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ing this in practice with huge amounts of low SNR data proves 
to be very challenging. Conventional time processing tools such 
as surface-consistent scaling, deconvolution, static corrections, 
require reliable prestack signal in the data. Their application to 
modern seismic datasets acquired with small arrays often leads 
to unreliable results because the derived operators are based on 
noise and not on the expected signal. To extract the maximum 
value from dense high-channel acquisition, we need to enhance 
signal in the prestack data. Fortunately, densely sampled data 
gives us more flexibility than grouping geophones directly in the 
field.

Promising enhancements of very challenging data were 
obtained recently by supergrouping (Bakulin et al., 2018), that 
involves local summation of nearby traces. Application of normal 
moveout (NMO) corrections prior to supergrouping allows 
handling of larger spatial separation between traces and preserves 
higher frequencies in the data. An example of supergrouping 
on 2D single-sensor data after heavy processing and noise 
attenuation is shown in Figure 4b. The data shows some evidence 
of coherent reflected events and can be used in later processing. 
Supergrouping relies on a priori information in the form of 
global NMO corrections, and in this sense is not data-driven. 
In the presence of a complex near surface or overburden, the 
assumption of global hyperbolic NMO may break down and a 
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Introduction
Modern land seismic data acquisition is moving from sparse grids 
of large source/receiver arrays to denser grids of smaller arrays or 
point-source, point-receiver systems. Large arrays were designed 
to attenuate ground-roll and backscattered noise and to increase 
overall signal-to-noise ratio (SNR). An example of a typical raw 
common-shot gather acquired using a legacy acquisition design 
with 72 geophones in a group and five vibrators per sweep is 
shown in Figure 1b. We can clearly see that the ground-roll 
noise with low apparent velocity was partially attenuated by 
field arrays, and reflection events with high apparent velocity are 
strong and can be reliably identified. Decreasing the size of field 
arrays during acquisition in arid environments leads to dramatic 
decrease in data SNR. An example of raw common-shot gather 
from a 2D line acquired using a single-sensor survey is shown 
in Figure 1a. In contrast to legacy data, the single-sensor data 
is dominated by noise caused by severe multiple scattering in 
complex near-surface layers and shows no apparent evidence of 
reflection signal. The sources and receivers were spaced at 10 m 
intervals in this recent 2D single-sensor survey. This sampling 
involves much denser acquisition compared to the conventional 
data using intervals of 30 m or more. Theoretically, high-density 
seismic acquisition better samples the entire wavefield (signal 
and noise) and is expected to result in improved imaging. Achiev-
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Figure 1 Comparison of two raw shot gathers 
including (a) from modern single-sensor acquisition 
and (b) from legacy acquisition with 72 geophones in 
a recording group. For single-sensor data the sweep is 
from 2 Hz to 118 Hz, and for legacy data it is from 4 Hz 
to 84 Hz. Average amplitude spectrums of the gathers 
are shown in red. Arrows show reflected events that 
are observable in the legacy data, while no reflections 
can be seen in single-sensor data despite significantly 
increased spatial sampling. Though the gathers are 
from different areas, they illustrate a typical difference 
in data quality between two types of acquisition.
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coherent events in the data and then partial summing along the 
estimated trajectories. Unlike CRS or MF techniques, they used 
localized second-order approximation of travel-time surfaces 
without assigning specific meaning to model-based parameters. 
Such multi-dimensional data stacking can be considered as 
a delay-and-sum beamforming method. Unlike conventional 
beamforming (slant stack), the time delay in this approach is a 
nonlinear function of distance. In the current work we introduce 
such nonlinear beamforming in the CMP-offset domain for 
enhancing challenging prestack land seismic data with low 
signal-to-noise ratio caused by strong near-surface scattering. 
Nonlinear beamforming is a flexible tool and can be used to 
enhance different types of events including primary reflections, 
refractions, head waves, converted waves and diffractions.

Method
Each trace in a seismic volume can be defined by midpoint and 
offset co-ordinates. For trace enhancement, nonlinear beam-
forming comprises a local summation of nearby traces after 
application of time shifts. Formally it can be written as local 
summation over a traveltime surface of the form:

u(x0,h0, t0) = ∑(x,h)∈B0 w(x, h)u(x, h, t0 + ∆t(x,h)), (1)

where u(x,h,t) represents a trace with midpoint and offset 
co-ordinates, x and h, respectively. The co-ordinates of the 
output trace after the beamforming procedure are given by x0, h0. 
The summation is done over a local region B0 around the output 
trace in CMP-offset plane along a traveltime surface with some 
moveout ∆t(x,h). The main assumption is that the wavefront can 
be locally approximated by a second-order surface as follows:

∆t(x,h) = t(x,h) - t0(x0,h0) = A∆x+B∆h+C∆x∆h+D∆x2+E∆h2,

where ∆x, ∆h represent distances along midpoint and offset axis 
with respect to the output trace (Figure 2) and A,B,C,D,E are 
unknown local kinematic parameters (first and second order 
traveltime derivatives) that should be estimated.

