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Summary 

 

Time-lapse (TL) monitoring of the elastic property changes 

in the reservoir of interest is important for optimizing the 

reservoir interpretation and development plan. Given that 

elastic full-waveform inversion (EFWI) provides 

quantitative estimations of the elastic properties (Vp and 

Vs), its application to time-lapse elastic data is of 

considerable interest. For practical applications in reservoir 

monitoring, we need EFWI to provide high-resolution 

reservoir information at a reasonable cost. Thus, we 

develop an elastic redatuming technique to provide the 

required virtual elastic data for a target-oriented inversion, 

thus improving the computational efficiency by focusing 

our full-band inversion on the target zone. To improve the 

inversion resolution, we combine the well information and 

seismic data in the proposed time-lapse inversion approach 

using a regularized objective function. To derive the 

required prior model, we train a deep neural network (DNN) 

to learn the connection between the seismic estimation and 

the facies interpreted from well logs. We then apply the 

trained network to the target inversion domain to predict a 

prior model. Given the prior model, we perform another 

time-lapse inversion. We fit the simulated data difference 

for the virtual survey to the redatumed one from the surface 

recording and fit the model changes to the predicted prior 

model. The numerical results demonstrate that the proposed 

method enables the recovery of the time-lapse changes 

effectively in the target zone by incorporating the learned 

model changes from well logs. 

 

Introduction 

 

Knowledge of time-lapse (TL) changes of the subsurface 

elastic properties is crucial for reservoir characterization 

and management, monitoring the injected fluids, and 

evaluating the storage of CO2 in a carbon capture and 

storage (CCS) process (Lumley, 2001; Chadwick et al., 

2010). Elastic full waveform inversion (EFWI) has been 

applied to time-lapse seismic data and shown reasonable 

potential in describing these property changes with high 

resolution (Zhang and Huang, 2013; Raknes et al., 2015). 

EFWI is computationally intensive, especially for time-

lapse applications, because repeated experiments are 

required to derive the property changes. The computational 

cost will increase exponentially with increasing frequency 

often needed to enrich high-resolution information because 

fine discretization is required to simulate the high-

frequency wavefield in a stable manner. Also, time-lapse 

EFWI (TLEFWI) is a highly ill-posed problem, hampered 

by non-uniqueness, inherent in EFWI (Tarantola, 1984). 

The trade-off between the multiple parameters poses more 

challenges in solving this inverse problem (Vigh et al., 

2014). 

 

The target-oriented inversion approach has been developed 

to reduce the computational cost by focusing the inversion 

on a localized area (Ayeni and Biondi, 2010; Yuan et al., 

2017; Biondi et al., 2018). Redatuming techniques retrieve 

a virtual dataset for the target-oriented inversion by 

projecting sources and receivers to a datum level, 

preferably just above the target area (Wapenaar and 

Fokkema, 2006; Guo and Alkhalifah, 2020; Li et al., 

2020a). To retain sufficient wave information in the virtual 

dataset for interpreting the elastic properties, we exploit the 

multi-component data on the surface in our elastic 

redatuming, instead of only the PP reflections (Garg and 

Verschuur, 2020; Biondi and Barnier, 2020), and generate 

the multi-component virtual dataset at the datum (Li and 

Alkhalifah, 2021). 

 

Prior information can be incorporated into the inversion 

through regularization to mitigate its ill-posedness. 

Considering the injection and production wells are often 

present in the target zone, well information can 

complement the resolution and illumination (Asnaashari et 

al., 2013; Zhang et al., 2018; Singh et al., 2018; Li et al., 

2020c). The model information in the sparsely-sampled 

wells should be projected to the inversion region to provide 

a prior model for regularization of the inversion. Deep 

learning (DL; LeCun et al., 2015) can efficiently learn a 

statistical relationship between the input and output 

features in a data-driven manner. Zhang and Alkhalifah 

(2019) and Li et al. (2020b, 2020c) employed deep neural 

networks (DNNs) to build the proper statistical connection 

that converts seismic estimates to facies interpreted from 

well logs and derived a prior model that incorporates the 

well information.  

