
Meter-scale geologic heterogeneity in the near surface 
explains seismic speckle scattering noise

Abstract
Complex scattering in the near surface can introduce significant 

distortions in deep reflection data. To model and explain these 
effects, a multiplicative random noise model based on the speckle 
mechanism of small-scale scattering has been proposed. While 
this model effectively captures the observed phenomena in field 
data, it has been considered rather abstract as it relies on random 
mathematical clutter to replicate the distortions. This study goes 
beyond by delving into the analysis of the actual meter-scale 
geologic heterogeneity found in carbonate formations from desert 
environments. By employing elastic wave propagation simulations, 
we show that geologic heterogeneity is equally capable of generating 
the observed speckle noise in field data when compared to idealized 
mathematical clutter. Our simulations reveal that the phase per-
turbations exhibit a quasi-random nature and follow a symmetric 
near-normal distribution, thereby supporting the validity of the 
multiplicative noise model and aligning with field observations. 
Furthermore, we discover that the spread or standard deviation 
of phase perturbations increases with frequency. This finding 
provides a plausible explanation for the loss of higher frequencies 
commonly seen in our data. By considering the complex waveform 
distortions induced by near-surface heterogeneity, our new noise 
model represents a significant advancement over residual statics 
that only account for the kinematic aspect. In summary, our study 
shows that geologic heterogeneity can easily generate the speckle 
noise observed in field data. The complex waveform distortions 
can be captured using quasi-random phase perturbations, as the 
multiplicative noise model outlines. This advancement leads to a 
more comprehensive understanding of the influence of near-surface 
heterogeneity on seismic data. Consequently, this understanding 
serves as a foundation for despeckling deep reflection data and 
enhancing the resolution of seismic imaging. These findings have 
significant implications for improving the quality and accuracy 
of seismic imaging in areas where speckle noise dominates.

Introduction
Challenging seismic data can arise in specific geologic environ-

ments. A prominent example is data obtained from desert environ-
ments in the Middle East. Reflections are often overwhelmed by 
intense near-surface arrivals such as ground roll. They further 
exhibit low coherency and variable wavelets caused by strong 
heterogeneity. The complex near surface is often assumed to be 
responsible for this phenomenon (Ait-Messaoud et al., 2005; 
Bridle et al., 2006; Vesnaver, 2006; Bakulin and Silvestrov, 2021). 
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Prestack seismic data with small arrays and single sensors can be 
particularly challenging to process (Bakulin et al., 2020, 2022). 
The presence of medium- and small-scale heterogeneity has long 
been recognized as a major contributing factor to the complexity 
of land seismic data (Bakulin et al., 2016, 2022; He et al., 2017; 
Stork, 2020). However, no specific mechanisms have been identi-
fied to explain the severe reflection distortions observed in these 
complex data. Even deep reflectors that do not directly interfere 
with near-surface arrivals frequently exhibit chaotic and disrupted 
characteristics, rendering them challenging to analyze and explore 
for deeper targets. Bakulin et al. (2022) introduced a multiplicative 
random noise model for speckle scattering noise that could plau-
sibly explain the most complex distortions seen on the field data. 
This model connects distortions seen in the data with statistical 
properties of the small-scale heterogeneity and draws upon an 
existing understanding of speckle noise in various fields, including 
optics and acoustics (Goodman, 2020). The statistical nature of 
the model acknowledges the inherent challenge of capturing the 
deterministic behavior of the small-scale heterogeneity responsible 
for these distortions. Bakulin et al. (2020, 2022) utilized a math-
ematical model of random clutter as a substitute for a complex 
near-surface scattering layer and successfully reproduced key 
characteristics observed in field data. However, there was still a 
debate regarding whether actual geologic heterogeneity could 
exhibit the required random-like characteristics and possess the 
necessary geometric and elastic properties to accurately reproduce 
speckle scattering noise. Recently, advancements in characterizing 
meter-scale geologic heterogeneity in desert environments 
(Vahrencamp et al., 2019; Ramdani et al., 2022a, 2022b, 2022c) 
have addressed this gap and provided actual near-surface models 
that can serve as a foundation for further analysis.

