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SUMMARY 

The presence of low-frequency energy in seismic data can help 
mitigate cycle-skipping problems in full-waveform inversion. 
Unfortunately, the generation and recording of low-frequency 
signals in seismic exploration remains a non-trivial task. 
Extrapolation of missing low-frequency content in field data 
might be addressed in a data-driven framework. In particular, 
deep learning models trained on synthetic data could be used 
for inference on the field data. Such an implementation of 
switching application domains remains challenging. We, 
therefore, propose the concept of generative dual-band 
learning to facilitate the knowledge transfer between synthetic 
and field seismic data applications of low-frequency data 
extrapolation. We first explain the two-step procedure for 
training a generative adversarial network (GAN) that 
extrapolates low frequencies. Then, we describe the workflow 
for synthetic dataset generation. Finally, we explore the 
feasibility of the dual-band learning concept on real near-
surface land data acquired in Saudi Arabia. 

 
INTRODUCTION 

Imaging for deep subsurface targets is incredibly challenging 
when applied to land seismic data (Bakulin et al., 2018). 
Unlike a water layer in the marine acquisition, a land near-
surface layer is naturally inhomogeneous. Land surveys 
feature variable topography and highly complex structures in 
the first few hundreds of meters below the surface. Also, the 
nature of the topmost layer affects the coupling of the sensors 
and sources with the medium. It thus contributes to higher 
noise levels in recorded data. Another distinct feature of land 
data is strong surface waves that dominate body-wave signals 
conventionally used for seismic imaging. Therefore, a 
successful inversion of land data requires building an accurate 
model of the near-surface (Baeten et al., 2013) since 
inaccuracies accumulated in the shallow subsurface 
considerably magnify at depth. 
 
Data-driven methods can be found in a broad range of 
applications in geophysics (Alali et al., 2020; Sun and 
Alkhalifah, 2020; Song et al., 2021). We focus on initial 
velocity model building, which can be approached in both data 
and model domains. Model-domain approaches might predict 
low-wavenumber velocity models directly from data (Kazei et 
al., 2020b,a; Zwartjes, 2020; Plotnitskii et al., 2019), whereas 
data-domain approaches concentrate on extrapolation of low-
frequency content of seismic data, subsequently used by 
classic imaging algorithms (Aharchaou et al., 2020; 
Ovcharenko et al., 2017, 2019, 2020; Fabien-Ouellet, 2020; 
Hu et al., 2020; Wang et al., 2020; Sun and Demanet, 2019, 
2020). 
 
 
 

The supervised learning framework is commonly used for 
solving inverse problems in a data-driven fashion. The 
bottleneck, however, is the lack of realistic training datasets, 
sufficient for direct inference on field data. Unlike seismic 
data interpolation, which might be addressed in an 
unsupervised fashion (Ovcharenko and Hou, 2020), the task 
of low-frequency extrapolation suffers from the lack of 
labeling data for training. Meaning that only high-frequency 
input data is known from seismic surveys, while the low-
frequency label is a derivative of a solution of an ill-posed 
inverse problem of waveform inversion. 
 
Usually, constructing a dataset for supervised learning using 
exclusively real-world data is not feasible. The workaround is 
to create a dataset of synthetic input-target pairs and leverage 
the concept of transfer learning to migrate the learned 
knowledge between datasets (Siahkoohi et al., 2019). 
However, the datasets should be statistically similar. Despite 
many approaches proposed for generating realistic seismic 
data (Kazei et al., 2019), the knowledge transfer between 
synthetic and field applications remains unresolved. 
 
We propose the concept of dual-band learning designed to 
facilitate the knowledge transfer between training on synthetic 
data and application on field data. The key idea lies in 
injecting field data samples into training alongside with the 
synthetic data flow. This approach with modifications might 
also be used in other geophysical applications. 

 
DUAL-BAND LEARNING 

The generative dual-band learning for low-frequency 
extrapolation implies using two frequency bands of seismic 
data as input channels to the network. The implementation 
also requires a two-stage training of a GAN, with synthetic 
and field data being used jointly. 