 

In the proposed method, we develop elastic redatuming to 

provide a virtual dataset for a target-oriented time-lapse 

EFWI. We also incorporate the well information to 

constrain the inversion by using a DL-assisted 

regularization technique to mitigate the trade-off and 

improve the resolution. Numerical tests on the Marmousi2 

model are used to demonstrate the performance of the 

proposed method.  
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Target-oriented TL-EFWI using a deep learning assisted regularization 
 

 

 

 

Theory 

Elastic Waveform Redatuming 

 

We develop the waveform redatuming technique (Guo and 

Alkhalifah, 2020; Li et al., 2020a) for elastic data. The 

redatuming process is an inverse problem that predicts the 

virtual elastic dataset (Green’s function) at the datum level 

using the recorded multi-component data and a prior 

estimate of the overburden model. We can retrieve the 

redatumed elastic data ( D
g ) by solving the following 

optimization problem:  

  
   

2

2

1
min ,

2
o o

s

J   D

D D

g
u m u m g d

 ,            (1) 

where, d  is the recorded multi-component data, 
om refers 

to the overburden model, D
g  is the virtual elastic data 

(Green’s function) at the datum level, u  refers to the 

simulated elastic data using 
om . The elastic data from the 

datum ( D
u ) is generated by using the following datum-

based modelling operator: 

( , , ) ( , , ) ( , , ) ( + )D D

n s p vs s n vs vs vs vsu t u t g t d d    F x x x h x x h x x x h h x ,(2) 

where, F  is the elastic wave modeling operator, h  is the 

subsurface offset vector measured from the virtual source

vsx , n  refers to x- or z-component of the elastic wavefield. 

The upgoing wavefield ( D

nu ) is excited by the secondary 

source, located at the datum level, given by the convolution 

of the downgoing pressure-component wavefield (
pu ) with 

the Green’s function ( D

ng ). 

 

The gradient of the objective function with respect to the 

redatumed elastic data ( D
g ) is written as: 

     †, , , , , , ,vs vs p vs s n vs s t
sn

J
t u t u t


   


D

x h x x x x h x
g

,  (3) 

where †u  represents the backward propagating wavefield 

from the adjoint source at the receivers. We can obtain the 

gradient for the z- and x-components of the redatumed 

elastic data ( ,z x

D Dg g ) by cross-correlating the forward 

pressure-component wavefield and the backward z- and x-

component wavefield, respectively, at the datum level, 

followed by a summation over the sources. We will apply 

this elastic redatuming algorithm to the time-lapse elastic 

data to prepare the corresponding virtual datasets for the 

subsequent target-oriented time-lapse EFWI. 

 

Regularized TLEFWI assisted by deep learning  

 

Once the base and monitor datasets of the time-lapse 

experiment are redatumed to the datum level, we then 

perform the double-difference elastic waveform inversion 

(DDWI; Zhang and Huang, 2013) to estimate the property 

changes in the target zone. The double-difference objective 

function is defined as:  

     
2

2

1

2
d ibase virtualJ   m u m u m d

.                (4) 

In the DDWI algorithm, we first invert for the baseline 

model (
ibasem ) by matching the virtual baseline data. Then, 

we update the monitor model starting from 
ibasem by 

minimizing the double-difference objective function. The 

model updates are considered to be the time-lapse changes.  

 

To incorporate the prior information from well logs, a 

regularization term is added to the objective function: 

( ) ( ) ( )d mJ J J m m m ,                    (5) 

where,
            

2

2

( )m m ibase priorJ   m W m m m
,                (6) 

and β is a weighting parameter, 
mW  is a diagonal weighting 

matrix, 
priorm

 
is a prior model for the property changes in 

the target zone, that incorporates the well information 

predict from deep learning. 

 

We derive the prior model by mapping the seismic 

estimation for the time-lapse dataset to the interpreted 

facies from wells based on their statistical relationship 

predicted by a deep neural network (DNN). The 

architecture of this fully-connected neural network is 

shown in Figure 1. Taking a vector 
0a  as inputs, a general 

forward-propagation equation is written as 

1( )l l l l lg  a Wa b , where 
lW  and 

lb  represent the 

weighting matrix and the bias vector for the lth layer, 

respectively. The activation function 
lg  is used to induce 

nonlinearity in the DNN. Here, we exploit the rectified 

linear unit (Relu) functions and a softmax activation 

function for the hidden layers and the output layer, 

respectively. The softmax function admits a neural network 

output given by a probability distribution over facies, 

written as (             ).  

 
Figure 1: The architecture of the Deep Neural Network. There are 

four hidden layers and 64 neurons in each layer for the Marmousi2 

example.  

 

Both the inverted baseline model and the recovered 

velocity changes from seismic data serve as input features. 
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Target-oriented TL-EFWI using a deep learning assisted regularization 
 

 

 

 

Considering the property changes often occur in a limited 

depth range, the depth of the training samples is also used 

as an input feature to improve the prediction accuracy of 

the DNN. We can interpret at least two facies, representing 

the injection and non-injection areas, from the wells to set 

labels for the training dataset. The injection area needs to 

be described by more than one facies in some complicated 

cases. 

