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Summary 

We present a new methodology to integrate 4D seismic data 

acquired continuously over three years to monitor gas 

injected in a land carbonate reservoir. A rock physics model 

is first calibrated from well log data, which is then used to 

transform reservoir simulation results to 4D synthetic 

seismic data. We show from this modeling that maximum 

4D amplitudes of 6-10% NRMS are strongly impacted by 

gas thickness, while 4D time-shifts have more complex 

behavior and cannot be integrated in a simple way into a 

predictive model. Due to relatively high noise levels in 

comparison to the expected 4D signal, we show that 

quantitative models fail to be useful in this situation. Instead, 

we define a gas detectability threshold from a statistical 

model between gas thickness and 4D amplitudes, and 

calibrate a qualitative model of gas detectability depending 

on noise. This model is used to update in a Bayesian way 

prior detectability probability maps from the reservoir 

model, and finally, to update probabilistic gas volume maps 

from the reservoir model. 

 

Introduction 

A major goal of time-lapse seismic is to assist in reservoir 

history matching, which can be done in either a  qualitative 

(e.g., Hodgson et al., 2017) or in a quantitative  (e.g., Tian 

and McBeth, 2015) way. Among the successful published 

examples of 4D seismic technology, very few concern land 

carbonate reservoirs. Stiff reservoir rocks, combined with 

natural spatial reservoir property variability, can make the 

low-resolution 4D signal very difficult to interpret. For this 

particular project, the goal of which was to monitor injected 

gas plume expansion, additional complications have been 

highlighted (Bakulin et al., 2012, 2016). Challenging near-

surface conditions consisting of varying sand thickness, 

highly variable near-surface velocities, and underlying 

karsted limestone severely inhibit conventional seismic 

imaging. In addition, seasonal variations in the near-surface 

conditions resulting from sand dune migration and climatic 

effects can lead to high levels of 4D noise that can hinder 

monitoring. To detect a weak signal in such a noisy 

environment, a highly repeatable acquisition system was 

required. To achieve this, receivers were permanently buried 

at 50-80 meters depth, and a dense 10 x 10 meter vibroseis 

shot carpet was utilized to ensure sufficient sampling for 

noise attenuation and to achieve high-fold coverage (Jervis 

et al., 2018). A specialized 4D seismic processing workflow 

was developed (Smith et al., 2019), resulting in a remarkably 

low level of background 4D noise (around 2-5% normalized 

root mean square [NRMS] between surveys acquired during 

a similar time of year). Even then, interpretation of small 4D 

signal remains challenging.  

 

In this paper, we present a novel workflow that utilizes 4D 

seismic amplitudes as well as an estimate of signal 

uncertainty to update consistently the probabilistic gas 

thickness maps coming from the history-matched reservoir 

model. This update happens in four separate steps. First, we 

define the gas detectability as a function of the 4D noise. 

Next, the prior gas detectability is calculated from the 

reservoir model. Then it gets updated with the 4D 

information, and finally, the probabilistic volumetric maps 

are updated. The full workflow relies on a rock physics 

model, which is described first.  

 

Simulating 4D response using reservoir model  

In the present study, the rock physics model consists of two 

parts: dry rock moduli are calibrated to porosity using power 

law or exponential statistical models. The fluid substitution 

is controlled by Gassmann’s equation assuming that the 

reservoir fluid mix (oil + gas + water) is homogeneous. This 

model is then used to transform porosity, pressure and fluid 

saturation from reservoir model to acoustic impedance 

volumes. Finally, post-stack synthetic seismic is generated 

by 1D convolution of the resulting reflectivity with the 

wavelet extracted from real seismic data. The synthetic 4D 

data are the different amplitude volumes between the current 

baseline snapshot before the start of gas injection. Once 

 
Figure 1. Sections from the 3D gas saturation model (left) and 

associated 4D amplitude responses (right). 
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4D seismic in a land carbonate reservoir 

 

 

calibrated to available well logs, the model is used to 

transform results from the history matched reservoir model  

(grids with porosity, facies, fluid saturation, pressure, and 

temperature) to 4D amplitude volumes. Two types of 

attributes are then extracted as in Huang et al. (2018).  Figure 

1 shows that as the gas column thickens, amplitude NRMS 

increases as a result of 4D tuning. A maximum of 6-10% 

NRMS occurs when the column is fully saturated with gas. 

The effect of gas on the 4D time shift is more complex and 

therefore difficult to integrate into a predictive model 

(Figure 2). If a thickening of the column globally pushes 

down the 4D amplitude anomaly (yellow vs. green trace), the 

position of the gas plume in the reservoir can also play an 

important role (red vs. yellow trace). 

