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ABSTRACT
This study explores practical methods of estimating the signal-to-noise ratio of chal-
lenging seismic data containing a signal too small to be identified visually, as often oc-
curring in a desert environment with single-sensor surveys. As a result, the estimation
can only be performed using an ensemble of traces. We compare several data-driven
estimation approaches and reveal their practical limits using a controlled experiment.
We identify a stacking-based method as the most robust with the broadest range of
applicability. We relate the number of traces in the ensemble to the lowest reliably
estimated absolute signal-to-noise ratio possible with this method using such an en-
semble. We support the findings using synthetic and single-sensor field data with low
signal-to-noise ratios down to -60 dB. The proposed methodology allows reliable
data-driven estimation of very low absolute signal-to-noise ratios directly from pre-
stack seismic data.
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INTRODUCTION

The signal-to-noise ratio (SNR) is an essential characteristic of
seismic data. It is useful during data acquisition to measure the
quality of recordings, relate them to the acquisition parame-
ters, as well as compare different geological areas. SNR is also
helpful for evaluating a processing flow during data analysis,
tuning its variable parameters and diagnosing problematic ar-
eas that require additional improvement and refinement. This
is especially important for modern dense single-sensors ac-
quisitions recording petabytes of data with low SNR, which
quality cannot be assessed and controlled manually. Achieving
high SNR post-stack and pre-stack is a requirement for suc-
cessful seismic interpretation and inversion, respectively. SNR
is typically defined as a ratio of signal energy to noise energy.
A definition of the signal and the noise can vary depending
on the application. During the acquisition phase, a window
before first arrivals may be used as an ambient noise repre-
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sentation, whereas data after first arrivals are often consid-
ered as the signal. This allows control of the reliability of the
excitation and recording systems. However, it does not pro-
vide any information about the quality of the recorded target
reflected events. During the processing phase, the processed
data with reflections revealed from background noise can be
considered the signal, while the removed energy is the noise.
The overall objective of the processing is to increase SNR by
successively removing various noises and restoring the signals.
However, processing progress is often assessed using subjec-
tive human judgment instead of definitive data-driven metrics.
Quantitative SNR estimates can be helpful to compare differ-
ent noise attenuation and signal enhancement algorithms and
adjust their parameters. However, we demonstrate that most
approaches do not usually provide an actual absolute SNR
of the data but rather a relative metric showing improvement
in the SNR. In contrast, seismic interpretation and inversion
rely on reaching a certain absolute SNR for them to succeed.
Indeed, the actual SNR of some target reflected wave is an in-
trinsic and definitive property of the data itself. Knowing this
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true SNR value provides valuable insights into the actual data
quality. These insights can lead to the development of new
acquisition designs and directly identify its impact on the ef-
fectiveness of the current state-of-the-art data processing flow
and the development of new novel seismic processing algo-
rithms.

In the past, different algorithms for SNR computation
were proposed based on statistical properties of the data and
some common assumptions on signal and noise (Hatton et al.,
1986; Liu & Li, 1997; Belousov, 2011). The classical ap-
proach is based on a normalized cross-correlation of two
traces known as a coefficient of coherency (Foster & Guinzy,
1967; Bosworth et al., 2008). Although this coefficient can
theoretically give an exact SNR value, its direct usage based
on only a pair of traces is inaccurate. Instead,more statistically
reliable estimates utilizing an averaging over an ensemble of
traces are used in practice (Belousov, 2011).Another approach
for SNR computation is based on stacking the traces them-
selves rather than their normalized cross-correlations. A well-
known semblance formula also employs a similar summation.
Although semblance is usually used in many seismic applica-
tions as a coherency measure, it is equal to the ratio of signal
energy to total energy over a selected window, as Neidell and
Taner (1971) show. Thus, the SNR value can be easily derived
from semblance and vice versa. The third approach, often used
in seismic data processing, is based on singular value decom-
position (Key et al., 1987; Chen & Fu, 1993; Zhao et al.,
2019). In this method, the SNR estimate relies on the approx-
imation that coherent signal energy is concentrated in the first
singular value of a data matrix, whereas incoherent noise en-
ergy is uniformly distributed within all singular values.

