conducted a feature 
importance analysis to identify the variables with the most sig-
nificant contribution to the results.

Background
This section highlights several related studies where machine 

learning was used to predict subsurface properties from drilling 
parameters. We then provide an overview of the TCN architecture, 
which forms the basis of the method used in this research.

Log prediction using drilling parameters. Numerous examples 
of machine learning applied to predicting logs from other wireline 
logs exist in the literature. However, only a few cases use drilling 
parameters as inputs to the model. For example, Moazzeni and 
Haffar (2015) trained a fully connected neural network for real-
time lithology identification from drilling parameters. In the Gulf 
of Mexico, Gan et al. (2019) applied a neural network to generate 
synthetic sonic and density logs from drilling parameters and 
mud-logging data. Meanwhile, Glubokovskikh et al. (2020) 
incorporated near-bit vibrations recorded by downhole acceler-
ometers to distinguish between the effect of rock-cutting and 
drill-string noise on the dynamic drilling parameters.

Sequence modeling describes a group of machine learning 
algorithms that convert an input sequence into a target sequence 
in another domain. Several authors have used sequence modeling 
approaches to predict logs from drilling parameters, including 
Osarogiagbon et al. (2020), who tested numerous machine learning 
methodologies for predicting gamma-ray logs. They reported that 

TCNs and simple recurrent neural networks (RNNs) produced 
the best results. Similarly, Kanfar et al. (2020) combined an 
inception-based convolutional network with a TCN for real-time 
sonic log prediction. 

Temporal convolutional networks. The TCN is an extension 
of 1D convolutional neural networks (CNNs), incorporating a 
stack of modified 1D convolutional layers. In conventional 1D 
convolution, the network’s receptive field (i.e., the input region 
that affects the model’s output) grows linearly with the number 
of convolutional layers (Figure 1a). As a result, regular convolution 
is unsuitable for many sequential modeling tasks that require 
access to a long history of the input features. Dilated convolutions, 
first introduced in WaveNet (Oord et al., 2016), are simple modi-
fications that skip input values to apply the filter over a larger area 
(Figure 2b). Here, the dilation factor (d) controls the number of 
omitted values. For example, a dilation factor of d = 1 is equivalent 
to regular convolution, while d = 4 means that the filter uses every 
fourth value of a series. Figure 1b shows the dilation factor 
increasing exponentially (d = 1, 2, 4, 8…). This results in the 
receptive field also growing exponentially for a fixed filter width. 
Dilated convolutions allow a TCN to use a much larger receptive 
field at the same computational cost as a regular 1D CNN. 

Every convolutional layer in the TCN architecture is imple-
mented as a temporal (or residual) block (Figure 1c). These blocks 
can include multiple dilated convolutional layers (using the same 
dilation factor and filter width), each followed by a nonlinear 
activation function such as a rectified linear unit (Nair and 
Hinton, 2010). The block may also include regularization in the 
form of spatial dropout (Srivastava et al., 2014) and weight 
normalization (Salimans and Kingma, 2016) layers. The final 
component is the residual connection (He et al., 2016), which 
helps overcome the issue of vanishing gradients often encountered 
in deep neural networks. 

Bai et al. (2018) showed that the TCN architecture outper-
forms RNNs in a wide range of sequence modeling tasks. The 
TCN also has several practical advantages, including parallelizable 
computations for faster model training and reduced susceptibility 
to exploding and vanishing gradients. Recently, TCNs have found 
geophysical applications in areas such as seismic inversion (Mustafa 

Figure 1. Illustration of the receptive field for a stack of (a) conventional convolutional layers and (b) dilated convolutional layers used in a TCN. (c) The TCN replaces standard convolutional 
layers with temporal blocks, which may include multiple dilated convolutional layers. Modified from Smith et al. (2022).
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et al., 2019; Smith et al., 2022), 
automated well tie (Nivlet et al., 2020), 
time-lapse cross-equalization (Alali 
et al., 2020), and log prediction (Kanfar 
et al., 2020). 

Data overview and preparation
This study used 13 vertical wells 

where both drilling parameters and 
wireline logs were recorded. Each well 
contains approximately 1000–2000 ft of 
data from a series of carbonates and sandy 
shales, providing 40,000 individual data 
points. Table 2 summarizes the input 
features available for model training.

