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Summary 

Land seismic data are often quite challenging for reliable 

seismic imaging. The mechanism responsible for difficulties 

in data processing may be identified as severe frequency-

dependent phase and amplitude perturbations making events 

incomprehensible in multi-channel records. We present a 

new approach combining nonlinear beamforming and time-

frequency masking to compensate for such effects in two 

steps. First, we construct a crude signal “guide” using data-

driven nonlinear beamforming. Second, we employ trace-

by-trace time-frequency masking to repair damaged phase 

and amplitude. Phase masks are of paramount importance to 

heal the wavefield and make desired events coherent and 

trackable. Amplitude masks aim to suppress noise from the 

amplitude spectra. Introduced methods avoid smearing of 

amplitude information across channels and preserve 

frequency bandwidth of desired signals. 

 

Introduction 

Modern land seismic acquired with single sensors or small 

arrays requires significant pre-stack enhancement. 

Separating signal and noise appears to be an insurmountable 

challenge when reflections become broken up and invisible 

while scattered noise dominates. Local multidimensional 

stacking can successfully identify and enhance weak signals 

on pre-stack seismic data (Buzlukov and Landa, 2013; 

Bakulin et al, 2018). While massive multidimensional 

stacking methods summing hundreds and thousands of 

traces are efficient at finding events in the noisy original 

data, they are infrequently used in mainstream seismic 

processing because of undesired side effects: 1) Original 

amplitudes at each receiver point are biased (heavily 

averaged); 2) Data is overly smoothed and important local 

traveltimes or amplitudes features characterizing near 

surface or subsurface are distorted; 3) Higher frequencies are 

suppressed during beamforming/local stacking. 

Beamforming is often used to condition the data for deriving 

time processing parameters (Bakulin and Erickson 2017), 

but distortions introduced by local stacking are typically 

considered as too severe for reliable quantitative analysis. 

Here we propose an alternative approach that uses massively 

beamformed data as a “signal guide” and “corrects” 

corrupted data but only to the extent required for 

conventional methods to work.  

 

Time-frequency masking guided by beamformed data 

The propagation of seismic signals is a non-stationary 

process. As a consequence, desired signal estimation 

procedure is designed in the time-frequency (TF) domain 

using the short-time Fourier transform (STFT). It is useful to 

relate the “healing” procedure to time-frequency masking 

(TFM) from speech processing (Yilmaz and Rickard, 2004). 

While in the speech processing, there is usually “Noisy 

speech”  and approximately estimated “clean speech,” we 

replace them with the analogs of “Noisy data” 𝑥(𝑡) and 

“Enhanced (beamformed) data” 𝑠(𝑡). The enhanced dataset 

from beamforming or local stacking represents our best 

estimate of the signal with a much higher signal-to-noise 

ratio but suffering from limitations above. We assume that 

the enhanced dataset retains identical structure and number 

of traces. 

 

As in speech processing, our goal is to extract the best 

estimate of desired signals contained in 𝑥(𝑡) using 

corresponding enhanced trace 𝑠(𝑡) as a guide. Applying 

STFT to 𝑥(𝑡) and 𝑠(𝑡), we obtain complex-valued time-

frequency (TF) spectra of the traces 𝑋(𝑘, 𝑙), 𝑆(𝑘, 𝑙) with  𝑘,
𝑙 representing the discrete frequency bin and time frame 

indices, respectively. The input signal in TF domain 𝑋(𝑘, 𝑙) 

contains superposition of actual signal and noise. TFM 

provides an estimate of desired signal TF spectrum �̂�(𝑘, 𝑙) 

as a multiplication 

                             �̂�(𝑘, 𝑙) = 𝑀(𝑘, 𝑙) ∙ 𝑋(𝑘, 𝑙) .                (1) 

In speech processing 𝑀(𝑘, 𝑙)  is typically a real-valued 

function, 0 ≤ 𝑀(𝑘, 𝑙) ≤ 1 (Wang, 2008), however, a 

complex-valued TFM has also been recently introduced 

(Williamson and Wang, 2017).  Clean speech (i.e., “signal”) 

and noise properties are required to design TFM. In contrast 

to seismic, in speech processing, a reliable estimate of the 

desired signal spectral distribution is usually available. We 

propose to utilize an enhanced dataset from local stacking as 

an analog of clean speech. Having a “guide” dataset from 

beamforming identical in the number of channels, we can 

perform single-channel TFM filtering where each “Noisy 

trace” is subject to specialized TFM derived solely based on 

corresponding “Enhanced trace” from beamforming, thus 

simplifying the processing sequence to trace-by-trace 

transformations.   