The approaches mentioned above for SNR estimation use
the same assumptions such as constant signal and noise levels
over an ensemble of traces, zero mean of noise, and its sta-
tistical independence from trace to trace and from the signal.
For moderate and high SNR, all these methods tend to pro-
duce similar results. However, their performance and the esti-
mated levels differ significantly for more challenging data with
extremely weak pre-stack signals and low SNR. Examples of
such data are modern high-channel-count and single-sensors
datasets acquired in desert environments without large tra-
ditional source and receiver arrays where SNR can go down
to −40 dB and less (Bakulin et al., 2020; Cordery, 2020). In
addition, the estimated SNR often exhibits a dependency on
the number of traces used in the analysis even when all the
assumptions about statistical properties of noise and signal
are met and hence does not provide an actual SNR level. In
this study, we illustrate these effects in more detail. We briefly

compare different algorithms for SNR computation and show
the advantages of the stacking-based approach at low SNR.
Also, we demonstrate how the SNR estimate of the stacking
method may approach actual SNR when an appropriate num-
ber of traces is selected for the estimation ensemble. Based on
these relationships, we propose a simple, practical recipe that
can estimate the actual absolute SNR values of noisy seismic
data acquired without large source and receiver arrays in the
field.

THEORY

Let us consider a seismic data window after moveout correc-
tions and assume that it can be represented as a superposition
of signal and noise:

di j = si + ni j, i = 1, . . . ,N, j = 1, . . . ,M, (1)

where di j = d(ti, xj ) is a noisy seismic trace with time index i
and trace index j, si = s(ti) is a signal, which is common for
all traces and ni j = n(ti, xj ) is a noise that varies from trace
to trace. In this study, the signal means a flattened reflection
event. In contrast, all the remaining interfering seismic energy
and the signal distortions are treated as noise. We use com-
mon assumptions that the noise has zero mean, it is statisti-
cally independent from trace to trace and from the signal and
its energy is constant over an ensemble of traces. According
to a standard definition, the signal-to-noise ratio (SNR) in the
given window is calculated as the ratio of signal energy to
noise energy and can be estimated as follows:

SNR = M
∑N

i=1 s
2
i∑M

j=1

∑N
i=1 n

2
i j

, (2)

or in decibel scale:

SNRdB = 10log10 (SNR) . (3)

Under the assumption that the noise energy is constant
from trace to trace, Equation (2) describes the SNR for every
trace in the seismic data (1).

In practice, signal and noise are unknown, and rarely can
they be completely separated.An ensemble of traces is invoked
to perform a data-driven SNR estimation in practice to over-
come this limitation. In this study, several data-drivenmethods
for SNR calculation are considered and contrasted. A brief de-
scription is provided for each method, and their applicability
to low SNR environments is assessed.
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When we introduce a zero-lag cross-correlation of two
traces:

Rdkdl =
N∑
i=1

dikdil, (4)

an averaged normalized cross-correlation can be written as
follows (Neidell & Taner, 1971; Hatton, Worthington &
Makin, 1986):

γ = 2
(M− 1)M

M∑
k=1

M∑
l=k+1

Rdkdl√
Rdkdk

√
Rdldl

. (5)

If we assume that the noise has the same energy on all
traces, and also that its cross-correlation between different
traces and between signals is zero, SNR can be calculated as

SNRcor = γ

1 − γ
. (6)

This equation is similar to the one used by Belousov et al.
(2011). However, the SNR calculation is done after the aver-
aging of the cross-correlations rather than before. This gives
more stable results when applied to very noisy data.

Analogously, SNR based on stacking method can be esti-
mated as (Liu & Li, 1997):

SNRstack = S
1 − S

, (7)

where semblance S is defined as the normalized ratio of
stacked output and raw input signals or equivalently ex-
pressed in terms of cross-correlations as (Neidell & Taner,
1971):

S =
∑N

i=1

(∑M
j=1 di j

)2

M
∑N

i=1

∑M
j=1 d

2
i j

=
∑M

k=1

∑M
l=1 Rdkdl

M
∑M

l=1 Rdldl

. (8)

Semblance is a popular coherency measure for stacking
velocity analysis and other seismic applications. Neidell and
Taner (1971) analysed its properties for coherency analysis.
They showed that semblance is superior to the averaged nor-
malized cross-correlation coefficient (5) for this application.
They also demonstrated that the semblance coefficient is equal
to a ratio of signal energy to total energy under the assump-
tion that the noise sum over all channels at any time is zero,
thus leading to Equation (7) (see also the Appendix).