This research establishes a crucial connection between realistic 
geologic models incorporating meter-scale heterogeneity and the 
generation of speckle noise. It achieves this through synthetic elastic 
modeling and comparison with field data, demonstrating the ability 
to produce speckle noise characterized by random, frequency-
dependent phase distortions that resemble real field observations.

Once this core relationship between geology and speckle 
noise is established, strategies for noise mitigation can be devel-
oped. Advanced techniques like seismic time-frequency masking 
(Bakulin et al., 2023) can despeckle deep reflection data. This 
study aims to provide foundational justification for such 
approaches based on geologic factors — a unique contribution 
in geophysical literature.
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This rationale holds particular significance for deep explora-
tion, as it establishes the groundwork for innovative despeckling 
tools that extend beyond just improving near-surface models. 
The research introduces a meter-scale model to validate speckle-
inducing effects in actual near-surface geology alongside math-
ematical representations of random multiplicative noise. However, 
generating such models routinely for deep exploration is unfea-
sible. Consequently, mitigating noise in deep reflection data 
hinges on statistical techniques heavily influenced by the speckle 
noise model.

Field data from geologic environments 
with scattering speckle noise

Figure 1 presents field data from four distinct and complex 
desert environment areas arranged to exhibit rising levels of 
complexity. The lower sections of the collected data correspond 
to depths of 3–6 km, which are common in deep exploration. The 

initial three data sets correspond to 
high-channel-count acquisition geom-
etry employing nine-geophone arrays 
(Dmitriev et al., 2017), as shown in 
Figures 1a–1c. The fourth data set is 
from a single-sensor acquisition 
(Cordery, 2020), which is illustrated in 
Figure 1d. All the presented data sets 
have undergone initial preprocessing 
that removed linear and spiking noise. 
In addition, the single-sensor data set 
has undergone surface-consistent pro-
cessing. Notably, we can observe dis-
tinct and characteristic speckle-type 
noise, which is believed to be a result 
of near-surface scattering (Bakulin 
et al., 2022). This noise presents itself 
as fragmented reflection events with 
varying waveforms. Seismic processing 
techniques generally operate under the 

assumption that noise is superimposed onto the underlying signal. 
Therefore, the primary goal is to remove the noise and uncover 
the original signal, presuming it is otherwise unaffected.

Bakulin et al. (2022) argue that these effects, observed in land 
seismic data, occur in intricate near-surface conditions and cannot 
be solely attributed to additive noise. Instead, they introduced the 
notion of speckle seismic noise, a distinct type of noise-resembling 
phenomena observed in optics and acoustics. Figure 2 illustrates 
how speckle noise is generated in seismic data. The wavefield 
interacts with closely spaced heterogeneities that are smaller than 
the seismic wavelength. Instead of a single arrival as expected in 
homogeneous media, this interaction gives rise to the interference 
of multiple near-ballistic arrivals in the seismic data. This interfer-
ence alters the phase and amplitude of the resulting wave packet, 
creating a distinct speckle-like appearance.

In contrast to additive noise, speckle noise is described by 
a random multiplicative model (Goodman, 2020; Bakulin et al., 
2022). To illustrate the differences, the general seismic trace 
model that includes both multiplicative and additive noise can 
be written as:

xk(t) = rk(t) ∗ s(t) + nk(t),                         (1)

where s(t) is the clean signal, rk(t) is a random multiplicative noise 
term describing signal distortion, nk(t) is additive random noise, 
∗ denotes convolution, and k is a trace or channel number. In the 
context of Figure 2, the term “clean signal” refers to the wavefield 
that would be recorded if all small-scale heterogeneities in the 
near-surface layer were removed. The multiplicative model is not 
a new concept in geophysics and has been used to describe surface-
consistent deconvolution (Cary and Lorentz, 1993). However, it 
was not previously used to describe random speckle noise in seismic 
data, as is commonly done in optics and acoustics (Goodman, 
2020). It is important to highlight several key differences between 
multiplicative and additive noise:

