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Summary 

 

Monitoring of geological reservoirs using 4D seismic faces 

many challenges. The repeatability between different 

surveys needs to be optimal in which changes are only 

present in the target zone.  Ideal conditions require having 

the same acquisition parameters for each survey and no near-

surface variations, like those caused by seasonal changes. In 

practice, data processing and matching techniques are 

required to improve the repeatability of the data. This study 

proposes a deep learning approach for post-stack trace-by-

trace matching to reduce the remaining 4D noise. We utilize 

the sequential nature of seismic data to train a temporal 

convolutional network (TCN), which learns to map the 

monitor traces to the base data in the overburden region. The 

goal is to suppress 4D noise while maintaining time-lapse 

signal caused by the reservoir changes we wish to monitor. 

We validate the method on synthetic time-lapse zero-offset 

data and show improvements in repeatability. We also 

perform an initial test on 4D land data to show the potential 

for application to real datasets. 

 

Introduction 

 

Time-lapse seismic, also known as 4D seismic, is often used 

to monitor fluid and pressure changes resulting from 

producing fields or injection of CO2 into geological 

formations. Monitoring fluid behavior can improve reservoir 

simulation history matching and management, which play a 

significant role in enhancing oil recovery (Jervis et al., 

2018). 

In seismic monitoring, a survey is repeated at different points 

in time to observe changes in the target caused by changing 

reservoir conditions. The repeatability of the experiment 

determines whether the time-lapse study is a success. Perfect 

repeatability is obtained when: 1) the acquisition parameters 

(e.g., sources and receivers positions) for all the surveys are 

identical; and 2) the elasticity of overburden layers, 

especially the near-surface, are unchanged. Even with 

advanced technology, such as permanently buried receivers 

(Bakulin et al., 2018), nonrepeatable signals (4D noise) are 

unavoidable due to factors such as ambient noise and 

seasonal variations in the near-surface (Shulakova et al., 

2014). These factors can lead to timeshifts, amplitude 

changes, and waveform distortions. As a result, significant 

post-processing is usually required to suppress 4D noise 

between surveys. The cross-equalization process (Ross et al., 

1996; Rickett and Lumley, 2001), which aims to match the 

different vintages by applying matching filters, is commonly 

used to improve repeatability. The filters are typically 

designed in a temporal window where reservoir changes are 

not expected and can be computed on a global or trace-by-

trace basis from the baseline to the monitor survey (Ross et 

al., 1996). Unfortunately, matching filters are unstable and 

depend primarily on the filter window design (Lumley et al., 

2003). For example, choosing a short window will make the 

filter sensitive to noise, while a large window can reduce the 

resolution. 

Recently, many geophysical processes have incorporated 

deep learning techniques, which can provide more robust 

solutions than conventional approaches. For example, in 

seismic data processing, Ovcharenko et al. (2019) used deep 

learning to extrapolate low frequencies from high 

frequencies, while Slang et al. (2019) applied it to denoising 

and deblending. For time-lapse processing, Alali et al. 

(2020a) corrected for timeshifts in the data using a fully-

connected layer in the latent space of an autoencoder, Duan 

et al. (2020) showed that a trained network could outperform 

a conventional cross-correlation method for estimating 

timeshifts, while Alali et al. (2020b) suggested using 

recurrent neural networks to better account for time 

dependency in the data. 

Ideally, a network is trained on diverse datasets, which 

hopefully generalize to perform well on unseen data. In 4D 

seismic, it is challenging to generate diverse labels that 

accommodate various timeshifts, source functions, statics, 

and so many other factors. Therefore, we suggest training the 

network on windows from the same data, where 4D reservoir 

changes are not expected, and then apply it on the target 

formation to isolate the 4D signal. This approach is similar 

to the conventional matching filters, which can be regarded 

as a single one-channel convolutional layer. Compared to the 

matching filters, the neural network can learn more complex 

features from the data by using multi-channels, nonlinear 

activation functions, and many other utilities. 

