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Summary 
 
The complex near-surface scattering introduces significant 
distortions in deep reflection data, necessitating effective 
noise mitigation strategies. In this study, we investigate the 
recovery of signal phase in the presence of multiplicative 
noise which is a crucial step for subsequent despeckling 
algorithms. Leveraging a stack-based approach, we 
introduce the concept of a "phase pilot trace", which 
represents the trace closest to the signal phase using the 
minimum number of traces possible. Our analysis focuses on 
evaluating the quality of the phase pilot by assessing the 
standard deviation of the residual phase and its enhancement 
with increasing stack size. Through numerical experiments, 
we demonstrate a consistent reduction in phase spread across 
all frequencies, adhering to the 1/√N rule, indicating a 
uniform reduction in normalized values for all the 
frequencies. We propose utilizing the standard deviation of 
the residual phase as a metric for assessing the quality of 
phase pilot traces, providing insights into the necessary 
ensemble size for desired phase recovery quality. However, 
the pronounced frequency dependency adds complexity to 
determining the necessary trace count for broadband data. 
 
Introduction 
 
The study of small-scale scattering, recognized in the 
acoustic and ultrasonic fields (Abbott and Thurstone, 1979; 
Fink and Derode, 1998; Goodman, 2007), has 
predominantly focused on analyzing and mitigating noise in 
intensity images at a fixed frequency. However, seismic 
imaging operates with broadband signals, presenting unique 
challenges. Complex near-surface scattering can introduce 
significant distortions in deep reflection data (Bakulin et al., 
2022). As a result, even after standard processing, land 
seismic data in complex areas exhibit weak and distorted 
pre-stack reflections with low coherency. Furthermore, both 
phase and amplitude exhibit huge variability. To model and 
explain these effects, a multiplicative random noise model 
based on the speckle mechanism of small-scale scattering 
has been proposed (Bakulin et al., 2022). 
 
While the multiplicative model employed by surface-
consistent deconvolution (Taner and Koehler, 1981; Cary 
and Lorentz, 1993) has proven useful in correcting for some 
phase variations in seismic data, it fails to address strong 
random-like phase variations caused by small- and medium-
scale near-surface scattering. Measuring the local phase is a 
valuable attribute for analyzing seismic data. Non-stationary 
phase correction helps in identifying significant horizons 
and increasing their resolution in time (van der Baan and 
Fomel, 2009). However, local phase measurements are 

significantly impacted by speckle scattering noise, 
necessitating despeckling. 
 
In our research, we focus on the crucial task of isolating a 
clean signal phase, which we identify as phase pilot trace 
recovery. This process is fundamental for any despeckling 
or speckle noise reduction algorithm in processing and 
imaging. Our study delves into a simple, stack-based 
approach for retrieving the phase pilot. Although this idea 
was previously mentioned, there was a lack of detailed 
investigation into how the pilot's quality is affected by the 
stacking volume, specifically the number of traces used. We 
evaluate the phase pilot's quality by analyzing the standard 
deviation of the residual phase and how this indicator of 
quality enhances as the stack size increases. Our numerical 
experiments demonstrate a consistent reduction in phase 
spread, adhering roughly to the 1/√N rule across all 
frequencies, indicating a uniform decrease in normalized 
values, independent of frequency. This finding illuminates 
the necessary trace count to attain the desired quality for the 
phase pilot. Moreover, we highlight the profound effect of 
frequency on phase spread within multiplicative noise, 
underscoring the added complexities. Our frequency-
dependent analysis of the residual phase effectively 
characterizes multiplicative noise behavior across the 
seismic data's full frequency range, providing a basis for 
devising multiplicative noise mitigation strategies. 
 
Multiplicative noise model  
 
This model applies multiplicative noise to seismic traces 
within the Fourier domain as,   
 
																															𝑋!(𝜔) = 	𝑆(𝜔) ∗ 𝑅!(𝜔),	                      (1) 
 
where 𝑆(𝜔) is the clean signal and 𝑅!(𝜔)	denotes the 
random multiplicative noise. Equation (2) can model two 
types of multiplicative noise: random phase perturbations 
and random time shifts, with both assumed to follow a 
normal distribution akin to that observed in seismic field 
data, 
 
																																𝑅!(𝜔) = 	𝑒"($!	&	'(!) .                         (2) 

 
Here, 𝜑! represents phase perturbations varying 
independently across frequencies within a trace, leading to 
complex signal change of the ballistic arrivals in the time 
domain consistent with the field observations in complex 
regions. In contrast, residual statics introduce linear phase 
shifts proportional to a constant time delay 𝜏!  for each trace. 
We emphasize that both types of noise solely perturb the 
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phase of the signal in distinct ways while preserving the 
amplitude, which is crucial.  In this study, our focus is on 
investigating the phase characteristics of seismic signals 
affected by multiplicative noise.  
Figure 1a illustrates the ensemble of 50 clean traces 
containing three flat events each represented by a Klauder 
wavelet.  These traces are subjected to random phase 
perturbations with a standard deviation of  π/3 and random 
residual statics with a spread of 4 ms. The traces with 
multiplicative noise are illustrated in figure 1b. 