The beamforming weights w(x,h) can be chosen in a number 
of ways to enhance signal energy and to suppress noise. Various 
sophisticated approaches can be adopted in this scheme to 
preserve intra-array static time shifts and other local peculiarities 
of the wavefield. The estimated kinematic parameters have 

more sophisticated approach is desired that can estimate actual 
moveout directly from the data.

Multi-dimensional data-driven stacking techniques, such as 
the common-reflection surface method (CRS) or multi-focusing 
(MF), have been widely used in the past to get better stack 
sections and to enhance prestack gathers (Mann et al., 1999; 
Al-Marzoug et al., 2008; Baykulov and Gajewski, 2009; Curia 
et al., 2017). These methods assume a global trajectory of the 
reflection events, which may fail in complex geological condi-
tions. Non-zero offset CRS and non-hyperbolic MF methods 
were proposed to avoid global hyperbolic approximations and 
to use local kinematic wavefield parameters (Zhang et al., 2001; 
Muller and Spinner 2010; Berkovitch et al., 2011). A similar 
approach was presented by Buzlukov et al. (2010) and Buzlukov 
and Landa (2013) who proposed enhancing prestack data in 
the common-offset domain based on searching for locally 

Figure 2 Schematics of the data enhancement 
process showing (a) input data in the common 
midpoint-offset domain where the data samples 
are stacked along the local traveltime surfaces 
and (b) data apertures for estimating the kinematic 
operators by means of automatic coherency analysis. 
If a parametric trace is within an operator aperture 
from the reference enhanced trace then the local 
traveltime surface is constructed corresponding to this 
parametric trace. All samples located on this surface 
within the summation aperture around the reference 
trace are stacked together to form the output sample. 
As a rule, several parametric traces usually fall inside 
the operator aperture, and therefore aggregate output 
consists of several combinations summed along 
multiple trajectories.

Figure 3 Synthetic data example showing a common-offset gather (a) after 
supergrouping (80-m aperture), (b) after nonlinear beamforming (80-m aperture), 
(c) after supergrouping (300-m aperture), and (d) nonlinear beamforming (300-m 
aperture). Arrows mark areas showing significant attenuation for diffractions and 
steeper events after supergrouping using a larger aperture. Nonlinear beamforming 
continues to preserve most of these events including those with conflicting dips.
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traces. Compared to the conventional approach that accumulates 
signal in the target traces from the very beginning, this gives a 
significant speed up in the summation phase.

Synthetic data example
To demonstrate the benefits of nonlinear beamforming in com-
parison to simpler approaches, such as supergrouping, we use 
a synthetic example from the Sigsbee model similar to the CRS 
example presented in Baykulov and Gajewski (2009). The main 
goal is to validate the ability of the method to preserve signal and 
therefore a noise-free synthetic dataset is used. In Figure 3a we 
show a common-offset gather after supergrouping of traces with 
a summation aperture of 80 m in both mid-point and offset direc-
tions. The result is almost identical to the original common-offset 
gather (not shown here). The nonlinear beamforming algorithm 
results in the gather shown in Figure 3b. Coherent events are 
preserved while some slight incoherent features of the wavefield 
are treated as noise and are suppressed. Local summation with a 
much larger aperture of 300 m reveals big differences between the 
two approaches. As expected, supergrouping of traces suppresses 
steeply dipping events including strong diffractions with hyper-
bolic shapes (Figure 3c). In contrast, nonlinear beamforming 
preserves most of the events despite a large summation aperture 
(Figure 3d). An operator-oriented approach with partial summa-
tion is also able to preserve most of the conflicting dips in this 
example.

Real data examples
Imaging and velocity analysis using point-source point-
receiver data
In the first real-data example, we apply nonlinear beamforming 
to the point-source, point-receiver 2D dataset shown in Fig-
ure 1a. After conventional noise attenuation, a common-shot 
gather still reveals an extreme degree of near-surface scattering, 
which completely obscures the reflections (Figure 4a). After 
applying NMO and supergrouping in the receiver domain with 
a 140-m aperture (Bakulin et al., 2018) we start to observe 
some hints of reflections (Figure 4b) albeit very weak. Note that 
simply filtering this result (Figure 4b) does not improve events 
coherency. Nonlinear beamforming with a summation aperture 

particular physical meaning in models of mild complexity. 
For example, the A and D parameters correspond to slope and 
curvature of events in common-offset sections and are related to 
structural characteristics of the model. The B and E parameters 
define slope and curvature of events in the common-midpoint 
domain and are related mostly to the model velocity. The mixed 
parameter C connects the two domains. These parameters are 
related to a common-offset CRS operator (Zhang et al., 2001) and 
to a non-hyperbolic multi-focusing operator (Berkovitch et al., 
2011) and in simplified cases can be derived through them. The 
optimal values of A,B,C,D,E are obtained by means of coherence 
analysis similar to CRS or multi-focusing techniques during the 
estimation stage.