Preprocessing. An essential step of 
any machine learning project is prepro-
cessing the data to a form that is suitable 
for training a model. First, we replaced 
small gaps in the data using interpolation 
and clipped values outside of the allow-
able range (Table 2). Next, one-hot 
encoding was applied to the categorical features (e.g., bit type), 
where a binary column was added for each unique category. 

Although deep neural networks can learn complex relation-
ships between input features, the inclusion of engineered features 
can help a model converge to a useful solution. Therefore, we 
incorporated two additional features related to drilling efficiency 
that have been found to be predictive of the sonic and density logs 
(Glubokovskikh et al., 2020). The first feature is mechanical 
specific energy (MSE), which is the mechanical energy required 
to drill a unit volume of rock (Teale et al., 1965). Ideally, the MSE 
is close to the unconfined compressive strength, meaning that 
crushing the rock consumes almost all of the input energy. The 
second feature is a parameter designated as SQ. Lamik-Thonhauser 
et al. (2018) showed that SQ helps separate different lithologies. 
The SQ parameter is computed from the following equation: 

=
×

×
Sq

A
ππ WWOOBB RRPPMM

RROOPP
4

B
,                             (1)

where AB corresponds to the cross-sectional area of the drill bit. 
Finally, we rescaled the data using normalization so that each 
input feature covered the range [0,1]. 

Figure 2a displays an example of processed data from one of 
the wells, showing the wireline logs, drilling parameters, and 
formation markers. We used nine of the 13 wells for model training, 
with the remaining four split between the validation and blind-test 
data sets. These were carefully selected to ensure similar parameter 
distributions between the three data sets (Figure 2b). 

Method
Table 3 outlines the experiments investigated in this paper, 

including three data settings used to test compressional slowness 
and bulk-density predictions. We trained a separate model for 

each output for the purpose of this study to facilitate the feature 
importance analysis. However, a more practical solution would 
be to train a model that can predict multiple logs. The first scenario 
uses all available input features including formation data, gamma-
ray log, and drilling parameters. Scenario 2 tests the impact of 
dropping formation data from the inputs, relying only on gamma-ray 
and drilling parameter data. In the final setting (scenario 3), we 
include only the drilling parameters to investigate what information 
they contain about the mechanical rock properties.

Table 2. Summary of input features and target variables used in this study.

Name Mnemonic Units Acceptable 
range

Type

Rate of penetration ROP ft/hour 0–300 Continuous

Weight on bit WOB klbf 0–100 Continuous

Torque TOR kft.lbf 0–30 Continuous

Revolutions per 
minute

RPM 1/minute 0–200 Continuous

Standpipe pressure SPP psi 0–5000 Continuous

Hook height HKHT ft 0–100 Continuous

Hook load HKLI klbf 0–500 Continuous

Flow in FLWPMPS galUS/minute 0–2000 Continuous

Flow out FLWOUT % 0–100 Continuous

Bit size BITSIZE inch 8–16 Categorical

Bit type - - - Categorical

Gamma ray GR API 0–200 Continuous

Formation - - - Categorical

Compressional sonic DTC µs/ft 110–200 Continuous

Bulk density RHOB g/cc 2.2–2.8 Continuous

Figure 2. (a) Input features and target logs for an example well and (b) feature distributions for the training, validation, and 
blind wells.
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good network performance. We imple-
mented a Bayesian-based hyperparam-
eter search using the Optuna open-
source package (Akiba et al., 2019) to 
determine the optimum set of values. 
Other alternatives include grid and 
random searches. However, these meth-
ods treat hyperparameter sets indepen-
dently, and this typically results in 

having to run more trials to find the best solution.
Table 4 shows the hyperparameter search space explored for 

the TCN model, including the filter (kernel) size, number of 
dilation layers, and model learning rate. We ran 1000 trials for 
each experiment, where each trial trained a model using a unique 
set of hyperparameters. The first 100 trials utilized random sam-
pling to initialize the search. Model performance was measured 
using the root mean square error (RMSE) of the validation well 
predictions. The tree Parzen estimator (TPE) algorithm (Bergstra 
et al., 2011) took over for the remaining 900 models. It used 
Bayesian optimization to select a set of promising hyperparameters 
based on the performance of the previous runs. The goal of the 
objective function was to minimize the validation RMSE. Each 
trial was run up to 100 epochs, where one epoch means the 
algorithm passed through the entire training data set. We imple-
mented several strategies to reduce the training time for the 
hyperparameter search. First, early stopping was applied if the 
validation performance did not improve for 15 consecutive epochs. 
Second, median pruning stopped unpromising models early if the 
intermediate performance of the trial was worse than the median 
of previous runs at the same epoch.

