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Summary 
Land seismic data are challenging for reliable seismic 
imaging. Even after extensive processing, desired reflections 
may remain weak. We present a new approach combining 
the seismic time-frequency masking with the minimum 
statistic approach to extract weak reflections from noisy 
data. Initial signal estimation is provided by nonlinear 
beamforming. We employ trace-by-trace phase and 
amplitude time-frequency masking to original data to refine 
signal estimation, correct distorted phase, and achieve noise 
suppression. Phase masks are responsible for the coherency 
of desired events. Amplitude masks aim to suppress 
amplitude noise. To construct amplitude masks, we adopt the 
Minimum Statistics approach from speech processing. New 
methods allow preserving the full frequency content of 
reflected signals and extracting reliable amplitude behavior. 
 
Introduction 
Data from modern land seismic acquisition using single 
sensors or small arrays requires significant prestack data 
enhancement. Local multidimensional stacking can 
effectively identify and enhance weak signals on prestack 
seismic data (Buzlukov and Landa, 2013; Curia et al. 2017, 
Bakulin et al., 2018). All these methods may be considered 
as versions of a time-delay-and-sum beamforming process. 
In this study, we use nonlinear beamforming or NLBF 
(Bakulin et al., 2018). NLBF was proven very effective for 
enhancing challenging land seismic data. While massive 
beamforming in seismic is efficient at finding events in the 
noisy original data, output (or beamformed) data suffer from 
undesired side effects: 1) Original amplitudes are heavily 
averaged; 2) higher frequencies are suppressed because of 
non-optimal stacking. Bakulin et al. (2020a, 2020b) 
demonstrated that beamformed seismic data might provide a 
reliable estimation of phase spectra of desired reflected 
signals. The phase substitution approach effectively 
combined time-frequency (TF) phase spectra from 
beamformed data with TF amplitude spectra of original data. 
In the presence of strong noise, such an approach fully 
preserves all frequencies, but amplitude noise remains 
uncorrected. This study addresses the amplitude noise 
problem. We suggest effective TF Wiener-type filters using 
the new version of the seismic time-frequency masking 
procedure. This version proposes adopting the Minimum 
Statistics (MS) approach well known in speech processing. 
The critical assumption is that beamformed data provides us 
an initial signal model that is further refined to get more 
reliable signal estimation without the undesired 
shortcomings mentioned above.  

Seismic Time-Frequency Masking (STFM) 
A wide variety of acoustic signals, such as speech or seismic 
data, are nonstationary. For this reason, many signal 
processing approaches were designed in the time-frequency 
domain. Transformation to the TF domain is achieved by the 
short-time Fourier transform (STFT). A typical assumption 
is that a registered single-channel time-dependent signal 
𝑥(𝑡) may be represented as a superposition of the desired 
signal 𝑠(𝑡) and additive noise: 𝑥(𝑡) =  𝑠(𝑡) + 𝑛(𝑡). 
Processing aims to provide the best possible estimate of 𝑠(𝑡). 
Applying discrete STFT to 𝑥(𝑡), one obtains 2D complex-
valued TF spectrum 𝑋(𝑘, 𝑙) = |𝑋(𝑘, 𝑙)|exp [𝑖𝜑 (𝑘, 𝑙)], 
where |𝑋(𝑘, 𝑙)| is amplitude TF spectrum, 𝜑 (𝑘, 𝑙) is 
corresponding phase spectrum with  𝑘, 𝑙  representing the 
discrete frequency bin and time frame indices, respectively. 
Time-frequency masks (TFM) are widely used in the speech 
processing community for single-channel estimation of 
clean speech from a noisy record. TFM delivers an estimate 
of desired signal TF spectrum 𝑆(𝑘, 𝑙) as a multiplication: 

𝑆(𝑘, 𝑙) = 𝑀(𝑘, 𝑙) ∙ 𝑋(𝑘, 𝑙) ,       (1) 
where the filter 𝑀(𝑘, 𝑙) is usually a real-valued function, 0 ≤
𝑀(𝑘, 𝑙) ≤ 1 (Yilmaz et al., 2004, Wang, 2008). Typically,  
𝑀(𝑘, 𝑙) (time-frequency mask) is constructed based on the 
signal-to-noise consideration. 𝑀 is close to 1 in the TF 
spectrum region of “signal dominance” and close to 0 in a 
“noise dominance” area. This TFM is called “amplitude 
TFM”. Note that the real-valued TFM does not modify the 
phase of the input signal: the output signal inherits the phase 
of the input signal in (1). One of the most popular “soft” 
amplitude TFM is the so-called Ideal Rationale Mask (IRM)  