 

Figure 1: Bandpass filters to split data into high, middle and 
low frequency partitions. The high and middle partitions are 
available in both synthetic and field data, while the low-
frequency target only exists in the synthetic dataset. 
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→ 

Assume there are two datasets of full-band seismic shot 
gathers. The training dataset, DS, which consists of synthetic 
data, and the testing dataset, DF, which comprises the recorded 
field data. Commonly, the elements of each dataset are split 
into high-frequency inputs and low-frequency targets by 
applying low-and high-pass filters. For the synthetic dataset, 
these are HS and LS, respectively, while for the field dataset, 
only the high-frequency partition HF is available. The low-
frequency pair of field data LF is the ultimate target of the 
entire application. We also propose to extract the band of 
“medium” (denoted as “mid,” for brevity) frequencies, MS and 
MF, from high-frequency bands of synthetic and field data, 
respectively (Figure 1). This additional band will be used to 
inject field data into synthetic training. 

 

 
Figure 2: Two-stage workflow for dual-band learning. HS, MS, 
and LS stand for High, Medium, and Low-frequency bands of 
synthetic data. HF and MF are the corresponding High and 
Medium frequency bands from the field dataset. The “p” subscript 
denotes predicted low-frequency and middle-frequency data. An 
accurate reconstruction of LFp is the ultimate goal. 

 
The network architecture that implements the dual-band 
learning concept is a generative adversarial neural network 
(Goodfellow et al., 2014). The GAN consist of a generator G- 
and discriminator D-network. The G-network accepts the input 
volume of the data and outputs the predicted data. Meanwhile, 
the D-network operates simultaneously on reference and 
predicted data, attempting to tell whether these data came from 
the same or different distributions. Training of the GAN is 
highly unstable by design, where G- and D-networks are 
competing with each other. For this reason, we develop a two-
stage strategy that would focus the training on predicting low-
frequency data. 

In the first stage (Figure 2), generator G is trained exclusively 
on synthetic data. In particular, G learns the mapping of the 
combination of high- and mid-frequency data into low- and 
mid-frequency data, [HS, MS]     [LS, MS], by optimizing the 
L1-misfit between those. The network also learns the relation 
between predicted middle and low frequencies. In the second 
stage, the training on synthetic data continues, alongside 
feeding the input pair [HF, MF] into G. For the field data pair, 
only gradients based on the medium frequency MF’s 
prediction are backpropagated. At the same time, we trained 
the discriminator D to distinguish between the true pair of 
synthetic [LS, MS] and predicted [LSp, MSp], and [LFp, MFp]. 
The adversarial loss attempts to compensate for the amplitude 
and phase mismatch between sources in synthetic and field 
data. Without training the discriminator, the generator 
produces low-frequency data that looks like synthetics even 
when given an input pair from the field dataset. 

 
FIELD AND SYNTHETIC DATA 

In this study, we generate a synthetic dataset that pivots on 
field data and then applies the dual-band learning approach to 
transfer knowledge from training on synthetics to a field data 
application. 

 

 
Figure 3: Portion of a land seismic survey with buried 
receivers and surface vibrators (a), where every dot represents 
a shot location colored according to its elevation. The selected 
line of buried receivers (magenta) and sources (green) is 
highlighted. A limited-offset common-receiver gather (b) 
centered in one of the receivers on the line. 
 
The field dataset from the desert environment contains data 
extracted from a 3D land survey performed with buried 
receivers and surface vibrators (Jervis et al., 2018; 
Smith et al., 2018). Data are recorded with 2 ms sampling by 
a limited number of receivers buried at depths of 50-80 m. 
Vibrator sources are placed on a 10 by 10 m grid (Figure 3a). 
Unlike in marine streamer surveys, the shot grid is distorted 
by surface obstructions, and data have variable maximum 
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offset. Note, that deep learning applications usually require 
data of constant size. To meet this requirement, we extract the 
limited-offset data measuring 128 shots in the offset direction 
(Figure 3b). We also apply a low-pass filter to the data below 
15 Hz and limit the duration of recording to 1 s. This turns out 
to be sufficient for a proof-of-concept study in the near-surface 
setup. 