Log prediction. Postprocessing was applied to construct the 
full log predictions. The best model from each hyperparameter 
search (as determined by the lowest validation RMSE) was used 
to predict the logs for training, validation, and blind wells. When 
comparing different model architectures, one should avoid compar-
ing the test data to prevent biasing results. However, the objective 
of this study was to compare different data scenarios to understand 
the effect on log prediction quality. Therefore, we feel it is appropri-
ate to include the test results for each scenario in this case.

Model interpretation. The permutation feature importance is 
a relatively simple model interpretation technique that was first 
introduced for random forests (Breiman, 2001) and later extended 
to other algorithms by Fisher et al. (2019). The permutation feature 
importance is defined as the change in model score after randomly 
shuffling a particular input feature. Mixing a feature that the 
model has learned to be important breaks the relationship with 
the target output, resulting in a significant increase in prediction 
error. Although it has some issues, such as not separating the 
effects of correlated features, it is a simple and intuitive measure 
of feature importance. A viable alternative is SHapley Additive 
exPlanations (SHAP) by Lundberg and Lee (2017), which aims 
to compute the contribution of each feature on a prediction.

To use this approach for a TCN, we randomly shuffled a given 
feature (e.g., gamma ray) for each well before extracting the sub-
sequences and recomputing the log prediction. We repeated this 
process 10 times for each feature and used the mean change in 

We trained a separate TCN model for each experiment in 
Table 3. The exact architecture of the TCN (e.g., the number of 
temporal blocks) depends on the choice of model hyperparameters. 
This is covered in the following section. As in Nivlet et al. (2020), 
the data from each well were split into smaller subsequences to 
provide enough samples for training (Figure 3). We used a 
50-sample (25 ft) sliding window. We felt that this was geologically 
meaningful and would enable the network to find patterns in the 
noisy drilling data. A total of 5000 sequences from the training 
wells were used to train each model, with 1000 sequences used to 
score the model performance based on the validation data.

During training, the input subsequences are propagated forward 
through the network to output the corresponding subsequence of 
predicted compressional slowness or density (γ̑). The mean square 
error, a differentiable loss function, was then used to measure the 
error between the predicted and measured logs. We used the 
AdamW optimizer (Loshchilov and Hutter, 2017), a variant of 
the famous Adam optimizer (Kingma and Ba, 2014) with improved 
weight decay, to update model weights during backpropagation. 

Hyperparameter tuning. Model hyperparameters are variables 
that define network architecture (e.g., number of convolutional 
layers) and how the model learns (e.g., learning rate). Finding 
an optimal set of hyperparameters is often crucial to obtaining 

Figure 3. Input subsequences passed into the TCN model to predict a section of the log.

Table 3. Summary of experiments.

Experiment Target Input data

1a DTC
Formation markers + drilling parameters + gamma ray

1b Density

2a DTC
Drilling parameters + gamma ray

2b Density

3a DTC
Drilling parameters only

3b Density

Table 4. Hyperparameter search space.

Hyperparameter Search space Comments

Learning rate 1e–6 – 1e–1 Log sampling

Number of temporal blocks [2,3,4,5,6]

Number of convolutional filters per 
layer

10–100 Uniform sampling

Dropout rate 0–0.8 Uniform sampling

Filter size (k) [2,3,4,5]

Activation function [ReLU, Leaky ReLU]
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RMSE as the importance measure. This 
produced a global average of the feature 
contribution. To better understand the 
impact of input features on local predic-
tions, we also computed a sample-based 
permutation feature importance using 
the absolute change in the log prediction 
as a local measure of importance.