𝐼𝑅𝑀(𝑘, 𝑙) =
| ( , )|

| ( , )| | ( , )|
  ,         (2) 

where |𝑆 (𝑘, 𝑙)|  and  |𝑁 (𝑘, 𝑙)|  are power spectra 
estimates of desired signal and noise. One can easily observe 
that IRM may be rewritten in terms of the “instantaneous” 
signal-to-noise ratio (SNR). The IRM is the localized 
approximation of the Wiener filter. To construct IRM, signal 
and noise Power Spectrum (PS) must be estimated. In the 
speech processing community, many noise estimation 
algorithms have been established during the past decades. 
One of the most popular is the so-called Minimum Statistic 
(MS) approach proposed by Martin (1994) and modified by 
Doblinger (1995), Martin (2001), and many others. After 
estimating noise PS, the clean speech PS is approximated by 
spectral subtraction (Boll, 1979) as |𝑆 (𝑘, 𝑙)| =
|𝑋(𝑘, 𝑙)| − |𝑁 (𝑘, 𝑙)| . These PS estimates allow the 
construction of IRM using the equation (2). This is a typical 
scheme used in speech signal processing. The scheme is 
entirely “data-driven.” The only input is contaminated 
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speech records themselves. Note that phase spectra are 
usually not modified in the scheme. Seismic data have much 
more severe noise contamination than speech. Specifically, 
the original phase must be “denoised” in order to succeed. 
This requires the usage of reliable a priori information. 
Bakulin et al. (2020a, 2020b) proven that beamforming may 
provide a reliable estimation of phase spectra of reflections 
and introduced Seismic Time-Frequency Masking (STFM). 
Enhanced (beamformed) data is used as a “phase guide” in 
STFM. Two types of phase-dependent time-frequency 
masks were proposed: “phase substitution” mask (PSM) and 
“phase correction” mask (PCM): 

            𝑃𝑆𝑀(𝑘, 𝑙) = exp [𝑖{𝜑 (𝑘, 𝑙) − 𝜑 (𝑘, 𝑙)}],        
           𝑃С𝑀(𝑘, 𝑙) = 𝑠𝑖𝑔𝑛 [cos{𝜑 (𝑘, 𝑙) − 𝜑 (𝑘, 𝑙)}].         (3) 

Here 𝜑  and 𝜑  are TF phase spectra of original and 
enhanced traces, respectively. Applying PSM or PCM in (1) 
provides results with considerably increased coherency of 
reflections. The frequency content of the recorded signals is 
fully preserved. The main disadvantage of phase-only masks 
is that the amplitude spectrum borrowed from the original 
trace is passed untouched to the final output. Amplitude 
noise propagates into the final result and remains 
uncorrected. Suppressing noise in the amplitude spectrum of 
original data is a nontrivial task because we lack knowledge 
about the actual noise distribution in the amplitude spectra. 
We propose a specific STFM version that constructs 
amplitude IRM using MS method exploiting an initial signal 
model from beamforming. Building on earlier work 
(Bakulin et al. 2020c), we derive all necessary 
implementation details and demonstrate them on a  
challenging field example from a desert environment. 
 
Amplitude STFM and Minimum Statistics method 
The MS method is based on two observations: 1) Clean 
speech (desired signal) and noise are usually statistically 
independent. It means that the power spectrum (PS) of the 
noisy signal is a superposition of PS of clean speech and 
noise: |𝑋(𝑘, 𝑙)| = |𝑆(𝑘, 𝑙)| + |𝑁(𝑘, 𝑙)| ; 2) PS of noisy 
speech often becomes equal to the PS of noise. This happens 
during speech pauses and also between words and syllables. 
Hence the estimate of noise PS may be obtained by tracking 
the minimum of the noisy speech in each frequency bin 
separately. A similar analogy can be applied to a seismic 
trace consisting of series of target reflections separated by 
some quiet periods like in speech. Thus we can adopt 
assumption 2) used in the MS method for seismic data 
processing. We suggest the following workflow: 
1. STFT is applied to original and enhanced traces 𝑥(𝑡), 

𝑠(𝑡). 
2. Residual PS is estimated by spectral subtraction 

|𝑅(𝑘, 𝑙)| = |𝑋(𝑘, 𝑙)| − |𝑆(𝑘, 𝑙)|  . (Note that by 
definition, PS must be  ≥ 0, so negative values that may 
occur in |𝑅|  after subtraction must be removed). We 
assume that |𝑅|  consists of noise and residual signal 
components that beamforming was unable to capture. 

