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SUMMARY 
 
Developing fast and scalable solvers for frequency-domain 
wave simulation is a notoriously difficult problem in 
mathematics and computer science. One challenge is that 
classical discretization techniques such as finite difference 
methods yield indefinite discrete systems that preclude use 
of classical scalable solvers. Frequency-domain simulation 
has thus been limited to problems with ca. 1 billion degrees 
of freedom (DOFs). This work summarizes a novel scalable 
and efficient multigrid solver for high-frequency wave 
propagation problems; solution of problems with over 150 
billion DOFs is demonstrated. The proposed solver is based 
on the discontinuous Petrov–Galerkin (DPG) finite element 
method and is applicable—without modification—to a wide 
class of problems including acoustics, electromagnetics, 
elasticity, poroelasticity, and coupled multiphysics systems. 
When combined with adaptive mesh refinement, the solver 
enables accurate and efficient simulation of complex near-
surface structures and other challenging features. Scalability 
and efficiency of the solver are demonstrated via visco-
acoustic simulation on the GO_3D_OBS model (Górszczyk 
and Operto, 2021) and elastic simulation on the SEAM Arid 
model (Oristaglio, 2013). 
 
INTRODUCTION 
 
Frequency-domain (FD) simulation is useful in contexts 
with attenuation and other frequency dependent effects and 
in contexts with long offsets or high-contrast media, where 
time-domain methods require many timesteps. In the context 
of full waveform inversion (FWI), FD simulation enables 
use of frequency-continuation and mitigates frequency 
whitening. However, FD simulation requires solving a 
sparse linear system for each frequency (ω), and systems 
arising from three-dimensional wave propagation problems 
are often too large for current solvers. Development of 
increasingly fast, efficient, and scalable solvers is thus 
needed to enable FD simulation at scale. 
 
Leading direct sparse solvers can factorize linear systems 
arising from three-dimensional problems in O(ω6) 
operations and O(ω4) memory. Once a system has been 
factored, it can be applied in O(ω4) operations, direct sparse 
solvers can thus be competitive when the factorization can 
be amortized over a sufficiently large number of shots 
(Operto et al., 2023). Hierarchical semi-separable structure, 
rank-revealing factorizations, and other techniques (Wang et 
al., 2011; Kostin et al., 2017) can reduce the cost of 
factorization and application at the expense of incurring 
algebraic error. Still, this approach has so-far been limited to 
systems with O(108) DOFs.  

Iterative solvers are often more efficient for benign (definite) 
problems, enabling solution of systems with up to O(1013) 
DOFs. However, high-frequency wave operators—and often 
the discrete systems they lead to—are notoriously indefinite, 
developing adequate preconditioners for these problems is 
challenging (Earnst and Gander, 2012) and has limited 
iterative solvers for FD simulation to O(109) DOFs. 
 
The discontinuous Petrov-Galerkin (DPG) (Demkowicz and 
Gopalakrishnan, 2010) is a minimum residual finite element 
method that always produces Hermitian positive-definite 
systems. DPG systems are thus amenable to more classical 
preconditioning techniques. A DPG multigrid solver (DPG-
MG) with O(ω4) compute and O(ω3) memory complexity 
was proposed in (Petrides, 2019), but a shared memory 
implementation limited the solver to O(107) DOFs. A 
scalable and performant version of the DPG-MG solver was 
recently detailed in the author’s Ph.D. thesis (Badger, 2024) 
and shown to enable solution of problems with O(1012) 
DOFs. Here we provide a brief overview of the scalable 
DPG-MG solver and potential applications. Additional 
details can be found in the cited theses and in papers 
(Petrides and Demkowicz, 2021) and (Badger et al., 2023). 
 
APPROACH 
 
DPG overview 
Similar to hybridizable discontinuous Galerkin (HDG) 
methods, DPG introduces additional interface or trace 
variables defined on the mesh skeleton. DPG systems can 
then be written in the form of a weighted least squares 
system: 

 
where u corresponds to field trial DOFs, u" denotes interface 
trial DOFs, and s denotes the Riesz representation of the 
residual; the element-wise norm ||G-1s|| can be shown to 
provide a built-in a posteriori error indicator. The system is 
rarely solved in this form; instead, DPG utilizes 
discontinuous “broken” test functions that impart block-
diagonal structure to Gram matrix G, allowing it to be 
condensed elementwise. The remaining “bubble” DOFs can 
further be condensed elementwise, resulting in a global 
system defined only on interface DOFs. 
 
DPG multigrid solver 
The DPG-MG solver leverages a multigrid preconditioned 
conjugate gradient (PCG) iteration. Multigrid methods are 
defined by three components: smoothing, prolongation, and 
coarse-grid correction operators, these are summarized. 
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Smoothing. A damped overlapping block-Jacobi smoother 
was adopted with blocks defined by vertex patches on the 
previous-grid. 
Prolongation. A two-stage prolongation operator was 
leveraged; during the first stage Schur-complements 
condensed DOFs not supported on the previous mesh 
skeleton, the second stage then projected the result onto 
previous-grid traces. 
Coarse-grid correction. The coarse-grid correction was 
defined by via an inner PCG iteration, preconditioned by a 
single smoothing step on the coarse grid. This necessitated 
use of the flexible PCG iteration on the outer loop; β was 
thus defined via the real part of the Polak–Ribièr formula: 