Results
This section presents observations 

from the hyperparameter searches and 
log predictions produced by the corre-
sponding best models. We also include feature importance analysis 
to aid the interpretation of the results.

Hyperparameter tuning. Figure 4 shows observations made 
from the TPE searches of the hyperparameter space. In Figure 4a, 
we see the search history for experiment 1a. This shows the best 
validation score for each trial (a trained model with a unique set 
of hyperparameters). We observed higher RMSE variance for the 
first 100 trials, where the process randomly selected hyperparam-
eters. After this point, the TPE algorithm took over and focused 
only on the most promising parameter combinations. Figure 4b 
illustrates the convergence to the optimum learning rate for the 
same experiment, where color represents the trial number. 

Figures 4c and 4d demonstrate the effect of the receptive field 
(a function of kernel size and the number of temporal blocks) on 
the results. In the case of experiment 1a (prediction of compressional 

slowness using all input features), performance is less affected by 
the size of the input available to the model. Here, the best models 
use a receptive field of 10 to 20 samples. On the other hand, the 
omission of formation data from the input features (experiment 2a) 
means that the model must rely more on patterns in the remaining 
data (Figure 4d). The hyperparameter search converges on models 
with the largest receptive field size (50 samples) in this scenario.

Table 5 summarizes the results of the hyperparameter search 
for each experiment including the best set of hyperparameters 
and the corresponding validation RMSE score. In the case of 
density and compressional sonic, models trained using all of the 
input data (scenario 1) produced the best results, while using 
drilling parameters alone generated the worst outcomes.

Log predictions. Figure 5 shows the predicted compressional 
sonic logs produced by the best model for each experiment. Here, 

Table 5. Summary of the best model hyperparameters from the TPE search of each experiment.

Experiment Best RMSE Learning 
rate

No. filters 
per layer

Dropout rate No. dilation 
layers (d)

Kernel size 
(k)

Receptive 
field size

1a 0.068 0.0096 15 0.065 3 2 16

1b 0.057 0.0047 35 0.358 5 5 50

2a 0.081 0.0076 50 0.218 6 4 50

2b 0.063 0.0026 20 0.061 3 5 40

3a 0.104 0.0351 35 0.021 5 5 50

3b 0.076 0.0081 55 0.017 6 4 50

Figure 4. Observations from the hyperparameter searches. (a) TPE search history for experiment 1a shows the improvement in validation score (red line) with the number of trials, while 
(b) shows the learning rate convergence during the search. Here, color represents the trial number, with darker blue points toward the end of the search. The effect of the receptive field on 
the results of experiments 1a and 2a are shown in (c) and (d), respectively.
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we include a sample of the training data (ranging from worst to 
best quality) along with the validation and blind wells. In addition 
to the RMSE, we show the coefficient of determination (R2) to 
indicate whether the prediction is useful. An R2 of 1 implies a 
perfect prediction, while an R2 of 0 is equivalent to naively predict-
ing the mean value (i.e., it accounts for none of the data variance 
and is not a useful solution). 

The drilling parameters supplemented with the gamma-ray 
log and formation data produced the best results (Figure 5a). 
Here, the model does an excellent job of predicting the general 
trends of the sonic log, although it is unable to capture all of the 

fine details. We observe worse perfor-
mance when formation data are omitted 
from the inputs (Figure 5b), although 
the level of decay varies from well to 
well. It is unclear why the performance 
of some wells deteriorates more than 
others, even when comparing validation 
and blind wells. It could be related to 
how well the drilling parameters relate 
to the rock properties. Despite the issues 
associated with the drilling parameters, 
Figure 5c shows that they contain suf-
ficient information to capture the major 
changes in the compressional sonic log.

We observe similar trends in the 
bulk density predictions shown in 
Figure 6. In general, we see an overall 
reduction in performance when we go 
from using all input features (Figure 6a) 
to dropping the formation picks 
(Figure 6b). In some local regions, we 
sometimes observe improvements with-
out the formation data, such as in the 
first blind well. The results using only 
the drilling parameters (Figure 6c) show 
mixed outcomes. While the model is 
still able to predict general trends for 
some wells, in many cases the results 
are effectively unusable. The density logs 
tend to not have the sharp contrasts that 
we observe in the sonic logs. Perhaps 
this relationship is higher order and 
more susceptible to issues with the drill-
ing parameters. 