The SNR estimation method based on singular value de-
composition (Key et al., 1987; Chen & Fu, 1993) uses simi-
lar statistical assumptions for signal and noise as before and
is based on the assumption that all the signal energy is con-
centrated in the major singular value of the data matrix di j,
whereas noise is uniformly distributed and represented by all
singular values. Approximating noise energy by the difference

between data energy and signal energy as in Equations (6) and
(7), we arrive at SNR estimate for the SVD-based method (Liu
& Li, 1997):

SNRsvd = σ 2
1 − ∑M

j=2 σ 2
j / (M− 1)

M · ∑M
j = 2 σ 2

j / (M− 1)
. (9)

It is worth stressing that all three Equations (6), (7), and
(9) for estimation of the SNR value are purely data-driven.
Each method uses only noisy seismic data as an input and es-
timates the actual SNR in the considered data window.

NUMERICAL RESULTS

Controlled experiment

Let us compare three methods using controlled experiments
in which the data’s signal-to-noise ratio (SNR) is known. To
illustrate the difficulties one can face when applying the de-
scribed methods to noisy data, we start with a trivial and re-
producible example. Figure 1(a) shows a window of synthetic
data after moveout correction containing pure signal accord-
ing to Equation (1). An example of white Gaussian noise is
shown in Fig. 1(b). Figures 1(c) and (d) show examples of
data after the noise has been added to the signal with SNR
values of 10 dB and 0 dB, respectively. We generate a number
of datasets with different SNR values varying from −60 dB
to 20 dB and apply Equations (6), (7), and (9) for data-driven
SNR estimation (Fig. 2). When the signal level in the data is
high, all the methods provide reliable estimations of the actual
SNR values. However, the results deviate from the true values
when the signal falls below the noise floor. For example, when
100 traces are used in the analysis (Fig. 2a), the lowest reliably
estimated SNR values vary from −12 dB to −18 dB, depend-
ing on the method. This can be improved by using more traces,
as shown in Fig. 2(b), where their total number is increased to
5000. In this case, we were able to estimate even lower SNR
values than before reliably. However, a limit of applicability
of all methods still exists. With 5000 traces in use, the lowest
correctly estimated SNR is −38 dB. This shows that even in an
ideal situation when all assumptions considered in the meth-
ods are fulfilled, some limitations of the above methods do
not allow the estimation of the actual absolute SNR in cases
of very noisy data. In all cases, the stacking-based method (7)
provides the best results, which allows for getting true SNR
values for more noisy data.

Real noise in pre-stack data is different from the white
Gaussian noise used in the first example. To test the SNR
estimation methods in more realistic settings, we use as
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Figure 1 (a) Ideal coherent synthetic signal. (b) Random noise with Gaussian distribution. Noisy data is simulated as a superposition of synthetic
signal and random noise with actual SNR of (c) 10 dB and (d) 0 dB.

Figure 2 Estimated versus true signal-to-noise ratios for simulated synthetic data shown in Fig. 1(a) with a controlled level of synthetic random
noise: (a) data consist of 100 traces; (b) data consist of 5000 traces. Each estimation method is shown with a different line: solid – ground-truth
value computed with the exact formula (2); stars – correlation-based formula (6); circles – semblance-based formula (7); dots – SVD-based
formula (9).

the noise a late-time portion of seismic data (starting from
5 seconds) taken from field single-sensor seismic records ac-
quired in an arid environment (Pecholcs et al., 2012; Cordery,
2020) after one of the intermediate processing stages (Fig. 3a).
Figure 4 shows the estimated versus true SNR results when
such noise was added to the synthetic signal from Fig. 1(a)
with different energy levels. As before, we observe that each
method has its own limits of applicability, which improves
when more traces are used in the analysis. The singular
value decomposition-basedmethod showed the worst result in

this case and correctly identified the SNR values only above
−5 dB. The other two methods show more reliable results.
However, the stacking-based Equation (7) still gives a more
accurate and more stable estimation for wider ranges of low-
level SNR values.