 

Phase corrections (phase-only TFM) 

Bakulin et al (2019) has demonstrated that phase plays an 

outsized role in restoring coherency of broken up reflections. 

Specifically, two phase methods were introduced. 

Phase substitution: we take TF phase of the enhanced trace 

as our best estimate of the signal phase, whereas the 
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amplitude spectrum remains untouched. TF spectrum of the 

desired signal trace is given as: 

               �̂�(𝑘, 𝑙) = |𝑋(𝑘, 𝑙)|exp [𝑖𝜑𝑆(𝑘, 𝑙)] ,                    (2) 

where |𝑋(𝑘, 𝑙)|  is  amplitude TF spectrum of original trace, 

and 𝜑𝑆 is the phase spectrum of the enhanced trace after 

beamforming.  Phase substitution method can be considered 

as a special case of complex-valued phase-only TFM with  

               𝑀(𝑘, 𝑙) = exp [𝑖{𝜑𝑆(𝑘, 𝑙) − 𝜑𝑋(𝑘, 𝑙)}] ,           (3) 

as can be easily observed by substituting (3) into (1). Here 

𝜑𝑋 and 𝜑𝑆 are phase spectra of original (“noisy”) and 

enhanced traces, respectively.  

Phase sign corrections: we correct the phase of original 

data using phase sign-correction mask (PSM)  

           �̂�(𝑘, 𝑙) = 𝑋(𝑘, 𝑙) ∙ 𝑃𝑆𝑀(𝑘, 𝑙) ,      

         𝑃𝑆𝑀(𝑘, 𝑙) = 𝑠𝑖𝑔𝑛 [cos{𝜑𝑆(𝑘, 𝑙) − 𝜑𝑋(𝑘, 𝑙)}].       (4) 

If original and enhanced data are in phase (phase difference 

is less than ± 𝜋
2⁄  ) at a specific frequency – then no 

correction is made (PSM = 1). If they are out of phase 

(difference more than ± 𝜋
2⁄  ), then phase at this frequency 

is flipped by ±𝜋 (PSM = -1).  

 

Both methods represent specialized phase-only TFMs 

maintaining original amplitude information as well as higher 

frequencies without smearing across multiple channels. In 

this study, we introduce the next step of targeted noise 

removal by additional application of amplitude TFMs also 

guided by the same beamformed data. 

 

Targeted noise suppression with amplitude TFM  

TFM are widely used for single-channel enhancement of 

noisy speech signals. Amplitude TFM applies a simple real-

valued function, which is close to 1 in a “signal dominance” 

region of the TF spectrum and close to 0 in a “noise 

dominance” area. One of the most popular “soft amplitude” 

based TFM is the so-called Ideal Rationale Mask (IRM). 

One possible realization of IRM is defined as 

         𝐼𝑅𝑀(𝑘, 𝑙) = √
|𝑆𝑒𝑠𝑡(𝑘,𝑙)|2

|𝑆𝑒𝑠𝑡(𝑘,𝑙)|2+|𝑁𝑒𝑠𝑡(𝑘,𝑙)|2
  ,                       (5) 

where |𝑆𝑒𝑠𝑡(𝑘, 𝑙)|2 and  |𝑁𝑒𝑠𝑡(𝑘, 𝑙)|2 are estimates of desired 

signal and noise power spectra, respectively. In speech 

processing noise power TF spectrum is estimated using 

established methods such as minimal statistic (MS) approach 

(Martin 2001). After that, the clean speech power spectrum 

is estimated by spectral subtraction. In seismic exploration, 

we have little a priori information about the real behavior of 

the noise power spectrum. Noise and desired signals in 

seismic data do not necessarily satisfy the assumptions of the 

MS approach or other methods widely used in speech 

processing. Also, one usually deals with broadband sources, 

i.e., with signals which have useful components within the 

entire frequency band (2-100 Hz), so models of “colored” 

uncorrelated noise might be not very useful. Instead, we can 

rely on some rough signal estimation obtained as a result of 

a data enhancement based on local stacking (beamforming) 

procedure. This information may be used to construct 

“Seismic IRM” utilizing the following scheme.  