Feature importance. Figure 7 dis-
plays the global permutation feature 
importance for the compressional sonic 
predictions using the validation and 
blind wells. The value here is the change 
in metric score (RMSE in this case) 
after randomizing the values of that 
feature and recomputing the log predic-
tion. The formation data are most 
important to the models in scenario 1 
(Figures 7a and 7b), closely followed by 

the gamma-ray log. Omission of the formation data results in 
gamma ray becoming the predominant predictive feature, supple-
mented by the TOR and SQ inputs (Figures 7c and 7d). The SQ 
parameter appears to be a valuable engineered feature for predicting 
compressional slowness, particularly for a model trained using 
only drilling parameters (Figures 7e and 7f). 

When available, the formation data are also the most critical 
feature for the density log predictions (Figures 8a and 8b). Gamma 
ray is important when formation data are omitted (Figures 8c 
and 8d); however, the impact of the drilling parameters is less 
clear. We see very little change in the metric scores for the model 

Figure 5. Measured versus predicted compressional sonic logs for (a) a model using all input features, (b) a model using gamma-
ray and drilling parameters, and (c) a model using only drilling parameters.
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trained using only drilling parameters 
(Figures 8e and 8f). These results sug-
gest that the relationship between 
density and the drilling parameters is 
more complex and likely more suscep-
tible to drilling data quality.

The results in Figures 7 and 8 are 
informative, but they only show the 
average behavior for a set of wells. 
Figure 9 displays the sample-based 
permutation feature importance for one 
validation and one blind well, predicting 
compressional slowness. This allows us 
to evaluate the contribution of several 
features at each depth sample. Several 
input features are shown, with the 
background color representing the 
change in absolute error when the col-
umn is randomized (average of 10 itera-
tions). Darker colors indicate higher 
importance. Figures 9a and 9b are the 
results from scenario 1 using all input 
features. We do not show formation 
data here because categorical data are 
more challenging to represent. Still, we 
observe clear trends between the 
gamma-ray log and compressional slow-
ness that the model has learned to use. 
The increased importance of TOR is 
apparent in Figures 9c and 9d when we 
omit formation data. Here, we see that 
an increase in TOR generally corre-
sponds to a decrease in compressional 
slowness (i.e., stiffer rock material), 
particularly in the case of the validation 
well (Figure 9c). The SQ parameter 
appears to be very important for the 
model trained using only the drilling 
parameters (Figures 9e and 10f). One 
should be careful when interpreting the 
impact of features showing little varia-
tion. For example, a fixed bit size is used 
in the validation well, so the change in 
the performance metric will always be 
zero after permuting this column. 
Locally, it can have an effect, as demonstrated by the cored sections 
of the blind well where a smaller bit was used.

Discussion
We have demonstrated the potential for predicting compres-

sional sonic and bulk density logs using different combinations 
of input features. Although the three cases studied in this paper 
are not an exhaustive set of scenarios, they cover the range of 
possible outcomes. Models trained using formation data, gamma-
ray log, and drilling parameters produced the best results, doing 
an excellent job of predicting the general trends. While the 

model may not capture high-frequency details, it can still provide 
valuable information for unlogged wells. For example, the outputs 
may assist non-real-time use cases such as geophysical charac-
terization studies. 

Feature importance analysis revealed formation data as the 
most significant input feature for the trained models. Knowledge 
of the formation constrains the possible output range, making it 
easier for the model to learn. However, picking formation tops is 
typically a laborious process, meaning they are generally unavail-
able for real-time applications such as drilling optimization. 
Predicting the logs using only the gamma-ray and drilling 

Figure 6. Measured versus predicted density logs for (a) a model using all input features, (b) a model using gamma-ray and 
drilling parameters, and (c) a model using only drilling parameters.
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parameters produced reasonable log quality in this study, although 
accuracy is reduced compared to when formation data are available. 
Note that the LWD or MWD gamma-ray log required for drilling 
applications uses a sensor placed up to 15–30 m behind the drill 
bit, so true real-time predictions may not be possible. In addition, 
the recorded data require correction for the borehole conditions. 
This also requires further consideration.