Let us define the lowest reliably estimated SNR as a
value where the difference between an estimated and a true
SNR value starts to exceed 3 dB, which can be considered a
practical tolerance for noisy data. It can be shown that un-
der certain assumptions about statistical properties of signal
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Figure 3 Windows extracted from real data and used for controlled SNR experiments: (a) noise-dominated data window extracted from a late-
time portion (starting from 5 seconds); (b) signal-dominated data window (400–1000 m offsets) after NMO corrections containing a relatively
strong reflection event.

Figure 4 Estimated versus true signal-to-noise ratios for simulated synthetic data shown in Fig. 1(a) with a controlled level of realistic random
noise from Fig. 3(a): (a) data consist of 100 traces; (b) data consist of 5000 traces. Each estimation method is shown with a different line: solid –
ground-truth value computed with the exact formula (2); stars – correlation-based formula (65); circles – stacking-based method with formula
(7); dots – SVD-based formula (9).

and noise, this lowest reliably estimated SNR value decreases
when the number of data traces used for analysis increases.
For the stacking-based method, the minimum required num-
ber of traces to reliably estimate the given SNRLRE is equal to
(see the Appendix):

MLRE =
[
1 + 1

SNRLRE

]
=

[
1 + 10− SNRdBLRE

10

]
, (10)

where [·] means rounding toward positive infinity. However,
for low SNR values below about −10 dB, the first term can
often be neglected in practice leading to further simplification
similar to a common square-root law:

MLRE ≈ 1
SNRLRE

= 10− SNRdBLRE
10 . (11)

For example, for accurate computation of SNR values
around−30 dB, one needs to have at least∼1000 traces.How-
ever, for reliable computation of SNR values down to −40
dB, at least ∼10,000 traces are required. One simple physi-
cal interpretation of Equations (10) and (11) can be given if
we recall that increase in SNR due to stacking of M traces
is described by a factor of M.Therefore, Equations (10) and
(11) suggest that ensemble size should be selected so that SNR
reaches ∼0 dB after stacking to achieve reliable estimation.
Figure 1(c) provides a graphical illustration of the 0 dB case,
suggesting that if stacking reveals a visually identifiable sig-
nal comparable to noise, then SNR can be robustly estimated
(with the error of ∼3dB). However, below this limit, signal
estimate with stacking remains too inaccurate. As a result,
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Figure 5 Lowest reliable theoretical SNR values (numerically estimated and predicted) obtained using the stacking-based method are shown as
a function of the number of traces used in the estimation ensemble: (a) random noise; (b) real data noise.

Figure 6 (a) Estimated SNR values for a field land single-sensor data from Fig. 3(b); (b) estimated SNR values for noise window shown in
Fig. 3(a). On (a), SNR reaches a plateau of −19 dB considered as an actual absolute SNR. The presence of such a plateau is theoretically
predicted and confirmed by a numerical example in Fig. A1. On (b), SNR estimate continues to decline without reaching any plateau (e.g. no
signal or SNRdB = −∞).

absolute SNR is overestimated by more than 3 dB, as shown
in the Appendix.

Figure 5(a) and (b) shows the relationship’s numerical
verification for the lowest reliable SNR values for random
Gaussian and realistic data noises. Both figures were ob-
tained using controlled numerical experiments similar to those
shown in Figs 2 and 4. We observe the good correspondence
between the theoretical Equation (10) and actual results for

synthetic random noise. For realistic noise, more traces are
required to achieve reliable estimation than predicted by the
theoretical curve. For example, 5000 traces are needed for real
noise to reliably estimate SNR of −30 dB instead of 1000
for random noise. Likewise, ∼100,000 traces are required to
reliably estimate SNR of −40 dB instead of 10,000 for ran-
dom Gaussian noise. This controlled numerical experiment
suggests that the theoretical relation (10) underestimates the
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Figure 7 An example of SNR computation using the stacking-based method on a 3D cross-spread gather extracted from raw field single-sensor
land dataset: (a) 2D slice (corresponding to a fixed source) from a 3D cross-spread gather after normal moveout corrections; (b) corresponding
2D slice of pre-stack SNR calculated with Equation (7); (c) vertical profiles of an average SNR computed for the whole offset range as well as
near offsets only (0–1 km). The black rectangle shows the 2D cross-section of the time-space window (1250 m × 1250 m × 0.1 s) used in SNR
computation.

Figure 8 Same as Fig. 7 but for a gather after typical pre-processing. Compared to Fig. 7, observe consistently higher SNR values with the average
uplift of ∼15 dB.

required number of traces to estimate the actual SNR value
reliably and that more traces may be required for real data.