3. Noise PS is estimated using the MS approach applied  to 
|𝑅(𝑘, 𝑙)| , following these simple steps. For each fixed 
frequency 𝑘′ noise PS is estimated as |𝑁 (𝑘′, 𝑙)| =
𝑚𝑖𝑛|𝑅(𝑘′, 𝑙 ± 𝛥𝑡)| , where 𝛥𝑡 means a half-time 
interval in which the search for the minimum is 
performed. It is an essential input parameter. As a result, 
noise PS is approximated as a constant value in each 
interval of the width 2 𝛥𝑡. This procedure is 
independently performed for each frequency 𝑘. 

4. Re-estimate signal PS via spectral subtraction 

𝑆 (𝑘, 𝑙) = |𝑋(𝑘, 𝑙)| − |𝑁 (𝑘, 𝑙)| . 

5. For each frequency,  , smooth 𝑆 (𝑘, 𝑙)  in time 
direction by simple rank one recursion: |𝑆 (𝑘, 𝑙)| =

𝛽|𝑆 (𝑘, 𝑙 − 1)| + (1 − 𝛽) 𝑆 (𝑘, 𝑙) , with 𝛽 =
0.7 − 0.95. 

6. Calculate IRM (2) using estimated |𝑆 (𝑘, 𝑙)|  and 
|𝑁 (𝑘, 𝑙)| . Apply IRM separately or together with the 
phase masks (3) to the original trace TF spectrum using 
equation (1). 

7. Apply inverse STFT to obtain the output filtered trace,  
�̂�(𝑡) = 𝐼𝑆𝑇𝐹𝑇[𝑆(𝑘, 𝑙)]. 

The critical point in the workflow is that the MS method 
operates with the residual power spectra |𝑅|  not the spectra 
of the original input data |𝑋(𝑘, 𝑙)| . It allows us to insert the 
full amount of initial signal PS (derived from NLBF) into the 
final signal estimation. The time interval length used for MS 
tracking in Item 3 is an important parameter. Figure 1 
presents the residual PS of a real trace for one particular 
frequency, 20 Hz (shown in blue). To show the impact of 
time interval on IRM calculation, we plot two estimations of 
noise PS with different time intervals for the minimum 
tracking, 40 ms (red), and 120 ms (black). If a shorter time 
interval is used, estimated noise PS would be closer to 
residual |𝑅| , implying a larger portion of it is assigned to 
noise. As a result, IRM with a shorter interval provides a 
result close to the initial guess of beamformed data. If a 
larger time interval is used for minimum tracking, the output 
result of IRM filtering would be closer to the original data. 
In other words, IRM will pass most of the residual PS 
components to the output. 

 
Figure 1: Residual power spectrum of a real trace at frequency 
20Hz (blue) and noise PS estimation with two different time 
intervals used for minimum tracking: 40ms (red), 120 ms (black). 
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Real data example from a desert environment 
An example of common-midpoint (CMP) multi-azimuth 
gather after NMO correction from a challenging 3D land 
dataset is shown in Figure 2. Although the data have already 
been passed through a standard processing flow, there are 
almost no visible reflections in the gather. Apart from low 
SNR, this gather also shows an imprint of the so-called 
“noise cone” marked by a white oval. Figure 1b shows the 
same CMP gather after data enhancement by NLBF when 
approximately 200 neighboring traces are used to produce 
each output trace (apertures are 150x150 m in CMP and 
offset directions). Reflections are easily recognizable in the 
entire offset range after enhancement. The high-frequency 
content of the signal is suppressed due to sub-optimal 
stacking, and amplitudes are considerably decreased. In 
Figure 2d one can see what happens when amplitude only 
mask (IRM) is applied (the time interval for minimum search 
is 40 ms). Reflections start to pop up more clearly; however, 
wavelet and phase distortions cannot be fixed by amplitude 
IRM. Figure 2c shows gather after phase correction (PCM). 
Events become more coherent, but noise contamination in 

the amplitudes remains. Figure 3 zooms into details of 
processed CMP gathers (time window [1.4-3.0] s) to 
demonstrate what each of the masks can achieve. Original 
data after conventional processing remains distorted in both 
amplitude and phase (Figure 3a). One can see the noise 
cone's rough location with elevated amplitudes left as an 
imprint from prior processing marked by trapezoid. 
Beamforming gives an excellent estimate of the signal 
coming from local summation, but it is oversmoothed. The 
noise cone is more or less eliminated (Figure 3b). Reflection 
amplitudes slowly change with offsets without any 
noticeable jumps at the onset of the cone. Application of 
phase correction mask (PCM) considerably improves 
coherency. Amplitude imprint propagates (as it should by 
design) since the amplitudes remain untouched. Amplitude 
only mask (IRM) can suppress the noise level. Hence, signal 
amplitudes stand up more clearly (Figure 3d). It is unable to 
fix wavelet and phase variations, so reflected events 
continuity is not improved. The combined application of 
phase and amplitude masks (IRM+PCM, Figure 3e) 
achieves the most balanced result making reflections 
coherent without oversmoothing while preserving more 

 
Figure 2:  Real data example showing prestack NMO corrected CMP gathers obtained by different approaches: (a) Original data after 
conventional processing; (b) data after nonlinear beamforming; (c) data after phase correction (no amplitude filtration); and (d) data after 
application of amplitude mask only (no phase corrections). The white oval marks the residual noise cone zone.  