Figure 1. Prestack gathers from different scattering areas: (a) crossspread gather from area A; (b) common-depth-point (CDP) 
gather from area B; (c) CDP gather from area C; and (d) CDP gather from area D. Data in (a)–(c) were acquired with nine-geophone 
arrays, whereas (d) correspond to single-sensor data. All gathers are shown after the removal of linear and spiking noise.

Figure 2. Diagram depicting the source of reflection distortions caused by speckle 
scattering noise. Unlike the homogeneous scenario with a single arrival, the combination of 
multiple forward-scattering arrivals creates an intricate interference pattern, resulting in 
altered phase and amplitude rapidly changing from trace to trace.
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• Multiplicative noise is induced by the signal itself, reflecting 
its scattering nature. If there is no signal, there is no mul-
tiplicative noise. In contrast, additive noise can be recorded 
and analyzed even in the absence of the signal. However, 
recording and analyzing multiplicative noise without a signal 
is impossible.

• Multiplicative noise distorts reflection events and other arrivals, 
leading to fragmented appearances and diminished coherency.

• Multiplicative noise impacts both strong and weak signals 
proportionately, leading to distortion that scales with the 
signal size. On the other hand, additive noise is not influenced 
by signal strength.

Small-scale heterogeneities that give rise to speckle seismic 
noise are often challenging to characterize deterministically. In 
simple terms, constructing a migration velocity model that effec-
tively captures these fine-scale features using data-driven work-
flows is not possible. Nevertheless, if such a model could be 
achieved, migration could be employed to mitigate a major part 
of speckle distortions in imaging. Consequently, statistical tech-
niques to attenuate random multiplicative noise are the most 
practical approach for handling this type of noise in seismic data.

Bakulin et al. (2022) proposed a simplified model of multiplica-
tive seismic random noise formulated in the frequency domain 
and inspired by prior speckle studies from other fields. Equation 
1 can be rewritten in the Fourier domain as:

Xk(ω) = Rk(ω)S(ω) + Nk(ω),                     (2)

where Xk, Rk, S, and Nk are Fourier transforms of the corresponding 
time-domain functions in equation 1. The speckle noise model 
proposes that there are random, frequency-dependent phase 
fluctuations φk(ω), leading to the following noise term:

  R  k   (ω)  =  e   i φ  k   (  ω )    .                               (3)

The scenario in which phase perturbations φk(ω) exhibit ran-
dom variations across frequencies within a given channel is clas-
sified as the first type of multiplicative random noise with random 
frequency-dependent phase fluctuations. Bakulin et al. (2022) also 
demonstrated that the well-known phenomenon of residual statics 
can be interpreted as a second type of multiplicative noise. In this 
case, for a specific channel, φk(ω) represents a deterministic linear 
function derived from a fixed time delay value. As the scenario 
progresses, the next channel introduces a different random time 
shift value, resulting in the definition of another linearly varying 
function, φk + 1(ω), and so forth. Bakulin et al. (2022) demonstrated 
that the combined effect of two multiplicative noises could con-
sistently explain crucial field observations based on data from 
scattering environments:

1) Even after advanced processing, prestack reflections remain 
distorted with low coherency and are challenging to track. 
Furthermore, these distortions are not localized but distributed 
throughout the entire data set, making it difficult even to pick 
first breaks or use early arrivals for full-waveform inversion.

2) Applying local stacking improves the visibility of reflections, 
but the absolute level of amplitude spectra is significantly 
biased downward across all frequencies.

3) Amplitude spectra show increasing attenuation with frequency 
as a result of local stacking.