Real-data example: single reflector

As the following example, we perform SNR estimation us-
ing the stacking method on a portion of real data with a
target reflection event. Figure 3(b) shows the time window
extracted from the same land single-sensor seismic dataset.
This data window contains a relatively strong reflected event,

which could be confirmed by examining the corresponding
stack section. Although processing, including noise attenua-
tion, has already been applied, the signal on the pre-stack
data remains very weak and hardly visible behind the noise.
Figure 6(a) shows estimated SNR values using the stacking
method for a gradually increasing number of traces extracted
from the considered window. In the beginning, when the num-
ber of traces is small, the output SNR decreases with increas-
ing the window’s size. After around 1000 traces, the estimated
SNR value reaches a plateau at around −19 dB, which can be

© 2021 European Association of Geoscientists & Engineers,Geophysical Prospecting, 70, 629–638
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Figure 9 Same as Fig. 8 but for a gather after pre-processing with an additional enhancement using non-linear beamforming. Observe higher
visibility of pre-stack events on (a). This is further substantiated by consistently higher SNR on (b) and the additional average SNR uplift of ∼10
dB due to non-linear beamforming (compare Figs 8c and 9c).

considered the actual SNR of the target reflected event. Such
asymptotic behaviour is theoretically expected for SNR es-
timate obtained with the stacking method as shown in the
Appendix and demonstrated in Fig. A1. Once we reach the
minimum required number of traces, adding more traces to
the ensemble does not change the estimate. Finally, Fig. 6(b)
shows the application of the stacking-based SNR estimation
method to the noisy data window from Fig. 3(a). As no
signal is expected in this case ( SNRdB = −∞), the SNR es-
timate decreases with the increasing number of traces, and a
plateau is not reached. These examples, along with the the-
oretical dependence provided in the Appendix, lead us to a
practical recipe for a processor on choosing the required num-
ber of traces for reliable SNR estimation in real data when the
absolute value of the signal remains unknown. Trace number
corresponding to the start of the plateau (e.g. Fig. 6a) can be
considered a required size of the ensemble needed to obtain
a reliable SNR estimate with formula (7). Otherwise, when
an insufficient number of traces is used, then SNR estimates
remain biased towards overly optimistic values.

Real-data example: full gather

The same signal-to-noise ratio (SNR) estimation technique
can be extended to a three-dimensional (3D) pre-stack gathers
instead of a single target reflector. Figure 7(a) shows a two-
dimensional slice through a 3D cross-spread gather formed
by fixing one receiver line and one source line orthogonal to
each other. With a maximum inline offset of 6250 m, a cross-
line offset of 4200 m and a sampling of 12.5 m in both direc-

tions, the total number of traces in this 3D gather is 672,000.
A conventional global moveout correction should be applied
to the data to make the reflection events flat, as assumed by
Equation (1). Additional local moveout correction based on
automatic coherency search as done in non-linear beamform-
ing (NLBF) (Bakulin et al., 2020), or other similar methods,
can help to account for any residual moveout, making the
estimation less sensitive to velocity errors. SNR computed
from a single ensemble is output to the geometric centre of
the ensemble. Figures 7–9 show the SNR estimates after three
different processing stages: raw field gathers, data after typical
pre-processing and pre-processing with added NLBF data en-
hancement. NLBF enhancement is selected as a mere example
of a processing step designed to enhance the signal and sup-
press noise via local stacking. For the acquisition geometry at
hand and selected cross-spread domain, the estimation ensem-
ble of 10,000 traces translates into a local window of 1200 m
by 1200 m, formed by 97 adjacent sources and 97 receivers in
lateral directions and 0.1 seconds in the time direction. Theo-
retically, this allows getting a reliable SNR down to−40 dB, as
indicated by Fig. 4(a). Three-dimensional space-time window
defined above is moved along the gather (in time and space) to
generate the SNR attribute at every point. When the required
minimum window is much larger than the trace sampling, this
results in a smooth behaviour of the SNR attribute. One can
observe that typical SNR values for raw data are between
−40 dB and −20 dB. The ground-roll noise cone at the near
offsets (Fig. 7a) is clearly identified as an inner triangle with
low SNR because surface waves do not coherently stack in-
side the ensembles due to their low apparent velocity. After a
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typical data processing, the SNR consistently increases across
the gathers, falling into a range of −20 dB to −5 dB. After
an additional step of data enhancement with NLBF, SNR val-
ues further improve and become within a range of −5 dB to
5 dB. In this case, the average increase in pre-stack SNR value
after the typical pre-processing is approximately estimated as
15 dB. An additional data enhancement leads to an average
improvement of another 10 dB, as shown in Figs 7(c), 8(c)
and 9(c). We note that according to the theoretical curve from
the controlled experiment (Fig. 4a), all these absolute SNR
values can be trusted and used to assess data quality during
acquisition and processing.