Models trained using drilling parameters alone may have 
some predictive power. While unsuitable for detailed characteriza-
tion work or drilling program design, we found the model predicted 
the major changes in compressional slowness that could aid tasks 
such as formation top identification. The mixed results using only 
drilling parameters as input are not surprising. Many factors can 

affect these measurements including drilling inefficiency, poorly 
calibrated sensors, and operator decision making. For example, 
much of the input energy is wasted when drilling becomes inef-
ficient. So, drilling parameters are no longer directly related to 
the rock properties. Several possible improvements could help in 
this case. First, using a much larger and more diverse data set 
could assist the model in revealing relationships within the data. 
Second, acquiring new data MWD may help remedy some issues. 
For example, Glubokovskikh et al. (2020) supplemented the 
drilling parameters with near-bit vibrations to predict acoustic 
logs. We could also include the relative depth from a known casing 
point when detailed formation data are absent to provide some 
positional encoding to the model. 

Figure 7. Global permutation feature importances for the compressional slowness predictions. The feature importances using the model trained on all input features (experiment 1a) for the 
(a) validation well and (b) blind well. Similarly, (c) and (d) show the corresponding results for a model trained without formations (experiment 2a), while (e) and (f) are for the model trained 
using only drilling parameters (experiment 3a).

Special Section: Digital transformation624      The Leading Edge      September 2022      

D
ow

nl
oa

de
d 

09
/2

0/
22

 to
 1

99
.1

27
.2

48
.2

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

S
E

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/tl

e4
10

90
61

7.
1



Predicting acoustic and density logs in the overburden, where 
geophysical log coverage is often minimal, would benefit drilling 
engineers and geoscientists. The additional data could enable 
improved geomechanical models to aid in drill planning while 
also helping to identify and understand seismic imaging issues. 
However, the limited log availability is also a data-science challenge 
because we may have insufficient data to train and validate a 
model. One possibility for further investigation is whether training 
a model on the deeper subsurface can be transferred to the over-
burden (possibly with some fine tuning).

This study used a TCN to predict the log data. In our experi-
ence, algorithms that predict based on single data samples (such 
as fully connected neural networks or random forests) produce 

comparable results when formation data are available. The TCN 
has a significant advantage when this is not the case. This is 
because using sequential inputs enables the model to learn from 
spatial trends in the data. The hyperparameter search results 
show that the models trained without formation data converged 
to solutions with the largest receptive field. This was less important 
when formations were available. 

Conclusions
A TCN was used to predict compressional sonic and bulk 

density logs using different combinations of data acquired while 
drilling. We achieved the best results when the drilling param-
eters were supplemented with a gamma-ray log and formation 

Figure 8. Global permutation feature importances for the density log predictions. The feature importances using the model trained on all input features (experiment 1b) for the 
(a) validation well and (b) blind well. Similarly, (c) and (d) show the corresponding results for a model trained without formations (experiment 2b), while (e) and (f) are for the model trained 
using only drilling parameters (experiment 3b).
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Figure 9. Local permutation feature importance for compressional slowness predictions. The feature importances using the model trained on all input features (experiment 1a) for (a) an 
example validation and (b) example blind well. Similarly, (c) and (d) show the corresponding results for a model trained without formations (experiment 2a), while (e) and (f) are for a model 
trained using only drilling parameters (experiment 3a). The background color represents the mean change in RMSE after permuting the feature value at that point.
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data. Feature importance analysis showed the inclusion of 
stratigraphic data to be particularly important, which likely act 
as a constraint by limiting the possible output range for the 
model. Although the network cannot predict the fine log details, 
the results are still useful for many tasks. They should be seen 
as providing supplementary information rather than as a replace-
ment for acquiring measured logs. Omission of formation data 
generally results in worse performance. The drilling parameters 
alone do not produce logs suitable for detailed design or char-
acterization work. Further work may include incorporating 
additional data sources such as near-bit vibrations. This may 
help separate the effects of rock cutting and drilling noise on 
the drilling parameters to improve the model performance for 
real-time applications. 

Data and materials availability
Data associated with this research are confidential and cannot 

be released.

Corresponding author: robsmith155@gmail.com
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