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Summary 

We present an approach for quality control (QC) of massive 

prestack land seismic datasets, focusing on evaluating data 

enhancement procedures critical for processing success. The 

QC scheme contains such measures as coherency, signal-to-

noise ratio, frequency content, and phase characteristics.   

We apply this to single-sensor data from the desert 

environment. We show that proposed metrics can 

quantitatively measure challenging data quality even when 

the signal remains mostly invisible. We further demonstrate 

similar analysis after data enhancement emphasizing their 

role in the data processing. The proposed QC method allows 

efficient evaluation of seismic acquisition and processing.  

 

Introduction 

Field acquisition requires robust quality control and 

assessment of the recorded data. Likewise, each step of the 

seismic processing should be assessed using similar quality 

control diagnostics of some sort. Typical quality control may 

include displays of such data attributes as amplitude spectra 

and autocorrelograms (Yilmaz, 2001). QC gives an 

understanding of how a particular processing step affects 

signal and noise behavior. In general, visualization of 

seismograms and amplitude spectrum (during acquisition or 

before and after each processing step) is necessary for 

standard QC. A row of geophysical papers presents 

workflows for data QC during acquisition and processing. 

Nateganov et al. (2018) introduce several complex quality 

criteria for analyzing data processing results. In the sense of 

data quality, the most interesting metric  is “signal quality.” 

It consists of three parameters: resolution, bandwidth index 

(BWI), and signal-to-noise ratio (SNR).  

 

Many standard data QC approaches become ineffective 

when dealing with land seismic data acquired with small 

arrays and single sensors, especially from the desert 

environment. Often, reflected waves are invisible on 

prestack gathers and may remain heavily disturbed even 

throughout the processing stages. Therefore, we need a 

robust approach and metrics that can identify signal quality 

despite these challenges. Also, such data require powerful 

enhancement approaches such as supergrouping and 

nonlinear beamforming (Bakulin et al., 2018, 2020). 

Quantitative and automated comparison of the data quality 

before and after data enhancement could greatly assist the 

processing and lessen the human bias. We propose a robust, 

practical approach to QC any prestack data, including single-

sensor data from the most challenging desert environment. 

We demonstrate application on progressively larger subsets 

from an ensemble of traces to prestack gathers to 2D or 3D 

volumes.   

 

We use semblance (Neidell and Tuner, 1971) as a coherency 

measure. The most critical metric for seismic data quality 

control is the SNR. An SNR is typically defined as the ratio 

of signal power to noise power. Several different SNR 

computation algorithms were proposed (Liu and Li, 1997; 

Belousov, 2011). Among these algorithms, the most 

practically interesting SNR computation is based on 

estimating signal by stacking coherent events after moveout 

corrections (Liu and Li, 1997). After analyzing several 

algorithms using controlled SNR experiments, we concluded 

that the semblance-based approach provides the most robust 

SNR measurement for challenging land seismic data with a 

relatively low SNR. Also, to better characterize signal 

presence and evolution during processing, we propose to use 

standard amplitude spectral metrics (Belousov, 2011) along 

with new phase metrics introduced in this study.    

 

QC measures  

Let us assume that seismic data is the superposition of signal 

and noise: 

  𝑑𝑖𝑗 = 𝑠𝑖𝑗 + 𝑛𝑖𝑗 ,   𝑖 = 1, … , 𝑁,   𝑗 = 1, … , 𝑀,       (1)  

where 𝑑𝑖𝑗 = 𝑑(𝑡𝑖 , 𝑥𝑗) is recorded seismic data, 𝑠𝑖𝑗 =

𝑠(𝑡𝑖 , 𝑥𝑗) is signal, and 𝑛𝑖𝑗 = 𝑛(𝑡𝑖 , 𝑥𝑗) is noise, N is the 

number of time samples, and M is the number of traces in 

the data.  