 

Quantitative seismic volume estimation 

A linear model is calibrated between 4D synthetic 

amplitudes and the corresponding vertical cumulative gas 

thickness for every time step of the reservoir model. Figure 

3a displays a cross-plot between expected and predicted 

thicknesses using this model. Points are scattered along the 

first bisector line, indicating that the model is unbiased. The 

distribution of data along the y-axis represents the prediction 

uncertainty, from which we can estimate a 95% confidence 

interval (in yellow). For small thickness values, we observe 

that this confidence interval spreads to unphysical negative 

values, meaning the model is unpredictive in this case. We 

define the minimal detectable gas thickness (MDGT) as the 

maximal thickness where the prediction confidence interval 

includes negative values. In Figures 3b and 3c, we have 

repeated the same calibration exercise, but this time have 

added respectively 5% and 10% of bandlimited random 

noise to the 4D traces. As NRMS noise increases, both 

prediction confidence interval width and MDGT increase, as 

reflected by Figure 3d. At a level of 5% NRMS noise, we 

observe that the quantitative model is hardly predictive. This 

noise level is not unusual in our experiment, as shown, for 

instance, in Smith et al. (2019), especially for surveys 

acquired during the rainy season. Therefore, we decide not 

to use this quantitative model directly. Instead, we define a 

qualitative gas detectability model. 

 

 

Qualitative gas detectability from noisy seismic data 

Starting back from the same set of synthetic 4D amplitude 

maps used to generate Figure 3a, we aim to discriminate 

between two classes - gas thickness above and below the 

MDGT. We use a discriminant analysis algorithm for this 

purpose as proposed by Fournier and Derain (1995) for 3D 

data interpretation or by Lucet and Fournier (2001) for 4D 

interpretation. Figure 4a shows that the two classes are well 

separated in the considered 4D attribute space. Proportions 

of true positives and true negatives are 75% and 100%, 

respectively, indicating good discrimination between 

detectable and nondetectable gas. As 4D noise increases 

(Figures 4b and 4c with, respectively, 5% and 10% NRMS 

noise), classes overlap, and the proportions of true positives 

and true negatives globally decrease as shown in Figure 4d. 

In addition to accounting for 4D noise during the calibration 

of this classification function, we also have to account for it 

for prediction. To do so, Nivlet et al. (2001) proposed to 

generalize the discriminant analysis to interval-valued 4D 

seismic amplitudes accounting for the 4D noise, resulting in 

interval-valued probability maps. Here, we propose a 

simpler approach. 4D noise is represented as a multivariate 

Gaussian PDF q, with zero mean and a diagonal covariance 

matrix representing the estimated local variance of 4D noise, 

estimated from a window above the reservoir where no 

 

Figure 2. (a) Density log with saturation profile scenarios (red, green 

yellow); (b) corresponding magnified 4D amplitude traces in 

comparison with a baseline seismic trace (blue) before injection. 

 
Figure 3. Cross-plots between predicted and expected gas thickness 

from synthetic 4D amplitudes with 0% (a), 5% (b), and 10% (c) 
NRMS noise. Variations of MDGT with noise are shown in (d). 
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physical change is expected between surveys. Figure 5 

describes the noise computation process and resulting maps 

for two survey combinations. The first map exhibits a much 

higher noise level because the baseline and monitor were 

acquired under different seasons. On the second map, where 

baseline and monitor are acquired during similar seasons, 

noise is moderate. Only in the NE corner is it a bit higher 

due to lower trace fold.  

This noise is combined with the class probability density 

functions p derived from the discriminant analysis described 

above (Equation 1): 

(1) 𝐸[𝑝(𝑥 𝐶𝑖⁄ )] = ∫ 𝑝(𝑥0 𝐶𝑖⁄ )𝑞(𝑥0)𝑑𝑥0𝑥0
. 

Resulting estimated detectable/nondetectable class 

probabilities tend to be closer to 0.5 when 4D noise 

increases. 

 

Figure 6 shows the impact of 4D noise on the predicted class 

probability. Figures 6a and 6b correspond to the detectable 

gas probability estimated without accounting for the noise, 

while Figures 6c and 6d are based on the application of 

Equation 1. For the (T0 + 24)-month survey, where noise is 

moderate, gas detectability is impacted moderately by noise. 

Conversely, for the (T0 + 18)-month survey, where 4D noise 

is very high, detectability probabilities remain between 0.4 

and 0.6 almost everywhere, in comparison with the 

estimated map without noise model where the detectable gas 

probabilities are overestimated.  

 

Prior gas detectability and update with 4D seismic 

In the case where we dispose of equiprobable reservoir 

model realizations from a stochastic process, prior gas 

thickness uncertainty would be directly estimated from the 

span of the different realization. In the current study, we did 

 

Figure 4. Cross-plots showing detectable and non detectable gas 
thickness from synthetic 4D amplitudes with 0% (a), 5% (b) and 

10% (c) NRMS noise. Plot (d) shows the variation of true and false 

positves / negatives with noise NRMS associated with the calibrated 

classifier with linear discriminant analysis. 