During the estimation stage, we follow a similar approach to 
Hoecht et al. (2009) and first make a two-parameter scan for A 
and D, followed by a scan for B and E. Finally, we fix the four 
estimated coefficients and search for an optimal value of C. To 
avoid unwanted events and to improve search efficiency, we 
apply normal-moveout (NMO) correction prior to data enhance-
ment. This enables the use of stacking velocities as a guide during 
the parameter estimation process and the user defines how far the 
scanning parameters can deviate from this guide. To improve the 
results and efficiency of the search, an operator-oriented approach 
was implemented (Hoecht et al., 2009). In this approach, the 
moveout coefficients are estimated on a coarse grid in the 
CMP-offset plane using all traces falling inside an estimation 
aperture (Figure 2b).

After the estimation step, traveltime operators are constructed 
around all parametric traces. For each actual trace, the traces 
falling inside the summation aperture are summed according to 
equation (1). The summation operators are taken from the para-
metric traces falling inside the operator aperture around the actual 
trace. This approach allows us to bring signal in each sample from 
different estimated operators giving high fold and also partially 
reconstructing events with conflicting dips. The computational 
cost of such operator-oriented stacking is significantly higher  
than simple grouping of traces in supergrouping. To speed up this 
stack, a special ‘parametric trace-oriented’ summation algorithm 
was developed, in which the signal is first accumulated in the 
parametric traces and only then is moved to the target output 

Figure 4 Single-sensor data from Figure 1a after 
heavy noise attenuation using (a) conventional 
processing, (b) conventional processing and 
supergrouping, (c) conventional processing and 
supergrouping and band-pass filtering, and (d) 
conventional processing and supergrouping and 
nonlinear beamforming. Average amplitude spectrums 
of the gathers are shown in red.
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and Erickson, 2017). Figure 6 shows how velocity semblance 
panels are improved after nonlinear beamforming compared to 
using the original data and to supergrouping results. The initial 
velocity that was used as a guide in beamforming is shown as 
a black line. In this example, the velocity of events during the 
automatic coherency scan are perturbed up to 10%. Even though 
this was done locally for each point in the CMP-offset section 
lying on a 150x100 m grid, we observe a clear improvement in 
the quality of the semblance maxima now clustering around the 
guide velocity. This suggests that better velocities can be esti-
mated using enhanced data. Nonlinear beamforming employs 
massive partial stacking from neighbouring midpoint positions 
and reveals reflection events not visible in the original data. 

diameter of 300 m results in much stronger, more coherent 
reflections (Figure 4d). Figure 5 shows that a time-migrated 
image of data after nonlinear beamforming provides superior 
image quality compared to an image of supergrouped traces. We 
observe a clear improvement in reflector continuity and strength 
especially in challenging zones. The image after nonlinear 
beamforming shows some deficiency in higher frequencies. 
This is most probably owing to filtering of high-frequency 
noise and not suppression of the signal. Note that these images 
were constructed using identical velocities. It is expected 
that the improvement in SNR of the prestack gathers should 
improve the velocity analysis, surface-consistent processing, 
statics estimation and deliver even better final results (Bakulin 

Figure 5 Time-migrated images of 2D point-source, 
point-receiver data obtained with (a) supergrouping in 
the common-shot domain with 140-m aperture, and 
(b) nonlinear beamforming with a 300-m aperture. 
Average amplitude spectrums of the images are 
shown in red.

Figure 6 Semblance panels obtained during 
conventional P-wave velocity analysis using (a) 
original data, (b) data after supergrouping, and 
(c) data after nonlinear beamforming. The black 
line shows the guide velocity function used during 
beamforming. The white ellipse indicates a zone with 
suspected multiples prominent on (a) and (b) and 
greatly reduced on (c).

Figure 7 Application of nonlinear beamforming 
to legacy 2D data acquired with 72-geophone 
receiver groups and five vibrators in each source 
array. A CMP from a good-quality area is shown (a) 
before NLBF, (b) after NLBF, along with the velocity 
semblance panels, (c) before NLBF and (d) after NLBF. 
Note that additional processing was applied to the 
gathers shown in (a) and (b) before calculating the 
semblance. Observe that NLBF sharpens semblance 
panels, but generally gives the same velocity trend.
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do not reveal new information in terms of velocity as can be seen 
from comparison of NMO semblance panels obtained before and 
after NLBF (Figure 7c,d). Some events became more coherent 
but overall the semblance maxima before and after beamforming 
maintain similar positions. In contrast, application of NLBF to 
a relatively bad-quality area from the same line provides more 
focused semblance panels and improved stacking velocity picks 
as can be seen in Figure 8. Despite using large arrays in the field, 
the data in this area show little evidence of reflections, as can 
be seen from velocity panels, which show weak and scattered 
semblance peaks covering the whole time interval. In contrast, 
the corresponding gather after enhancement (Figure 8b) clearly 
reveals reflection events. The semblance panels reveal robust 
maxima located in the vicinity of the guide velocity function. 
Coherency panels after enhancement reach acceptable quality for 
reliable velocity analysis.