Assuming Gaussian-distributed phase fluctuations with a 
consistent spread or standard deviation across frequencies explains 
two important observations. First, it remarkably and accurately 
reproduces the observed data scrambling (first observation). 
Second, it provides a compelling rationale for amplitude reduction 
during stacking (second observation). Residual statics were solely 
required to account for the progressive loss of higher frequencies, 
as noted in the third observation. Bakulin et al. (2022) additionally 
pointed out that if the spread or standard deviation increases with 
frequency for the first type of noise, it can also explain the gradual 
loss of higher frequencies observed after local stacking. Therefore, 
all three observations can be adequately explained without needing 
to consider residual statics as an explanatory factor.

We will break down the process of linking speckle noise that 
affects deep reflectors and meter-scale geologic near-surface 
heterogeneity into three steps. First, we examine whether realistic 
geologic models of near-surface layers can faithfully reproduce 
the observed reflection distortions seen in field data, shown in 
Figure 1. Second, we evaluate the effectiveness of proposed math-
ematical models in describing these distortions and determine 
which ones are best for this job. Lastly, we gain insight into how 
phase changes with frequency by comparing field data with syn-
thetic data generated using realistic geologic models.

Field data
Before we begin the modeling exercise, it is important to 

provide a reference for the behavior of the real data. Figure 3a 
shows a challenging deep portion (below 4 km) of prestack gathers 
after preprocessing. In this section, all reflectors are severely 
cluttered and barely discernible. However, after local stacking 
with nonlinear beamforming (Bakulin et al., 2018), most of the 
events become detectable (Figure 3b). This suggests that signals 
are present in Figure 3a but are subject to severe distortions that 
prevent their detection. Figures 3c–3e exhibit a smaller 200 ms 
subwindow limited to near-mid offsets. Figure 3c highlights the 
difficulty of deep exploration, where prestack reflector identifica-
tion alone is a challenge. Local stacking (Figure 3d) restores 
coherence by rectifying the phase, yet it leads to dampened higher 
frequencies and excessively smoothed amplitude characteristics 
(Bakulin et al., 2022). Lastly, Figure 3e presents the despeckled 
outcome through seismic time-frequency masking (Bakulin et al., 
2023), addressing amplitude noise with the lighter touch using 
local stacking as a guide.

Figures 4a and 4b contrast the original and beamformed data 
phase from Figures 3c and 3d. It is important to mention that 
the phase of the data after despeckling using seismic time-
frequency masking (Figure 3e) matches that of the locally stacked 
data, so it has been omitted. The beamformed data have a more 
continuous phase, consistent with our visual perception of coherent 
and trackable events. In contrast, the phase of the original data 
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similar to what the theoretical noise model postulates. The ran-
domized phase is a typical component of speckle modeling 
(Goodman, 2020), and the presented figures demonstrate that 

randomization leads to a loss of coher-
ence, similar to what is observed in the 
field data in Figure 1. Data also suggest 
that spread or standard deviation tends 
to increase with frequency (compare 
Figures 4c and 4d). The significance of 
this finding lies in its ability to poten-
tially explain the progressive loss of 
higher frequencies, as mentioned in the 
third observation, without the need for 
residual statics.

Previous studies have replicated the 
field-like behavior of gathers and phases 
using an acoustic model with random 
mathematical clutter as a near-surface 
scattering layer (Bakulin et al., 2020, 
2021, 2022). In the following section, 
we will evaluate the properties of the 
elastic wavefield in models with realistic 
geologic heterogeneity.