CONCLUSIONS

This study considers practical aspects of signal-to-noise ratio
(SNR) calculation for challenging seismic data from desert en-
vironments obtained with modern high-density acquisitions
using small source/receiver arrays or single sensors. The main
goal is to identify an automatic data-driven method that al-
lows obtaining a robust absolute value of SNR for target re-
flected waves, often hidden by coherent propagating modes
of noise generated in the near-surface. We show that esti-
mates from different commonly used SNR calculation algo-
rithms such as correlation-based, stacking-based and singular
value decomposition-based approaches can significantly vary
in the presence of strong noise and deviate from the correct
values. We reveal the practical limits of each algorithm by us-
ing a controlled SNR experiment providing verifiable metrics
for the comparison. The stacking-based method, closely re-
lated to the semblance formula, shows the most stable and
reliable results for very noisy data and allows accurate SNR
estimations down to−40 dB and lower. Such a low signal level
is not unusual for single-sensor data from a desert environ-
ment. As shown by the single-sensor example, conventional
pre-processing improves the SNR by around 15 dB. Addi-
tional signal enhancement may be needed to further improve
SNR to the level required by signal-demanding applications
such as pre-stack inversion or reservoir characterization. Es-
tablishing and tracking reliable data-driven SNRmetrics from
acquisition to processing to inversion may allow quantitative
assessment long sought by practicing geophysicists.

ACKNOWLEDGEMENTS

The authors would like to acknowledge Van Do (Saudi
Aramco) for valuable and encouraging discussions related to
the topic of this study.

DATA AVAILABIL ITY STATEMENT

Research data are not shared.

ORCID

Andrey Bakulin https://orcid.org/0000-0002-6638-7821
Ilya Silvestrov https://orcid.org/0000-0002-2394-3576
Maxim Protasov https://orcid.org/0000-0003-0449-1639

REFERENCES

Bakulin, A., Silvestrov, I., Dmitriev, M., Neklyudov, D., Protasov, M.,
Gadylshin, K. and Dolgov, V. (2020) Nonlinear beamforming for
enhancement of 3D prestack land seismic data. Geophysics, 85(3),
V283–V296.

Belousov, A. (2011) Standard evaluation of the quality of field seismic
material. Devices and Systems of Exploration Geophysics, 03(37),
31–36. (In Russian).

Bosworth, B.T., Bernecky, W.R., Nickila, J.D., Adal, B. and Carter,
G.C. (2008) Estimating signal-to-noise ratio (SNR). IEEE Journal
of Oceanic Engineering, 33(4), 414–418.

Chen, Z.D. and Fu, D.D. (1993) Estimating signal noise ratio of
multitrace seismic data by singular value decomposition. Jianghan
Petroleum Institute. (In Chinese).

Cordery, S. (2020) An effective data processing workflow for broad-
band single-sensor single-source land seismic data. The Leading
Edge, 39, 401–410.

Foster,M.R. and Guinzy, N.J. (1967) The coefficient of coherence: its
estimation and use in geophysical data processing.Geophysics, 32,
602–616.

Hatton, L., Worthington, M.H. and Makin, J. (1986) Seismic data
processing: theory and practice. Hoboken, NJ: Blackwell Scientific
Publications.

Key, S.C., Kirlin, R.L. and Smithson, S.B. (1987) Seismic ve-
locity analysis using maximum-likelihood weighted eigen-
value ratios. SEG Technical Program Expanded Abstracts,
pp. 461–464.

Liu, Y. and Li, C. (1997) Some methods for estimating the signal/noise
ratio of seismic data.Oil Geophysical Prospecting, 32, 257–262. (In
Chinese with English abstract.).