We also note that the beamforming also partially suppresses 
multiples as confirmed by reduced energy inside the white 
ellipse in Figure 6c.

Velocity analysis of data with large field arrays
The second example comprises a conventional land seismic 
dataset from an area with strongly variable near-surface condi-
tions. This 2D data was acquired with 30 m sampling for both 
sources and receivers, and using 72-geophone receiver arrays 
and source arrays with five vibrators. A common-midpoint gather 
after preprocessing and noise attenuation from a relatively good 
quality area is shown in Figure 7a. In this case, field arrays did 
quite a good job attenuating surface wave and backscatter noise 
and we can observe some coherent events in the prestack data. 
After nonlinear beamforming, the events became much more 
visible and continuous from top to bottom. The enhanced gathers 

Figure 8 Application of nonlinear beamforming to 
the same legacy 2D line as in Figure 7, but now 
in a challenging area. A CMP gather is shown (a) 
before NLBF, (b) after NLBF and the corresponding 
coherency panels, (c) before NLBF, and (d) after 
NLBF. Note that additional processing was applied to 
the gathers shown in (a) and (b) before calculating 
the semblance. Observe that panels after NLBF 
reveal more maxima in the vicinity of the black guide 
function and enable more reliable velocity picking.

Figure 9 An example of NLBF for converted wave 
velocity analysis of 3D 3C land data using a 
common-conversion point (CCP) gather from single-
sensor data showing the radial component of the 
wavefield (a) before NLBF, (b) after NLBF, along with 
the corresponding coherency panels used for γnmo 
picking (c) before NLBF, and (d) after NLBF. Nonlinear 
beamforming reveals much more coherent events 
on enhanced gathers and produces meaningful 
semblance maxima on coherence panels.

Figure 10 Converted-wave (PS) stacked sections 
obtained from single-sensor data using γnmo values 
picked on (a) original data, and (b) on data after NLBF 
enhancement. Note the input data to the stack is the 
same in both panels.
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Converted-wave velocity analysis using 3D  
3C point-receiver data
In the next example we apply NLBF to improve results of 
multi-component processing of single-sensor 3D 3C data. In this 
processing P- and S-wave velocity ratios (γnmo) need to be picked 
to estimate an converted-wave stacking velocity model. After 
rotating the recorded 3C data, we obtain the radial component of 
the wavefield (Figure 9) sorted as a common-conversion-point 
(CCP) gather. The data are extremely noisy and contain no visible 
coherent events suitable for reliable γnmo picking. To enhance 
the PS mode conversions, common-conversion-point moveout 
corrections are applied based on PP reflections and some initial 
fixed γnmo value. NLBF is then used to explore coherency within 
wide ranges of dips and curvatures, which enables it to find and 
enhance converted-wave events on the radial component. CCP 
gathers are then obtained with significantly improved signal-to-
noise ratio that enables reliable picking of the γnmo values. The 
stacked sections obtained using picks based on the original data 
and the new data after enhancement are compared in Figure 10. 
There is a significant improvement in event continuity across 
the entire section in Figure 10b, suggesting that converted-wave 
velocity obtained after NLBF makes better geological sense.

Conclusions
Nonlinear beamforming is applied to challenging land seismic data 
corrupted by strong scattering noise caused by a complex near 
surface. The approach estimates local nonlinear coherent events in 
the data and performs partial summation along them. This method 
does not rely on classical hyperbolic assumptions described by 
global moveout across an entire range of offsets. Instead, it utilizes 
a local second-order approximation of travel-times with kinematic 
parameters evaluated directly from the data and varying spatially 
and with time/depth. Preliminary stacking velocities can be used 
as a guide, therefore allowing the method to suppress unwanted 
events such as backscattered noise and multiples and enhanced 
reflection events. The enhanced data provides significant benefits 
for many stages of the processing flow. We presented land data 
examples from a desert environment with a complex near surface, 
focusing on velocity estimation and imaging. We expect that 
nonlinear beamforming might lead to a breakthrough in processing 
of modern high-channel count and signal-sensor data and should 
enable the extracting of the maximum usable information, especial-
ly in the presence of a complex overburden.