 

Figure 4: Comparison of the mean time-domain records (a), 
mean frequency power spectrum (b), and standard deviation 
(c) between synthetic and field datasets. Vertical profiles from a 
set of generated random models (d). 

 
The synthetic dataset should resemble the field dataset as much 
as possible. Ideally, it would be modeled with the source 
wavelet extracted from field data. We assume that the source 
imprint is unknown, and thus we create the synthetic dataset 
using a generic bandlimited spike source function. The 
synthetic dataset construction starts from putting together an 
assembly of random subsurface models. We build 256 models 
measuring [150 x 500] m with 5 m spacing. The random 
initializations are sampled around the 1D velocity trend 
matching approximately the direct arrivals in field gathers 
(Figure 4d). The mean of generated models should follow the 
selected 1D trend while delivering a broad variance around it. 
We also limit the velocity range of generated models within 
realistic box conditions. Finally, we simulate the elastic 
wavefield in each of these models using bandlimited spikes 
with a corner frequency of 10 Hz as a source. The survey 
design for generation of synthetic data is unimportant as long 
as the source-receiver configuration matches data in the field 
dataset. We placed three sources in a streamer-like setup, 
recording the wavefield by 128 trailing receivers spaced by 10 
m. This approximates a single-side common-receiver-gather 
from the land data. The elastic forward modeling is powered 
by a 2D time-domain isotropic elastic finite-difference solver 
(Köhn, 2011). The mean and standard deviation of both 
synthetic and field datasets are shown in Figure 4a and 
Figure 4c. The power spectrum (Figure 4b) shows boosted 
amplitudes of synthetic data compared to field data. The 
reason is that we intentionally do not use an accurate source 
wavelet and want to explore whether dual-band learning can 
balance these at the inference stage. 

DEEP LEARNING FRAMEWORK 

Inputs and targets. We select the field common-receiver 
gathers from 729 receiver locations, which leads to the 
volume of field dataset measuring [729, 128, 500]. The 
synthetic dataset contains 768 shot gathers, after modeling of 
3 sources in each of 256 random models and, thus, measures 
[768, 128, 500]. We split each dataset into high, 
5 Hz < HS,F < 15 Hz, mid, 5 Hz < MS,F < 10 Hz, and low, 
LS,F < 5 Hz, frequency data partitions (Figure 5). Finally, we 
downsample the data along time dimension by a factor of four 
and pad it with three zeros to reach the square dimensions. 
This leads to the final shape of the training and testing data of 
[768, 128, 128] and [729, 128, 128], respectively. 

 

Figure 5: Comparison of synthetic (top) and field data 
(bottom) samples. The columns stand for high-, mid- and low-
frequency data partitions. 

 
Pre-processing. Amplitudes of high- and mid-frequency data 
are generally an order of magnitude larger than those of low-
frequency data. This is not the case when approaching 
bandwidth extrapolation as a direct mapping of high to low 
frequencies. When jointly predicting mid and low frequencies, 
the latter might be neglected compared to large amplitudes in 
the mid-range. We follow a rather simple approach to balance 
contributions of low and mid frequencies in the output. First, 
we divide every shot gather by the maximum of its absolute 
value. This maps data values to the range [-1, 1]. Then, we 
divide the low-frequency data by the maximum of its absolute 
value and multiply it by the one of the mid-range data. This 
way, the two components of the network outputs contribute to 
the training more evenly. 
 
Architecture. The GAN architecture consists of a generator, 
G, and a discriminator, D. The generator is the UNet 
(Ronneberger et al., 2015), with [32, 64, 128, 256, 512], 3 x 3 
kernels in each convolutional layer of the encoder. The decoder 
branch is symmetric to the encoder. The patch-discriminator 
(Isola et al., 2017) is built as a stack of 4 convolutional layers 
with the following combinations of number of kernels per 
layer, kernel size, padding, and stride: [16, 11, 5, 4], [32, 5, 2, 
2], [64, 3, 1, 2], [1, 3, 0, 1]. The output is a 6 x 6 matrix of 
fidelity estimates for respective partitions of the output data. 
We then take a mean estimate and use it for training. For the 
training of the discriminator D we optimize the LSGAN loss  
 
 
 

10.1190/segam2021-3579442.1
Page    1347

© 2021 Society of Exploration Geophysicists
First International Meeting for Applied Geoscience & Energy

D
ow

nl
oa

de
d 

09
/1

4/
21

 to
 1

39
.6

4.
4.