 

Coherency 

Coherency is the most straightforward indicator of the 

presence of signal presence. The evolution of this metric 

during processing can be very insightful. A well-known 

coherency measure is a semblance (Neidell and Tuner, 1971) 

𝑆𝑒𝑚𝑏𝑙𝑎𝑛𝑐𝑒 =  
∑ (∑ 𝑑𝑖𝑗)𝑀

𝑗=1

2𝑁
𝑖=1

𝑀 ∑ ∑ 𝑑𝑖𝑗
2𝑀

𝑗=1
𝑁
𝑖=1

.                          (2) 

It only requires raw data as an input and can be measured in 

varying space-time windows or subsets of the data. 

 

Signal-to-noise ratio (SNR) 

Definition of SNR is the ratio of signal power to noise 

power. SNR can be formulated in the logarithmic scale as 

follows: 

𝑆𝑁𝑅 =  10 𝑙𝑜𝑔10 (∑ ∑ 𝑠𝑖𝑗
2𝑀

𝑗=1
𝑁
𝑖=1 ∑ ∑ 𝑛𝑖𝑗

2 )𝑀
𝑗=1

𝑁
𝑖=1⁄ .     (3)  

Assuming that signals contained in a set of windowed 

seismic records are linearly correlated, SNR can be 

computed only using raw data as the only input (Liu and Li, 

1997):  

𝑆𝑁𝑅𝑠𝑡𝑎𝑐𝑘 = 10 𝑙𝑜𝑔10

1

𝑀
∑ (∑ 𝑑𝑖𝑗)𝑀

𝑗=1

2𝑁
𝑖=1

(∑ ∑ 𝑑𝑖𝑗
2

− 1
𝑀

∑ (∑ 𝑑𝑖𝑗)𝑀
𝑗=1

2𝑁
𝑖=1 )𝑀

𝑗=1
𝑁
𝑖=1

 .  (4) 
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Quality control of land data enhancement 
 

 

 

This formula relies on signal estimate coming from stacking 

coherent events. Taking into account the definition of the 

semblance, we arrive at SNR representation via semblance, 

as can be seen from the original paper by Neidell and Taner 

(1971): 

𝑆𝑁𝑅𝑠𝑡𝑎𝑐𝑘 =  10 𝑙𝑜𝑔10
𝑆𝑒𝑚𝑏𝑙𝑎𝑛𝑐𝑒

1−𝑆𝑒𝑚𝑏𝑙𝑎𝑛𝑐𝑒 
.                 (5) 

 

Spectral measures  

One of the most critical measures of the data is its spectral 

content. We propose to track energy partitioning between 

low 𝐸𝑙𝑜𝑤(𝑓1, 𝑓2), medium 𝐸𝑚𝑖𝑑(𝑓2, 𝑓3), and high-frequency 

𝐸ℎ𝑖𝑔ℎ(𝑓3, 𝑓4) ranges, where frequencies 𝑓𝑖 defines the 

bounds of each range. Each energy is expressed as a 

percentage of overall amplitude energy ( 𝐸𝑙𝑜𝑤 + 𝐸𝑚𝑖𝑑 +
 𝐸ℎ𝑖𝑔ℎ = 1) occupied by a predefined frequency range.  

 

Finally, severe phase distortions observed in the data from 

the desert environment leads to a phase stability metric 

𝑆𝑇𝐷𝑝ℎ𝑎𝑠𝑒 that describes the standard deviation of phase 

angle at a fixed frequency. Here, phase angle is defined at 

frequency 𝑓 as: 

    𝑝ℎ𝑎𝑠𝑒(𝑓) = 𝑎𝑛𝑔𝑙𝑒(𝑢(𝑓)) ∙ 180
𝜋⁄ .                     (6) 

If 𝑆𝑇𝐷𝑝ℎ𝑎𝑠𝑒 = 0, then the phase is constant across the 

selected window. In contrast, for the varying phase, we 

obtain a non-zero value from 0 to 360 degrees. Since  

𝑆𝑇𝐷𝑝ℎ𝑎𝑠𝑒 is  frequency-dependent,  in  the  QC  process, we  

 

  
Figure 1: Original real data: (a) ensemble of traces after NMO; 
(b) average amplitude spectrum; (c) phase at maximum and 

central frequencies computed for every trace. Here 

𝑆𝑇𝐷𝑝ℎ𝑎𝑠𝑒(𝐹𝑐𝑒𝑛𝑡) = 1000. 

propose to select some essential frequencies, such as central 

and maximum frequencies (Belousov, 2011). 