 
 
hp-adaptive mesh refinement 
The DPG-MG solver supports general unstructured meshes 
composed of all element shapes and could thus be used to 
simulate non-trivial topography and other complex features. 
However, mesh generation is often cumbersome and 
difficult to automate, in the following results we thus start 
from simple hexahedral meshes and use hp-adaptive mesh 
refinement to generate a wavespeed-adapted mesh. An 
example is shown in Fig. 1, where the size (h) and order (p) 
of mesh elements is varied; h-refinements were used regions 
with high wavespeed variation to accurately resolve jumps, 
while p-refinements were used to minimize dispersion error. 
The wavespeed in Fig. 1 is visualized on the finite element 
mesh. In simulations the full-resolution model was stored 
separately, and a (p+3) order quadrature rule was used to 
form element matrices. 
 
EXAMPLES 
 
The following examples were computed on Frontera 
Cascade Lake nodes (56 CPU cores, 192 GB of RAM) at the 
Texas Advanced Computing Center (Stanzione et al., 2020). 
See (Badger, 2024) for additional details on problem setup.  
 
Visco-acoustic simulation 
The DPG-MG solver was used to simulate visco-acoustic 
wave propagation on a 100 km ´ 100 km ´ 30 km section of 
the GO_3D_OBS model at 15 Hz. Simulation was 
performed on 2048 Frontera nodes (114,688 cores) with an 
hp-adapted mesh with over 500 million hexahedral elements, 
a minimum of 8 points per wavelength, and 157 billion 
DOFs, a 5.3´ reduction compared to a uniform mesh with a 
similar minimum resolution (Badger, 2024). The adaptive 
mesh was generated in parallel in 12 s. The simulation 
originally refactored patches during the solve to reduce 
memory usage and solved a single shot (to 10-4 relative 
residual) in 492 iterations and 3,891 s. A modified version 
of the solver (storing smoother patches) simulated 16 shots 

in 613 iterations and 2,361 s, a cost of 84 node-hours per 
shot. The solution is depicted in Fig. 2 and Fig. 3. 
 
Visco-elastic simulation 
Horizontal transverse isotropic (HTI) visco-elastic 
simulation on the SEAM Arid model (7 km ´ 7 km patch) at 
25 Hz was performed on 256 Frontera nodes (14,336 cores). 
The hp-adapted mesh had 18 million elements, with a 
minimum of ca. 7 points per shear wavelength and 7 billion 
DOFs. Adaptivity was particularly advantageous in this case 
due to the complex near-surface structure of the model, 
implying a 20´ reduction in DOFs compared to a uniform 
mesh with similar minimum resolution. A batch of 32 shots 
was solved (to 10-4 relative residual) in 189 iterations and 
797 s, implying a cost of 1.8 node-hours per shot. The 
resulting wavefield and a section of the h-adapted mesh are 
depicted in Fig. 4. 
 
CONCLUSIONS 
 
The DPG-MG solver was shown to enable simulation of 
visco-acoustic and HTI visco-elastic wave propagation at 
unprecedented scales. Use of hp-adaptivity enabled fast, 
automated meshing of complex problems, which could 
prove useful in the context of FWI. hp-adaptivity further 
enabled localization of low near-surface wavespeed and 
could be used to simulate small-scale heterogeneity. Support 
for unstructured meshes (in combination with hp-adaptivity) 
is  expected  to  enable  efficient  simulation  of   non-trivial  

 

 
Figure 1: hp-adaptive meshing of a section of the GO_3D_OBS 
model; the size (h) and order (p) of mesh elements (bottom panel) 
is adapted to the wavespeed (top panel). The pictured mesh was 
adapted for simulation at 2 Hz with a minimum of 8 PPW.  
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Figure 2: Visco-acoustic simulation of a 15 Hz time-harmonic shot in the GO_3D_OBS model; (a) real part of pressure wavefield at y = 50 km, 
(b) wavespeed (Vp) on a 100 km ´ 100 km section of the model. Figure adapted from “Scalable DPG multigrid solver with applications in high-
frequency wave propagation,” by J. Badger, 2024, Ph.D. Thesis at the University of Texas at Austin. 
 

 
Figure 3: Visco-acoustic simulation of a 15 Hz time-harmonic shot in the GO_3D_OBS model; real part of pressure wavefield at z = 0 km. Figure 
adapted from “Scalable DPG multigrid solver with applications in high-frequency wave propagation,” by J. Badger, 2024, Ph.D. Thesis, The 
University of Texas at Austin. 
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topography. Together, these unique capabilities may enable 
more accurate simulation of seismic speckle (Bakulin, 2023) 
and contribute to improved subsurface characterization in 
challenging geological contexts. Finally, The DPG-MG 
solver relies entirely on dense matrix block operations; a 
GPU implementation is thus expected to unlock significant 
further efficiency.  
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Figure 4: Visco-elastic simulation of a 25 Hz time-harmonic shot on a 7 km ´ 7 km patch of the SEAM Arid model, centered at (5 km, 5 km); 
(a) real part of the z-displacement, and (b) hp-adapted mesh on a 0.5 km´ 0.5 km section of the model. Figure adapted from “Scalable DPG 
multigrid solver with applications in high-frequency wave propagation,” by J. Badger, 2024, Ph.D. Thesis, The University of Texas at Austin. 