Synthetic data generated from 
realistic geologic modeling of meter-
scale near-surface heterogeneity

Carbonate rocks are intrinsically 
heterogeneous at a multiscale level 
(Eberli et al., 2003; Borgomano et al., 
2013; Ramdani et al., 2022c). An 
interplay between sedimentary fabric, 
lateral and vertical depositional facies 
changes, overprinting diagenesis, and 
fracture distribution contributes to the 
3D meter-scale heterogeneity of pet-
rophysical properties in carbonate 
formations (Vahrenkamp et al., 2019; 
Ramdani et al., 2023). Among these 
factors, the distribution and morphol-
ogy of skeletal bioconstructed geobod-
ies are the most heterogenous deposi-
tional facies contributor in the 
carbonate strata (Al-Mojel et al., 2020; 
Ramdani et al., 2022b). The abstract 
concepts of speckle noise, especially 
on the near surface of Arabia, may be 
explained by the presence of these 
facies. Outcrop studies and near-sur-
face petrophysical properties measure-
ments of the Late Jurassic stromato-
poroid-coral buildup complex in Arabia 
conceivably support this understanding 
(Ramdani et al., 2022a; Ramdani et al., 
2022c). As a result, we closely examine 
this current geologic understanding 

Figure 3. In a deep portion of the data, a prestack window reveals highly cluttered reflectors: (a) prestack CDP gather after 
conventional processing; (b) same as (a) but after local stacking with nonlinear beamforming. The improved coherency of all 
the horizontal reflection events is evident, although it comes at the cost of spatial smearing and the loss of higher frequencies. 
Zooming in on a smaller subwindow (indicated by the yellow box) reveals: (c) original data with complex distortions; (d) data 
after local stacking, showing the balance between improved coherency and excessive smoothing; and (e) data after advanced 
despeckling using seismic time-frequency masking, demonstrating improved coherency while preserving higher frequencies and 
amplitude characteristics (Bakulin et al. 2023).  All data are shown after normal moveout corrections.

Figure 4. Phase calculated in the smaller subwindow (shown in Figures 3c–3d) for (a) 20 Hz and (b) 40 Hz. The phase of the raw 
data is depicted in blue, while the locally stacked data are shown in red. Histograms of the wrapped phase difference between 
the original and beamformed data (residual phase) are shown in (c) and (d). Notice the wider phase spread at (d) 40 Hz compared 
to (c) 20 Hz. Note that the phase following seismic time-frequency masking (as depicted in Figure 3d) is the same as the one 
obtained through local stacking and is therefore not displayed. For consistency with model definition (3), standard deviations 
for the unwrapped phase are posted on the plots.

randomly oscillates around the beamformed phase. If we were to 
analyze the difference between the two phases (Figures 4c and 
4d), we would observe a symmetrical Gaussian-like distribution, 
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and simulate its synthetic responses to substantiate the genuine 
geologic origin of speckle noise.

Geologic modeling. Outcrop studies (Al-Mojel et al., 2020; 
Ramdani et al., 2022c) reveal that the Late Jurassic Arabian 
stromatoporoid-coral buildup facies appear patchy on the kilometer-
size outcrop scale, occupying an approximate 10%–20% proportion 
of the strata. They also exhibit hierarchical scaling relationships 
where smaller buildup units and their associated flank congregate 
into larger clusters with amalgamated pseudo-ellipsoid morphology 
(Figures 5a and 5b). Accommodation space at each parasequence 
controls the lateral and vertical growth of these buildup complexes. 
The growth of these buildups may be simplified into four distinct 
process-based stages (Ramdani et al., 2022c): initiation, congrega-
tion, maximum growth, and termination (Figure 5c). In this study, 
we performed a 2D process-based geologic facies modeling to 
replicate the scaling relationship and growth pattern of the Late 
Jurassic Arabian stromatoporoid-coral buildups. This modeling 
workflow is a simplified 2D version of a more comprehensive 
modeling methodology described in Ramdani et al. (2022c).