In this study we train a temporal convolutional network 

(TCN) to match the data from the monitor to the base. A 

TCN is a convolutional network that utilizes a causal dilation 

filter to account for the time dependency and has been shown 

to outperform   recurrent neural networks on many tasks (Bai 

et al., 2018). The architecture has been used in various 

geophysical applications, such as well-to-seismic tie (Nivlet 

et al., 2020) and acoustic impedance estimation (Mustafa et 

al., 2019). We verify the method on synthetic zero-offset 

time-lapse data and then test it on real 4D post-stack images. 
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Time-lapse cross-equalization using TCNs 

 

 

 

 

Temporal convolutional networks (TCN) 

 

A regular convolutional neural network (CNN) uses kernels 

to extract valuable information from the input images. For 

time series, we often need to capture information related to 

the time dependency, which can be long and requires a large 

kernel size; hence, larger cost. In many cases, such as in real-

time applications, we only have information about the past 

and want to predict the future. Regular CNN kernels include 

future samples in the training, as shown in the top 

architecture in Figure 1. The TCN overcomes these 

limitations by utilizing dilated causal convolutions. In 

Figure 1, we illustrate the difference between regular, causal 

and dilated convolution. In causal convolution, the kernels 

only look back at the past samples to predict the output. 

Dilated convolution, as introduced by Oord et al. (2016), 

enables an exponential increase in the receptive field (i.e. 

time-samples history) at a reduced cost. Comparing the 

causal and dilation in Figure 1, we can see both have the 

same number of layers, but the dilated convolution has a 

larger receptive field. Mathematically, for a sequence x ∈ Rn 

and a kernel f : 0, .., k , the dilated causal convolution ( d ) 

applied on a time sample t is written as: 

 
where d is the dilation factor. Also, note that (t-i·d) accounts 

for the direction of the past samples. If d = 1, we have the 

regular causal convolution. d increases exponentially with 

the  depth of the network to allow for a large receptive field. 

In practice, the TCN is often combined with weight 

normalization, residual and skip connections (Bai et al., 

2018; Oord et al., 2016). 

 

Method 

 

We replace the conventional matching filters with a TCN 

network to match the data. Like the matching filters, the 

model is trained to map the monitor to the baseline in regions 

with no expected 4D changes. We choose to optimize the 

network using the mean squared error that can be expressed 

as: 

 
where 𝐵 is the baseline and  �̂�  is the predicted baseline. 

Training a TCN is very cost-efficient compared to other 

time-series networks, such as RNNs. Therefore, after 

training on the whole data as a global matching, we fine-tune 

the network for each trace individually, which will result in 

a local network per trace. This is written as: 

 
where i represents the trace number (i.e., 𝐵𝑖 is the i-th trace 

from 𝐵 and 𝜃𝑖   is the network trained locally to map the ith 

trace). The goal for the first global training is to reduce the 

large data required for training a neural network, while the 

local training aims to learn the specific equalization needed 

for that particular trace. For all the networks, we divide the 

data into overlapping windows in time to generate sufficient 

training data. After training, the inference is applied on the 

whole data to match the monitor with the baseline using: 

 
 

 
The difference between the actual base 𝐵 and the predicted 

�̂� should eliminate the overburden effect and keep the 4D 

changes intact, as long as we do not include any 4D signal in 

the training. 

 

 

 
 

Figure 1: A CNN network and its variants. From top to 

bottom: regular CNN; causal CNN; dilated causal CNN. 
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Time-lapse cross-equalization using TCNs 

 

Synthetic SEAM time-lapse data 

 

We first test the approach on a synthetic zero-offset time-

lapse dataset. We use the SEAM time-lapse model, given in 

Figure 2a to synthesize the base data. A 4D change, shown 

in Figure 2b, is added to simulate the monitor data. In the 

shallow part of the model, we include random Gaussian 

noise as near-surface variations. We generate 60 shots 

spaced by 17.5 m and only consider the zero-offset data. 