81
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

S
E

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/s

eg
am

20
21

-3
57

94
42

.1



 

 

 

(Mao et al., 2017), which aims to produce values > 1 for 
samples drawn from the “true” distribution, and values < −1 for 
those drawn from the “fake” distribution. 

EXAMPLE 

We evaluate the low-frequency extrapolation capability of 
neural networks in the following configurations denoted 
according to the corresponding input data composition: 
1. HS: training on synthetic data, direct mapping [HS]  [LS] 

by UNet. 
2. HS+MS: training on synthetic data using mid-band 

mapping [HS, MS] → [LS, MS] by UNet. 
3. HS+MS+MF: training on synthetic and field data, dual-

band learning with [HS, MS] → [LS, MS] and [HF, MF] → 
[LF, MF] by GAN. 

 

Figure 6: Predicted low-frequency data (< 5 Hz), produced 
from different input data compositions: HS (high-frequency 
synthetic only), HS+MS (added medium-frequency synthetic), 
HS+MS+MF (added medium-frequency field data and GAN). 
Observed data is on the right, the corresponding power 
spectrum is shown at the bottom. 

Assuming unknown source wavelets from the field survey, we 
created the dataset of synthetic data using a bandlimited spike 
as a source. This, expectedly causes boosted amplitudes of the 
generated waveforms compared to field observations. Because 
of that, when UNet is trained on synthetic data exclusively and 
applied to field data, the predicted low-frequency data 
(Figure 6, HS) shares the amplitude and overall appearance of 
samples from the synthetic dataset. In particular, the footprints 
of surface waves remain clearly visible. Alternatively, when 
adding the mid-range data as a second channel of the input data 
and running the first stage of dual-band approach training, the 
imprint of ground-roll in the prediction becomes less 
prominent (Figure 6, HS+MS). The amplitude of predicted data 
remains overestimated compared to field observations 
(Figure 6, True). Finally, we launch the second stage of 

dual-band training end enable the discriminator to evaluate the 
fidelity of predicted combinations of low- and mid-frequency 
data. Extrapolated low-frequency data in this case (Figure 6, 
HS+MS+MF) perceptually resemble the target. 

 

Figure 7: Reconstructed mid-frequency data (first row) and 
predicted low-frequency data (second row) produced from 
different input data compositions, same as in Figure 6. 
Predictions low-passed below 3 Hz (third row). Blue boxes 
highlight the high- and mid-frequency field data used as input 
to the network. 
 
The power spectrum in Figure 6 shows the amplitude match 
between predicted and observed data. There, the non-zero 
values below the cut-off frequency of 5 Hz imply the presence 
of generated low-frequency data. This might be visually 
confirmed by exploring the outcomes of low-pass filtering 
(< 3 Hz) of the predicted data (Figure 7). 
 
Finally, the additional mid-range band together with the GAN 
architecture guides the extrapolation towards a more realistic 
prediction. This proof-of-concept experiment shows promise 
in the dual-band approach for low-frequency extrapolation. 

 
CONCLUSIONS 

We introduce the concept of dual-band generative learning 
designed to facilitate the knowledge transfer from training on 
synthetic seismic data to applications on field data. When 
applied in the framework of low-frequency extrapolation, it 
allows to introduce a domain-specific imprint of land seismic 
data into training on synthetic data. We show that using the 
additional frequency band in both inputs and outputs of the 
network leads to improved predictions, while the amplitude 
mismatch remains prominent. The GAN architecture 
addresses this issue and balances amplitudes, ensuring that 
predicted low-frequency data are consistent with the available 
mid-frequency range. This dual-band generative learning 
concept shows considerable promise and might be studied in 
further seismic applications, such as velocity model building. 
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