Neidell, N. and Taner, M. (1971) Semblance and other co-
herency measures for multichannel data. Geophysics, 36,
482–497.

Pecholcs, P., Al-Saad, R., Al-Sannaa, M., Quigley, J., Bagaini, C.,
Zarkhidze, A., et al. (2012) A broadband full azimuth land
seismic case study from Saudi Arabia using a 100,000 channel
recording system at 6 terabytes per day: acquisition and process-
ing lessons learned. SEG Technical Program Expanded Abstracts,
pp. 1–5.

Zhao, Y., Mao, N.B. and Chen, X. (2019) Calculation method of the
signal-to-noise ratio attribute of seismic data based on structural
orientation. Applied Geophysics, 16, 455–462.

© 2021 European Association of Geoscientists & Engineers,Geophysical Prospecting, 70, 629–638



638 A. Bakulin, I. Silvestrov and M. Protasov

APPENDIX

This Appendix derives a theoretical relation between the ac-
curacy of signal-to-noise ratio (SNR) calculation according to
stacking method (7) and the number of traces used for estima-
tion. Equation (8) can be rewritten as

S =
∑N

i=1

[
s2i + 2sini + (ni)2

]
∑N

i=1

[
s2i + 2sini + 1

M

∑M
j=1

(
ni j

)2] = Rss + 2Rsn̄ + Rn̄n̄

Rss + 2Rsn̄ + Rnn
, (A1)

where ni = 1
M

∑M
j=1 ni j is an averaged noise over an ensemble

of traces,Rxy is a zero-lag cross-correlation of pair of traces ac-
cording to Equation (4). In the second part of Equation (A1),
we assume that noise zero-lag auto-correlations Rnn are equal
for all traces. Assuming that signal and noise are uncorrelated
and taking into account that zero-lag auto-correlation is equal
to energy, we can rewrite (A1) as

S = es + en̄
es + en

= es + 1
Men

es + en
, (A2)

where es and en are signal and noise energy corresponding to a
single trace. In the second part of Equation (4),we assume that
an ensemble averaging of M traces reduces the noise energy
as 1

M , which is true for uncorrelated noise with zero mean.
As a result, we arrive at the equation describing an estimate
obtained with the stacking method (SNRstack) as

SNRstack = S
1 − S

= es + 1
Men

en − 1
Men

. (A3)

Assuming 1
M → 0 and retaining only linear terms with

respect to 1
M , we arrive at a simpler approximation:

SNRstack ≈ SNR + 1
M

es + en
en

. (A4)

We can conclude that the estimated SNR value using
the stacking method always exceeds the actual SNR and ap-
proaches it as 1

M when the number of traces involved in the
calculation increases. The accuracy of the estimation can be
written as

SNRstack − SNR
SNR

= 1
M

es + en
es

. (A5)

To achieve a given estimation accuracy ε for a given SNR,
the minimum required number of traces should be

Figure A1 Comparison of numerical and theoretical dependence of
SNR estimate using stacking method on the number of traces for
the controlled synthetic experiment. Observe good agreement with all
curves asymptotically reaching a plateau of true SNR value (−30 dB).
As predicted, the accuracy of ε = 1 (∼3 dB error) is reached at 1000
traces, whereas the accuracy of ε = 0.1 requires 10,000 traces as
marked by grey dots. SNRtheoretical and SNRtheoretical approx. are com-
puted using Equations (A.3) and (A.4), respectively.

MLRE = 1
ε

es + en
es

= 1
ε

(
1 + 1

SNR

)
. (A6)

A minimum number of traces increases with decreasing
SNR. If we set ε = 1,we arrive at the following ratio between
the estimated and actual SNR:

SNRstack

SNR
= 2, (A7)

or in decibel scale:

SNRdB
stack − SNRdB ≈ 3, (A8)

which can be considered as a reasonable tolerance for practi-
cal applications with noisy seismic data. Figure A1 validates
the derived equations via comparison with a controlled nu-
merical experiment using Gaussian random noise of −30 dB.
Theoretical estimates (A3) and (A4), and the actual estimate
obtained using Equations (7) and (8) asymptotically approach
plateau of correct values. We confirm that 1000 and 10,000
traces provide estimates of accuracy ε = 1 and ε = 0.1,
respectively.
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