  

 
Figure 1. (a) Synthetic gather with three flat events each represented 
by Klauder wavelet. (b) Same as figure 1(a) but after perturbation 
with random multiplicative noise containing phase perturbations 
(spread of π/3) and residual statics (spread of 4 ms). 
 
Transformation of multiplicative noise while stacking 
 
For multiplicative noise, local stacking of traces with the 
same underlying signal but different noise is represented by 
the equation, 
 
                𝑆.(𝜔) = *

+
∑ {𝑆(𝜔) ∗ 𝑅!(𝜔)}+
!,*  .                    (3) 

 
Considering that 𝜏! and 𝜑!(𝜔) are independent of each 
other and both random normally distributed with standard 
deviations 𝜎$ and 𝜎(, the mathematical expectation of the 
stack can be written as (Bakulin et al., 2022), 
 

		𝐸4𝑆.(𝜔)5 = |𝑆(𝜔)|𝑒"$"(')𝑒-
#$%&$

$ 𝑒-
%'$

$  . (4) 
 

We conclude that stacking recovers the clean signal phase 
while attenuating the amplitudes due to two factors: residual 
statics and phase perturbation. Berni and Roever (1989) 

previously derived exponential loss 𝑒-
#$%&$

$ 	by analyzing 
intra-array residual statics without employing a 
multiplicative noise model and without analyzing the phase. 
We executed stacking on ensembles with multiplicative 
noise at varying scales: 10, 100, 1000. Figures 2(a), 2(b), and 
2(c) present these stacked traces alongside the clean signal 
in the time domain, where we notice a swift decrease in 
noise. This reduction, however, comes with the expected 
attenuation of higher frequencies as outlined by equation (4). 

 

 

 
Figure 2. Stacked signal compared with clean signal in the time 
domain with the number of traces varying as (a) 10, (b) 100, and (c) 
1000 in stack ensemble. 
 
Phase pilot recovery  
 
The multi-channel and redundant nature of pre-stack seismic 
data presents an opportunity to mitigate multiplicative noise. 
This process can greatly benefit from accurately recovering 
the correct signal phase, even in cases where the amplitude 
is diminished (Bakulin et al., 2023b). Khalil and Gulunay 
(2011) demonstrate the stack-based pilot is useful even if 
one wants to derive intra-array statics in single-sensor land 
data when analyzing direct arrivals. Bakulin et al (2021) 
explained that the phase derived from local stacking indeed 
provides an accurate estimation of the signal phase in the 
presence of random multiplicative noise caused by near-
surface scattering.  As a result, we present the task of 
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creating a broadband “phase pilot trace”, which is a trace 
with a phase that closely matches the signal phase, derived 
from the fewest possible traces. Then, we adopt the 
difference between the noisy and either the clean or pilot 
phase as our metric for evaluation and quantify with a simple 
standard deviation 𝜎$

."/01. Equation (3) indicates that 
stacking is the most straightforward method for acquiring a 
phase pilot, highlighting that the average residual phase 
converges towards the signal phase. However, this approach 
does not clarify how the quality or standard deviation of the 
residual phase is influenced by the trace count. Thus, we 
undertake a numerical analysis to determine these 
relationships. 
 
Focusing on our aim of phase pilot recovery, we proceed to 
assess the stacked phase. We executed stacking on 
ensembles with multiplicative noise at varying scales: 10, 
100, 1000. Figure 3 demonstrates that increasing the number 
of traces gradually improves the phase accuracy. As the 
number of traces increases, there emerges the potential for 
phase recovery of the seismic signal, attaining the unbiased 
phases through stacking. 

 

 

Figure 3. Phase spectra of stacked traces overlaid on the phase 
spectra of the clean signal. The number of traces stacked varies as 
(a) 10, (b) 100, and (c) 1000.  
 
Yet, it's important to understand that figure 3 depicts just a 
single instance of the stacked ensemble. To calculate our 
targeted metric of 𝜎$

."/01, a series of numerical experiments 

is required to produce various stacking outcomes for each 
ensemble size (N), from which we can then derive the mean 
and standard deviation. By repeatedly stacking, we mitigate 
the influence of random fluctuations and outliers. We 
conducted 10,000 iterations of the stack with the ensemble 
of traces varying from a single trace to 100 traces and 
examined how the 𝜎$

."/01 varies with the increase in the 
number of traces (Figure 4).  

 

 
Figure 4. The standard deviation of residual phases post-stack vs 
number of traces at 10 Hz and 40 Hz for the noise with (a) random 
phase perturbations only, (b) random residual static only, and (c) 
both types of multiplicative noise. 
 
To understand the two distinct types of multiplicative noise, 
comprising random phase perturbations (independent of 
frequency) and random residual statics (frequency-
dependent), we initially examined these two noises 
separately before integrating them. Figure 4a shows the 
variation in standard deviation with respect to the number of 
traces, where the consistency of the curve across varying 
frequencies supports our claim regarding the frequency 
independence of random phase perturbations. Conversely, 
for traces with random residual statics only, the standard 
deviation varies with varying frequencies (Figure 4b). 
Subsequently, figure 4c presents the combination of both 
types of noises. 
 