We constructed two models, representing  two different 
buildup-hosting strata (Figure 6f). Model 1 is 6000 m long and 
has a 40 m thick buildup zone. Model 2 has a similar length with 
a 120 m thick buildup zone. The models were constructed by first 
recreating the overall morphology of the buildup clusters and 

their flanks as ellipsoidal polylines vertically constrained by 
modeled stratigraphic surfaces (Figure 5c). A set of buildup 
nucleation points are distributed throughout the models. A 2D 
ellipsoid was constructed from each nucleation point, and buildup 
ellipsoids that grew within the approximately 60 m clustering 
distance assembled into larger buildup clusters mimicking the 
initiation and congregation stage. The number of nucleation points, 
clustering distance, buildup length, and buildup thickness distribu-
tions were sampled from outcrop studies by Ramdani et al. (2022c). 
Provided enough accommodation space, the buildup clusters in 
the next stratigraphic block were constructed on top of the previous 
buildup in a backstepping manner simulating the maximum 
growth stage. Finally, we arranged the buildup ellipsoids at the 
termination stage in a prograding manner to simulate the limited 
accommodation space.

We constructed the facies and elastic property models by 
converting the buildup polylines into geocellular grids (Figures 5d 
and 5e). The resulting polylines were sampled into 3 m × 30 cm 
2D geocellular grids where two facies schematics were assigned: 
the buildups and background strata (Figures 5d and 5e). The 
resulting models contained approximately 10%–20% of buildup 
facies with an average of approximately 14% (Figure 6a). The 
buildup facies also had length and thickness distributions that 
were relatively consistent (Figures 6b and 6c) with outcrop 

Figure 5. (a) Example of a digital outcrop model showcasing the stromatoporoid-coral buildup facies found in the Arabian Late Jurassic Carbonate strata. The dashed polygon indicates a 
zoomed-in location of a cluster of buildups, as depicted in Figure 5b. (b) Cluster of stromatoporoid-coral buildups, consisting of numerous smaller buildups. The buildups are identified in 
the outcrop as weathering-resistant features that appear bulbous and chaotic, devoid of any clear bedding compared to the background strata. (c) Conceptual four-stage process-based 
model illustrating the growth and lateral extent of the buildups. This model serves as the foundation for constructing the facies model in this study. Figures 5a–5c have been adapted from 
Ramdani et al. (2022c). (d) Example of the resulting 2D buildup polylines (dashed line) overlaid onto the digital outcrop model. Notably, the model accurately delineates the boundaries of 
the buildups observed in the outcrop. (e) Facies model derived from sampling the polylines depicted in Figure 5d and incorporating them into geocellular grids.
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observation reported by Ramdani et al. (2022c). The matching 
proportions, lengths, and thicknesses suggest that the models 
accurately replicate the geologically plausible meter-scale hetero-
geneity of the buildups as observed in the outcrop. The velocity 
and density models were constructed using facies as the common 
denominator. The properties (Figure 6d) were populated from 
laboratory-scale measurements of the outcrop core measured by 
Ramdani et al. (2022a). We assigned a constant value for facies 

to simplify the property models. For model 1, we assigned VP  = 
4500 m/s, VS = 2600 m/s, and density = 2.4 g/cm3 to the buildups, 
and VP  = 2400 m/s, VS = 1730 m/s, and density = 2.2 g/cm3 to the 
background strata. For model 2, we assigned similar buildup 
properties and used VP  = 2252 m/s, VS = 1350 m/s, and density = 
2.1 g/cm3 for the extended background strata. The resulting P-wave 
velocity models (Figure 6f ) showcased the heterogeneity and 
velocity contrast between the buildups and the background strata.