Figure 3a shows the zero-offset data from the baseline. The 

target 4D signal (Figure 3b) is obtained by subtracting the 

baseline and the monitor data before adding the random 

near-surface seasonal variations. Figure 3c depicts the 

difference after including the overburden changes. We can 

see that the 4D noise distorts some of the weak 4D signal as 

indicated by the arrows in Figures 3(b,c). 

 

The TCN network contains five causal dilated convolutional 

layers starting with a kernel size of 2. We trained the global 

network on a time window from 0.1 s to 2 s as no reservoir 

signal is recorded in this range. To generate training 

samples, we divided the training window into overlapping 

sub-windows 100 time-samples in length, which is about 0.3 

s. We used the last two sub-windows as a validation set as 

this ensures that the network learns to match the data even 

for subsequent samples. After that, we used the global 

network as an initial model for training the local networks 

for each trace. We increased the overlap between the traces 

to increase the number of samples. We tested different 

hyper-parameters and chose the one that resulted in the 

smallest loss. 

 

Finally, we apply the network to the monitor data, including 

the reservoir. We show the difference between the predicted 

base and the actual base in Figure 3. Most of the 4D noise 

was suppressed and we successfully recover some of the 

weak 4D signal as indicated by the arrows. We compute the 

normalized root mean square as a repeatability measure 

(Kragh and Christie, 2002) and found that it decreased from 

about 15% to 6%. 

 

Real post-stack data 

 

We also tested the method on a 2D line from a 4D post-stack 

dataset recorded on land. Although high repeatability was 

achieved between surveys acquired during the same season, 

significant increases in 4D noise remained between data 

collected under different climatic conditions (Smith et al., 

2019). Two baseline surveys (acquired in different seasons) 

were used for this test, where we do not expect any 4D 

signal. Figure 4(a) shows a section through the first baseline 

survey, with the difference between the two surveys 

(amplified by a factor of five) plotted in Figure 4(b). We can 

see that the 4D noise is stronger in the deeper part of the 

section. This noise is not stationary with time, which means 

that training the network on a window in the overburden may 

not be sufficient to predict the noise in the reservoir. 

 

Here, we used a larger receptive field than the first 

experiment to capture a longer portion of the input traces. 

This was achieved by increasing the number of dilated 

convolutional layers to seven. We also used weight 

normalization and skip-connections, which increase the 

robustness of the TCN (Bai et al., 2018). We trained the 

model on a window of 700 time-samples, which is about 1.5 

s, with overlapping sub-windows of size 200 time-samples. 

 

The result of applying the network is shown in Figure 4(c). 

We can see that the network manages to equalize the data 

well in the training window but failed to correct the deeper 

part. This could be because the noise is not stationary and 

behaves differently in the deeper part. Another possibility 

for this behavior is that we fall into an over-fitting issue. This 

is an area for further investigation and research. 

 

Conclusion 

 

We have demonstrated matching 4D seismic data using a 

TCN network instead of conventional matching filters to 

reduce 4D noise. The method was tested on zero-offset data 

obtained from the SEAM time-lapse model, which showed 

the network could successfully match the data in the 

overburden region and enhanced the 4D signal. We then 

applied the method on real 4D post-stack data. Although the 

method suppresses the overburden 4D noise, it did not 

perform well in the deeper reservoir region. We think this is 

either because the noise is not stationary with time or 

possibly due to network over-fitting, which is the subject of 

further research. 

 
Figure 2: SEAM time-lapse model (a) and the added 

4D signal (b). 
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Figure 3: Zero-offset data for the SEAM model (a), the target 4D signal (b), the difference between the base and monitor before 

processing (c), and the difference after processing with the proposed method (d). The red arrows highlight the improvements in the 4D 

signal. (b), (c) and (d) are plotted at the same scale. 

Figure 4: Baseline data (a), the difference between the base and the monitor (b), and the difference after equalizing with the 

proposed method (c). All the figures are plotted at the same scale but (b) and (c) are amplified by a factor of 5.
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