 
Figure 3:  Zoom of the CMP gathers presented in Figure 2 (time window [1.4-3.0] s): (a) Data after conventional processing; (b) enhanced data 
after NLBF; (c) data after PCM (phase correction mask); (d) data after application of amplitude filtering with IRM (no phase corrections); (e) 
data after applying a combination of PCM+IRM; (f) IRM calculated for frequency 20 Hz. The noise cone region is marked by trapezoid.  
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spatial details than beamforming itself. Figure 3f reveals 
IRM values for a frequency of 20Hz. By definition, IRM 
varies within the interval [0, 1]. Precisely as expected, we 
observe small values (blue color) inside the noise cone and 
larger values closer to 1 (yellow color) outside the cone. 
Further, we examine root-mean-square (RMS) amplitudes 
behavior within short time windows extracted along target 
reflections where noise cone cut them at different offset 
intervals (these windows are shown in Figure 2 as two red 
boxes). In Figure 4 one can see clear humps on original data 
RMS amplitudes (shown in blue), identifying the location of 
the noise cone at the near offset in window 1 (Figure 4a) and 
mid offsets in window 2 (Figure 4b). After PCM, one can 
see almost identical curves (shown in green) that preserve 
the hump. Combination PCM+IRM provides RMS behavior 
(shown in black), similar to the beamforming RMS 
amplitude itself (shown in red). Both red and black curves 
show either reduction (window 1) or complete elimination 
(window 2) of the hump. Note that amplitudes provided by 
two approaches (IRM and IRM+PCM) are the same. In 
Figure 5, we present averaged amplitude spectra of the 
gathers. As one can see, beamforming harshly reduces all 
amplitudes at frequencies above 40 Hz. In contrast, while 
IRM also suppresses the noise, it retains some signal 
amplitudes above 40 Hz. Figure 6 proves that useful 
reflections are recovered at higher frequencies (40-80 Hz). 
They are consistent with events previously recovered with 
NLBF (< 40 Hz, Figure 3b). As a result of IRM processing, 

reliable RMS amplitudes behavior with preservation of 
higher frequency in the band have been obtained. 
 
Conclusions 
We present a new enhancement approach of Seismic Time-
Frequency Masking that is powerful enough to deal with 
challenging land data yet delicate enough to preserve the 
highest frequencies present in the data. We utilize massive 
beamforming with large apertures to uncover hidden 
reflectors. Such enhanced data serves as an approximate 
initial “signal model.” We exploit this model to correct 
original data using specially designed STFM. We 
demonstrate that frequency-dependent phase corrections are 
crucial to restoring the coherency of reflectors. Amplitude 
masks are designed to suppress noise. Beamformed data are 
used to design targeted amplitude masks suppressing noise 
in places of domination while not touching areas with 
prevalent signals. For amplitude STFM calculation, we 
adopt a minimum statistics approach from speech processing 
that allows simple estimation of the noise power spectrum. 
The real data example validates the effectiveness of the 
proposed approach. Corrected multi-channel gathers 
become acceptable for conventional processing by existing 
methods. STFM opens many new possibilities for multi-
channel seismic data processing, not achievable with the 
current processing tools. 
 

 
Figure 5: Normalized averaged amplitude spectra calculated within 
time window [1.4-3.0] of original and processed CMP gathers. 
(blue) original data; (red) data after NLBF; (green) phase corrected 
data; (black) data processed with IRM. 

 
Figure 4: RMS amplitudes calculated within two time windows 
extracted along target reflections: (a) time window [1.63-1.7] s.; (b) 
time window [3.16 – 3.26] s. (blue) RMS amplitudes for original data; 
(green) for data after PCM; (red) for data after NLBF; (black) for data 
after IRM (no phase correction). 

 
Figure 6:  The same fragment of CMP gathers as in Figure 3 after band-pass filtering (40-80 Hz): (a) Original data after conventional processing; 
(b) data after application of amplitude filtering by IRM (no phase corrections); (c) combination of PCM+IRM. Observe uncovered coherent 
reflections on (b) and (c) that remain invisible in (a) covered by noise.  
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