From figure 4, it's evident that the phase spread due to 
multiplicative noise diminishes roughly following the 1/√N 
rule. This law could be analytically derived for small-phase 
perturbations. By estimating the 𝜎$

."/01 of the raw data 
(N=1), we can apply this principle to determine the number 
of traces needed for stacking to meet the desired 𝜎$

."/01 
threshold. This method offers a straightforward approach to 
defining the necessary ensemble size for reaching the desired 
quality of the phase pilot recovery. Nonetheless, the 
influence of 𝜎$

."/01on frequency is significant and warrants 
further examination. 
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Phase pilot quality vs frequency 
 
Having demonstrated the reduction of 𝜎$

."/01 with an 
increase in the number of traces at a constant frequency, we 
now explore how 𝜎$

."/01 varies across different frequencies 
within broadband seismic data.  
With phase perturbations, we initially assume a constant 
standard deviation across all frequencies, leading to a 
uniform improvement in the quality of the pilot across the 
bandwidth (Figure 5a). On the other hand, residual statics 
exhibit a linearly increasing standard deviation 𝜎$

."/01with 
frequency (Figure 5b), resulting in a linear relationship in the 
stacked phase but with a reduced slope proportional to ~ 
1/√N. When both types of noises are present, the observed 
behavior represents a superposition of the two effects, yet 
the phase spread increases due to the impact of residual 
statics (Figure 5c). 
Let us assume we aim for 𝜎$

."/01 to be less than 0.4 rad (22 
degrees) as shown in figure 5c. This level of accuracy could 
be achieved with a stack-based phase pilot utilizing 10 traces 
but only for frequencies up to 20 Hz. Achieving a similar 
standard at 60 Hz would necessitate 100 traces. We can also 
see from figure 3 that while lower frequencies demonstrate 
phase recovery with as few as 10 traces, higher frequencies 
require a greater number of traces.  

 
Figure 5. Standard deviation of residual phases post-stack (𝜎!

"#$%& ) 
variation with frequencies for the stack of  10, 100, and 1000 
ensemble of traces with (a)- random phase perturbations only, (b)- 
random residual static only, and (c)- Both types of multiplicative 
noise. 
 
Given that the standard deviation is anticipated to increase 
with frequency (Bakulin et al., 2023b), there's a call for 
frequency-dependent processing approaches like those 
described by Retaillue et al. (2014). Exploring alternative 
machine-learning algorithms might offer a superior quality 
improvement compared to traditional stacking, particularly 
for higher standard deviations where phase enhancement 

becomes less effective than 1/√N (notably at higher 
frequencies in figure 5c). 
 
Discussion 
 
The specific threshold for phase recovery 𝜎$

."/01 varies by 
application and frequency band, necessitating dedicated 
research. Applications like beamforming and despeckling 
employ hundreds of traces as noted by Bakulin et al. (2023a), 
but perhaps do so to condition the amplitude. Cary and 
Nagarajappa (2013) highlighted that surface-consistent 
deconvolution is compromised by high phase instability, 
underscoring the need for data conditioning to achieve a 
certain level of phase stability for time processing. Different 
applications, such as pre-stack seismic inversion, might 
demand varying degrees of phase stability. Additionally, 
failing to correct for small-scale velocity variations can 
impair migration, as Xe et al. (2016) observed, suggesting 
that depth migration might need its own threshold for phase 
errors. Holt and Lubrano (2020) identified phase instability 
as a significant challenge in seismic processing and 
interpretation, particularly onshore. By defining acceptable 
phase error thresholds for each application and mitigating 
speckle noise within those bounds, we aim to facilitate the 
processing and inversion of complex data in scattering 
geological settings. 
 
Conclusions 
 
We have shown that it is possible to achieve an unbiased 
estimation of the signal phase amidst multiplicative noise 
using straightforward stacking techniques. Establishing 
phase pilot traces with accurate phases across all frequencies 
lays the groundwork for subsequent despeckling or 
denoising algorithms aimed at speckle noise. We suggest 
utilizing the standard deviation of the residual phase as a 
metric for assessing the quality of these phase pilot traces. 
This metric, measurable directly from the original data, is 
anticipated to reduce in proportion to 1/√N, provided the 
perturbations remain manageable. With an initial 
understanding of the phase spread, we can determine the 
necessary number of traces for stacking to attain the desired 
stacked phase quality. Yet, the pronounced frequency 
dependency introduces complexity in this determination for 
broadband data and might necessitate excessively large 
stacking ensembles to achieve our objectives. While 
stacking represents the most fundamental method for signal 
phase recovery, exploring alternatives, including nonlinear 
and machine learning (ML) approaches, could potentially 
offer improved phase recovery efficiency with fewer traces 
required. This underscores the importance of adopting 
frequency-specific seismic processing methods to address 
the challenges of multiplicative noise, thereby enhancing the 
precision of subsurface imaging and reservoir 
characterization efforts. 
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