 

To improve the performance of the trained DNN, the 

Synthetic Minority Over-sampling Technique (SMOTE) is 

used to enlarge the training datasets and reduce the 

imbalance of different facies (Chawla et al., 2002). We also 

employ a random dropout of 30% to avoid over-fitting 

(Srivastava et al., 2014). Once the training process is 

finished, the DNN constructs a statistical connection 

between the inverted model's input features from the first 

EFWI and the facies classes. We then apply the trained 

network to the target inversion zone to predict the facies 

distribution. Considering that the velocity changes for each 

of the facies have been defined from the well logs, we can 

build the prior model for the velocity changes. Lastly, we 

implement a regularized TLEFWI by incorporating the 

prior model into the inversion. 

 

Examples 

 

We test the proposed inversion method on the modified 

Marmousi2 elastic model, shown in Figure 2, taken as the 

baseline model. Considering that the original Vs model 

needs very fine discretization to avoid dispersion, we 

reconstruct the Vs model based on a relationship of 

      √             . We implant velocity changes 

into the baseline model to build the monitor model. Figure 

3 shows the time-lapse changes in the target zone, where 

Vp and Vs have changes of -200 m/s and -20 m/s, 

respectively. We design the datum level at a depth of 2.2 

km, just above the monitoring zone.  

 

We deploy 91 shots and 471 receivers evenly sampled at a 

depth of 20 m to generate the elastic multi-component data 

for the baseline and monitor models. The source wavelet is 

a Ricker wavelet with a peak frequency of 20 Hz. Starting 

from the initial model (Figure 4), we perform the 

conventional elastic FWI to estimate the baseline model 

using two low-frequency bands, 2-5 and 2-8 Hz, 

sequentially. Note that we only need set the spatial and 

time sampling intervals to 20 m and 2 ms for such 

frequency range, respectively. The inverted baseline Vp 

and Vs are shown in Figure 5. We then discretize the 

inverted model using a finer grid (5m) to handle the full-

band simulation needed for the redatuming. Given the 

overburden model, we apply the elastic redatuming scheme 

to the recorded full-band baseline and monitor data to 

retrieve the corresponding virtual data. The virtual survey 

includes 58 virtual shots evenly sampled from 4 to 8.56 km 

at the datum level and 401 virtual receivers for each shot 

with a maximum offset of 1 km. Subtracting the baseline 

virtual data from the monitor virtual data, we obtain the 

time-lapse data difference for the virtual survey (Figure 6). 

The time-lapse Vp and Vs changes recovered from the 

target-oriented TLEFWI are shown in Figures 7a and 7b. 

We can see that the velocity changes are captured at the 

right position but still are contaminated by artifacts. 

 

 

 
Figure 2: The true baseline (a) Vp and (b) Vs. 

 
Figure 3: The true time-lapse changes in the target zone, where Vp 

and Vs has changes of -200m/s and -20m/s, respectively. 

 

 
Figure 4: The initial (a) Vp and (b) Vs. 

   

 
Figure 5: The inverted baseline (a) Vp and (b) Vs using 

conventional EFWI. 

(a) 

(b) 

(a) 

(b) 

(a) 

(b) 
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Figure 6: The time-lapse data difference for the virtual survey: (a) 

z-component and (b) x-component. 
 

Two vertical profiles at 6.5 and 7.0 km are viewed as 

pseudo wells, which provide prior information of model 

changes to the target zone. We interpret two facies, 

representing the injection and non-injection areas, from 

these two wells to label the training dataset, which consists 

of the model samples near the well locations from the 

inverted model. Once the training is finished, the DNN 

learns a statistical relationship between the inverted model 

from time-lapse seismic data and the facies. Then, we apply 

the trained neural network to the target inversion zone to 

predict the facies distribution and derive the prior model for 

Vp and Vs changes (Figures 7c and 7d). At last, we 

conduct a regularized TLEFWI using the prior model. The 

recovered Vp and Vs changes, shown in Figures 7e and 7f, 

are better focused and cleaner than those without 

regularization (Figures 7a and 7b).  
 

Conclusions 

 

We introduce an elastic redatuming technique and deep-

learning-assisted regularization to a time-lapse elastic full-

waveform inversion scheme to improve the inversion 

performance. Elastic redatuming generates the virtual 

elastic dataset at the datum level for the target-oriented 

inversion, which reduces the computational cost by 

focusing the inversion on the target zone. The well logs, 

that provide detailed time-lapse property changes with 

limited coverage, complement the inversion resolution for 

seismic estimation using the proposed regularized inversion 

scheme. The required prior model is predicted from a 

trained deep neural network, which identifies the statistical 

connection between the seismic estimation and facies 

identified from well logs. The numerical example shows 

the potential of the proposed method in improving the 

inversion resolution and accuracy. 
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Figure 7: (a-b) The target-oriented TLEFWI result for Vp and Vs 

using the redatumed elastic data, (c-d) the predicted prior model 
for time-lapse Vp and Vs changes by using deep learning, (e-f) the 

final inverted Vp and Vs changes using the regularized inversion 

scheme. 
 

 

 

(a) 

(b) (a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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