 

QC of a single ensemble of traces  

Let us demonstrate these metrics' usefulness on an extremely 

challenging single-sensor field dataset from the desert 

environment, which already passed through a standard 

processing sequence including conventional land noise 

attenuation techniques. Initially, let us select an ensemble of 

100 traces after NMO. We further subselect a 90 ms time 

that is known to contain the reflected event.  We compare 

the results for the original seismic data (Figure 1) and the 

data after enhancement (Figure 2) with nonlinear 

beamforming or NLBF (Bakulin et al., 2020) performed in 

cross-spread domain. NLBF is a data-driven approach for 

enhancing prestack data that utilizes a form of local stacking. 

The reflected event remains mostly invisible behind the 

remained noise carpet in the original data (Figure 1a). The 

amplitude spectrum shows a suspicious peak at 70 Hz 

(Figure 1b). At central and maximum frequency, phase 

values show a vast spread within the ensemble reaching 

around ±100 degrees. After applying NLBF, the reflected 

event becomes visible although suffering from residual static 

variation (Figure 2a). Amplitude spectra become skewed 

towards lower frequencies, and higher frequencies are 

greatly reduced (Figure 2c). Phase angle variations are 

significantly diminished (Figure 2c), resulting in a smaller 

standard deviation 𝑆𝑇𝐷𝑝ℎ𝑎𝑠𝑒 . This suggests that enhanced 

records display signs of the signal as opposed to the original 

traces overwhelmed by noise. 

 
Figure 2: Real data after nonlinear beamforming: (a) ensemble 
of traces after NMO; (b) average amplitude spectrum; (c) phase 

at maximum and central frequencies computed for every trace. 

Here 𝑆𝑇𝐷𝑝ℎ𝑎𝑠𝑒(𝐹𝑐𝑒𝑛𝑡) = 300. 
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Quality control of land data enhancement 

 

 

 

 

QC of prestack gathers  

In prestack gather, all data QC attributes vary with time and 

offset. So we compute time and offset-variant 

semblance/SNR along the gather using local ensembles 

centered around output point and applying moveout 

corrections to flatten the events. Figures 3 and 4 show such 

computations for data before and after NLBF enhancement. 

The crucial parameter for reliable SNR computation is the 

number of traces. Our investigations show that 100 traces 

provide reliable SNR estimation only down to -17 dB. 

Therefore, we use larger local ensembles of around 10,000 

traces allowing reliable SNR measurement down to -40 dB. 

We call this a minimum required ensemble size for reliable 

SNR estimation. One can observe that typical SNR values 

for data before NLBF are between -20 dB and -30 dB. In 

contrast, after NLBF, SNR values are between 0 dB and -10 

dB. We conclude that the semblance-based approach 

provides the most robust SNR estimate that remains accurate 

down to -40 dB and even lower during our investigation. 

These displays show typical behavior of QC metrics versus 

offset and time, allowing to evaluate data quality for 

acquisition and processing. Despite pre-stack events being 

invisible on the data before NLBF — these metrics 

computed for properly  selected  ensembles  can be  trusted   

 

Figure 3: (a) Part of a cross-spread gather (traces for a single 

source sorted by offset) for original single-sensor land data after 

typical pre-processing; (b) semblance computed in a moving 
window fashion for prestack gather from (a); (c) prestack SNR 

derived from semblance using equation (4).    

in absolute values for the quantitative analysis of the data.     