1) Original trace 𝑥(𝑡) and a “guide” trace 𝑠(𝑡) are 

normalized by their energy 𝑄1 = ∑𝑥2(𝑡) , 𝑄2 = ∑𝑠2(𝑡), 

so we further deal with the traces 𝑥𝑛(𝑡) = 𝑥(𝑡)/𝑄1 , 

𝑠𝑛(𝑡) = 𝑠(𝑡)/𝑄2 .   

2) STFT is applied  to 𝑥𝑛(𝑡), 𝑠𝑛(𝑡). 

3) Noise power spectrum is estimated by spectral 

subtraction |𝑁𝑒𝑠𝑡(𝑘, 𝑙)|2 = |𝑋(𝑘, 𝑙)|2 −
min{|𝑋(𝑘, 𝑙)|2, |𝑆(𝑘, 𝑙)|2}  in each point k, l. 

4) Normalized “enhanced” trace power spectrum is used as 

an estimation of the “signal”, |𝑆𝑒𝑠𝑡(𝑘, 𝑙)|2 = |𝑆(𝑘, 𝑙)|2.  

5) Estimated IRM is applied together with the phase 

correction masks (3) or (4) 

              �̂�(𝑘, 𝑙) = 𝑋(𝑘, 𝑙) ∙ 𝑃𝑆𝑀(𝑘, 𝑙) ∙ 𝐼𝑅𝑀(𝑘, 𝑙) .         (6) 

6) After inverse STFT, the obtained trace is renormalized 

by the energy of the original trace, 𝑄1, i.e. �̂�(𝑡) = 𝑄1 ∗

𝐼𝑆𝑇𝐹𝑇[�̂�(𝑘, 𝑙)]. 

 
Figure 1: (a) Ensemble of original 15 traces. Reference trace has 

index 1. (b) The same ensemble contaminated by white gaussian 

noise (SNR=-2dB) 

 
Figure 2: (a) Comparison of reference trace (blue) and its noisy 

counterpart (green, SNR is -2dB); (b) Comparison of reference 

noise-free trace (blue) with a trace after stacking (red, SNR=5.1 dB) 
and the output trace after phase correction (black, SNR = 2.2 dB); 

(c) Comparison of the reference trace (blue) with a trace after 

stacking and the output trace after phase corrections + IRM (black, 

SNR=6.4dB). 
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We emphasize that the most essential and nontrivial item in 

the whole procedure is how noise and signal power spectra 

are estimated. We described here only one of the many 

possibilities.  

 

Synthetic example: noisy ensemble from elastic model 

We demonstrate the performance of phase and amplitude 

TFM’s on synthetic elastic data calculated for the 3D 

SEG/EAGE Overthrust model using land acquisition 

geometry. Figure 1 shows an ensemble of 15 traces formed 

in the receiver domain before and after adding moderate 

white Gaussian noise (WGN) with SNR ~ -2dB. Our 

objective is to compare and contrast three different methods 

of estimating the original (noise-free) reference trace (first 

in the ensemble) from the noisy ensemble:  conventional 

local stacking (with intra-array statics), phase correction 

method, and combined phase and amplitude TFM. We refer 

to the stacked trace as a “pilot” trace, and this “pilot” will be 

used for TFM constructions. Figures 2 and 3 demonstrate 

that the pilot trace is deviating from the original trace due to 

time shifts and uncompensated phase variations of 

waveforms in the original ensemble. The pilot trace has 

SNR~5.1 dB in comparison with the reference noise-free 

trace. Here we treat the direct difference of output traces and 

known reference trace as “noise” in SNR calculation. 

Corrected trace after phase corrections is shown in Figure 2b 

(SNR~2.2dB). It has better restoration of amplitudes of weak 

reflections (marked by arrows), but the random amplitude 

noise remains unsuppressed. The trace produced by a 

combination of phase corrections with amplitude TFM has 

visible reduction in noise level (SNR = 6.4dB), more 

accurate peak signal amplitudes, whereas coherent arrivals 

remain properly positioned. Figure 3 confirms that 

conventional stacking reduced amplitude spectra too much 

(hitting both noise and signal), whereas the combination of 

phase and amplitude TFM provides a most accurate estimate 

of noise-free spectra, efficiently harvesting information from 

the entire ensemble. 