 
Figure 5. (a) Random line showing 4D amplitudes between 

two surveys and examples of 4D noise RMS maps estimated 

at the reservoir level for two different surveys; (b): T0 + 18 

months, and (c): T0 + 24 months. 

 

Figure 6. Gas detectability probability from seismic without (a)-(b) 

and with (c)-(d) accounting for 4D noise; (a)-(c) refer to T0 + 18 

months, and (b)-(d) to T0 + 24 months. 
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not dispose of such stochastic models, and instead, we have 

assumed a prior thickness uncertainty model associated with 

the cumulated gas thickness estimated from the reservoir 

model, consisting of a normal distribution and constant 

thickness standard deviation. By comparing the prior 

thickness distributions to the local MDGT corresponding to 

the local noise level, we obtain prior gas detectability maps, 

as shown in the first row of Figure 7. As expected, the prior 

detectability for the first survey is generally low, due to a 

higher noise level (and therefore a higher detectability level). 

The update of these probabilities is done in two steps. First, 

Bayes rule is used to compute an intermediate updated 

probability according to the system of equations (2): 

(2) 

{
 
 
 
 

 
 
 
 𝑝(𝑣

+ 4𝐷+⁄ ) =
𝑝(𝑣+)

𝑝(𝑣+)+[1−𝑝(𝑣+)]
𝑝(4𝐷+ 𝑣−⁄ )

𝑝(4𝐷+ 𝑣+⁄ )

𝑝(𝑣+ 4𝐷−⁄ ) =
𝑝(𝑣+)

𝑝(𝑣+)+[1−𝑝(𝑣+)]
𝑝(4𝐷− 𝑣−⁄ )

𝑝(4𝐷− 𝑣+⁄ )

𝑝(𝑣− 4𝐷+⁄ ) =
1−𝑝(𝑣+)

1−𝑝(𝑣+)+𝑝(𝑣+)
𝑝(4𝐷+ 𝑣+⁄ )

𝑝(4𝐷+ 𝑣−⁄ )

𝑝(𝑣− 4𝐷−⁄ ) =
𝑝(𝑣+)

1−𝑝(𝑣+)+𝑝(𝑣+)
𝑝(4𝐷− 𝑣+⁄ )

𝑝(4𝐷− 𝑣−⁄ )

 

where the p(v+ or -) are the prior gas detectability 

probabilities discussed above; the p(4D+ or - | v+ or -) terms 

are the true/false positives/negatives proportions 

corresponding to the local 4D noise  Figure 4). In the second 

step, these probabilities are combined with probability maps 

shown Figures 6c and 6d, using the total probability axiom. 

Resulting updated maps of gas detectability probability are 

shown on the Figures 7c and 7d. For the (T0 + 18)-month 

survey, seismic has almost no impact on the detectability 

probability, while the probability map for the (T0 + 24)-

month is heavily modified driven by lower uncertainties in 

the 4D data. 

 

Prior and updated gas thickness 

Finally, to update gas thickness cumulated probabilities 

(Figures 8e and 8f), we scale the parts of the curve separately 

above and below the MDGT according to the updated 

detectability probability. The volumes on Figure 8e are 

shifted to higher values due to high 4D seismic amplitudes 

and low associated uncertainties. The volumes Figure 8f are 

shifted to low values due to low 4D seismic amplitudes and 

low associated uncertainty. Conversely, volume 

distributions for most points from the (T0 + 18)-month 

survey are not updated due to the high MDGT. Maps shown 

in Figure 8a to 8d are the Q50 statistics extracted from the 

local thickness distributions.  

 

Conclusions 

We have demonstrated an integrated interpretation of 4D 

seismic to monitor gas plume expansion in a land carbonate 

reservoir. 4D nonrepeatability is a critical problem to be 

addressed since it can heavily bias quantitative seismic 

interpretation if not accounted for. In this paper, we have 

shown that by evaluating and propagating 4D noise through 

the interpretation workflow, we obtain a more consistent 

picture of the changes occurring in the reservoir. Even 

though 4D noise is generally too high to have a meaningful 

quantitative thickness prediction, we can still consistently 

update volume probabilities using a semi-quantitative model 

described in the paper. 

 

Figure 7.  Prior (a and b) and posterior (c and d) gas detectability 

probability; (a)-(c) refer to T0 + 18 months and (b)-(d) to T0 + 24 
months 

 

Figure 8.  Prior (a)-( b) and posterior (c)-(d) Q50 gas thickness maps; 

inserts (e) and (f) show two examples of complete prior (blue) or 

posterior (red) cumulated gas thickness distributions. 
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