 

  

Figure 4: Same as Figure 3 but for gather after enhancement with 

nonlinear beamforming. Observe higher visibility of prestack 
events on (a). This is further confirmed by higher values of 

semblance (b) and SNR (c), with the average improvement of 

~0.2 for semblance and ~15 dB for SNR. 

 

QC of 2D and 3D volumes 

When we go to the next scale of analyzing a 2D or 3D 

volume, it is convenient to compute one averaged  QC metric 

per single gather. While this attribute still characterizes 

prestack data, it is now an averaged quantity describing all 

offsets. It is further convenient to select a target time window 

for analysis so resulting metrics can be displayed as a map 

(for 3D) or graphs (for 2D). Such maps can be visualized for 

different target windows or as time-dependent 3D volumes 

similar to gather QC. Let us demonstrate this for a single 2D 

subline out of 3D data. In this example, the 2D line consists 

of 456 cross-spread gathers. Every gather contains from 

150,000 up to 300,000 traces. Likewise, we analyze all 

proposed QC measures for the original real data and the data 

after nonlinear beamforming. Looking at the QC metric for 

original real data (Figure 5), we see that noise is dominating. 
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Quality control of land data enhancement 
 

 

 

SNR has low values varying between -20 dB and -40 dB. 

Coherency is hovering just above zero. We stress that when 

ensemble size increases above the minimum required size,  

SNR and coherency values should not depend on the 

ensemble size provided the noise level remains similar. 

High-frequency content is prevalent due to intense high-

frequency noise. The standard deviation of the phase 

suggests an extreme level of distortions. Despite severe 

challenges, NLBF substantially increases coherency values 

and SNR (Figure 6a,b). Also, medium frequencies dominate 

the energy spectrum after NLBF (Figure 6c). The standard 

deviation of the phase is reduced, indicating that recovery of 

the signal phase has started. A bigger summation aperture 

inside NLBF leads to all QC metrics improving: coherency 

and SNR rise, medium frequencies dominate even more, 

while phase standard deviation becomes lower. Such 

behavior suggests that higher frequencies are dominated by 

the noise that should be suppressed. QC metrics inform us 

that NLBF overall is doing a relatively good job. Before 

NLBF, the metrics' distribution along the line remains highly 

variable, reflecting actual acquisition conditions with rapidly 

changing surface noises of various origins. NLBF 

effectively suppresses the strongest noise raising the overall 

SNR level and leading to less lateral variability of the 

metrics along the 2D line. This makes good sense for flat-

lying geology, where a signal is expected laterally consistent 

while the distribution of surface noise is highly irregular.  

 

 

Figure 5: Computed QC measures for the original real data: (a) 

coherency, (b) SNR, (c) standard deviation of phase at phase 

deviation at the middle frequency 30 Hz, (d) percentage of overall 
energy occupied by medium frequencies  (low: 2-10, mid:10-50 

Hz; high: 50-80 Hz).   

Conclusions 

 

We present a robust, practical scheme for QC of large 

amounts of prestack land seismic data. The scheme uses the 

following QC metrics: coherency, SNR, energy partitioning 

between low, medium, and higher frequencies content, and 

phase stability metrics (also for low, medium, and high 

frequencies).  We apply the proposed scheme to challenging 

single-sensor seismic data from the desert environment. We 

show that the number of analyzed traces is an essential 

parameter for reliable SNR estimation. We quantify prestack 

SNR after linear noise removal to be between -20 to -30 dB. 

Such a ratio is too low for either reliable conventional QC or 

further processing. We demonstrate that nonlinear 

beamforming can effectively enhance the data raising 

coherency and SNR, suppressing energetic high-frequency 

noise. This leads to the recovery of less contaminated data, 

especially at low and medium frequencies. Finally, the 

proposed QC tool quantitatively shows that NLBF enables 

efficient processing of challenging modern 3D high-

channel-count and single-sensor data. These improvements 

lead to better land seismic imaging and reservoir 

characterization.  

 

 
Figure 6: Same as Figure 6 but for data after enhancement with 
NLBF.   
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