 

Single-sensor data example from a desert environment 

An example of common-midpoint (CMP) gather from a 

challenging 2D land single sensor dataset acquired in a 

desert environment is shown in Figure 4a. Original data was 

partially stacked within offset bins 100 m. This dataset has 

already been passed through a standard processing flow of 

noise suppression and is ready for imaging. Nevertheless, 

data remains noisy with target reflections being barely 

visible, especially at the near offsets and later times. Figure 

4b shows the same CMP gather after enhancement using 

nonlinear beamforming or NLBF (Bakulin et al., 2018) with 

summation apertures of 100 m x 100 m. Approximately 150 

neighboring traces are used in the local summation to 

enhance each original trace. After the enhancement, the 

reflections are easily recognizable in the whole offset range. 

However, the high-frequency content of the signals is 

suppressed due to suboptimal stacking (averaged amplitude 

spectra of the gathers are overlaid on the figures). Using 

beamformed data as a “guide” and applying phase 

substitution method (Figure 4c), reflections remain visible in 

the entire offset range without oversmoothing and with 

higher frequencies and amplitudes preserved. Application of 

amplitude TFM reveals better low frequencies (10 Hz) and 

also suppresses higher-frequency noise (60-100 Hz), leading 

to a more natural roll-off (Figure 4d). Computed amplitude 

spectra validate that introduced corrections led to the 

preservation of higher frequencies in the data. A comparison 

of stacks reveals that while the NLBF image (Figure 5b) has 

better event correlation at the middle frequencies, both TFM 

images possess finer spatial and temporal details (Figure 

5c,d). Besides, amplitude TFM shows a visible reduction of 

non-geologic high-frequency noise (Figure 5d). The fact that 

higher frequencies are surviving after stacking suggests that 

we gained additional signals on prestack records that 

coherently added up during the imaging step. We conclude 

that the combination of phase and amplitude TFM provides 

clear uplift in pre-stack and post-stack images obtained with 

challenging single-sensor data. 

 

Conclusions 

We present a new approach that can perform delicate seismic 

data enhancement. We utilize massive beamforming with 

large apertures to uncover hidden reflectors. Such enhanced 

data forms a “guide” multi-channel dataset with the same 

number of traces serving as an approximate “signal model”. 

We exploit this “guide” to correct original data using 

specially designed time-frequency masking analogous to 

speech processing. We demonstrate that frequency-

dependent phase corrections are crucial to restoring the 

coherency of broken up reflectors. Amplitude TFM masks 

are designed to attack noise. As before, “guide” dataset 

traces are used to design targeted amplitude masks surgically 

knocking noise in places of domination while not touching 

areas with signals. Examples from synthetic and real seismic 

data validate the effectiveness of new methods. Corrected 

 
Figure 3: Comparison of amplitude spectra of input and output 

traces: reference trace (blue); reference trace with noise (green); 

pilot trace (red); trace after phase corrections + IRM (black). 
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multi-channel gathers become acceptable for conventional 

processing by existing methods. Described TFM masking 

with the “guide” can also be considered an alternative to 

existing signal processing techniques that are often rather 

brute-force and limited in guidance and precision. Time-

frequency masking guided by beamformed data opens a new 

avenue for multi-channel signal processing. We presented 

some initial designs for phase and amplitude masks, whereas  

the new methods pave the way for new possibilities in data 

enhancement and targeted noise removal. 

 

 

 

 

Figure 4:  Real data example showing prestack CMP gathers obtained with different approaches: (a) original data after conventional 

processing; (b) data after nonlinear beamforming; (c) data after phase substitution; (d) data after phase correction. While nonlinear 

beamforming (b) greatly improves coherence and continuity, observe loss of higher frequencies and oversmoothed character. In contrast, 
new methods (c) and (d) deliver significant improvement avoiding oversmoothing, preserving higher frequencies. 

 

Figure 5:  Real data example showing stack sections (bottom)corresponding to the gather presented in Figure X: (a) stack obtained with 

original data; (b) stack obtained with the data after nonlinear beamforming; (c) stack of the data after phase substitution; (d) data after phase 

correction + IRM. Corresponding averaged amplitude spectra are shown below stacks. 
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