Figure 6. (a) The proportion of buildup facies calculated for 300 m length bins across the entire model. The buildups occupy approximately 10% to 20% of the strata, with an average 
proportion of about 14%. (b) The distribution of buildup lengths in the model as compared to the corresponding data observed in outcrops. (c) The distribution of buildup thicknesses in 
the models as compared to the corresponding data observed in outcrops (Ramdani et al., 2022c). The comparison reveals a high level of consistency between the models and the observed 
data, indicating their reliability. (d) A crossplot representing the relationship between P-wave velocity and density, with the color-coded facies from the outcrop core (Ramdani et al., 
2022a). Notably, the P-wave velocity of the buildups appears to be nearly twice as high as that of the background strata. (e) An example of the entire P-wave velocity model with near-
surface scattering layer at the top and horizontal layering below. (f) A zoomed-in view of the P-wave velocity model focusing specifically on the near-surface scattering layer with buildups. 
An arrow in (e) indicates a deep reflector of interest used for phase analysis.
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Synthetic seismic modeling and data assessment. As an initial 
step in this modeling study, we used a 1D model based on a velocity 
profile extracted from the SEAM Barrett model (Oristaglio, 
2012). However, we substituted the near-surface layer with a newly 
constructed layer incorporating realistic geologic modeling of 
meter-scale heterogeneity, as described earlier (see Figure 6e). The 
resulting 2D model had dimensions of 6000 × 3750 m.

Finite-difference elastic modeling was conducted using a 
Klauder wavelet with a frequency range of 1.5 to 50 Hz. We 
computed 300 shot gathers with a 10 m spacing between shots, 
and the receivers had a split-spread geometry with a maximum 
offset of 1500 m and a spacing of 10 m.

To establish the relationships between the depicted models 
and the speckle noise mechanism shown in Figure 2, it is important 
to consider the connection between the elastic property hetero-
geneity and the scale of the seismic wave propagation. By examin-
ing a central frequency of 25 Hz, we find that the ratio of the 
wavelength (90 m) to the dominant thickness (8 m, Figure 6c) is 
approximately 11. For a maximum frequency of 50 Hz, this ratio 
is approximately 6. At a lower frequency of 10 Hz, the ratio 
expands to about 28.

These ratios confirm that the buildups primarily represent 
small-scale heterogeneity, consistent with the assumptions made 
in the speckle model presented in Figure 2. It is important to 
mention that we might find smaller wavelength-heterogeneity 
ratios when accounting for buildup length (Figure 6b), higher 
frequencies, thicker, or clustered buildups (as seen in Figure 5). 
It is essential to recognize that the seismic wavefield encompasses 
a broad range of frequencies, which presents an additional chal-
lenge that may not be encountered in other fields, such as optics 
and acoustics, where monochromatic or narrow-band measure-
ments are more common.

Nevertheless, despite these challenges, we strove to accurately 
represent the geologic reality in our models and proceeded with 
a straightforward analysis under the assumption of predominantly 
small-scale heterogeneity. This approach 
allowed us to capture important aspects 
of the speckle noise mechanism while 
acknowledging the broader range of 
frequencies encountered in seismic data.

Figure 7a displays a typical com-
mon-shot gather obtained from a refer-
ence layered model, created by removing 
all buildups from model 1 (40 m buildup 
complex). The reflections in this model 
exhibit complete regularity, displaying 
consistent waveforms from trace to 
trace. Our analysis focuses on the deep 
reflector inside the ground roll cone, as 
indicated by the arrow in Figure 7. Both 
Figures 7b and 7c show comparable 
common-shot gathers, representing 
models 1 and 2, respectively. In 
Figure 7b, the prestack data already 
exhibit a characteristic speckled appear-
ance, despite the buildups only 

occupying a relatively thin layer of 40 m (model 1), which is 
approximately 0.4 times the dominant P-wave wavelength. 
Figure 7c shows prestack data from model 2, where a 120 m thick 
heterogeneous near-surface layer is present. In this case, the 
speckled appearance is more pronounced, even though this layer 
represents only about 1.25 times the wavelength and is less than 
4% of the total propagation distance between the surface and the 
deep reflector (at a depth of 3200 m).

We conclude that near-surface scattering layers containing 
stromatoporoid-coral buildup complexes exhibit characteristic 
distortions typically seen in hard-to-image field data from complex 
desert environments. The modeled distortions observed in 
Figures 7b and 7c resemble those seen in the real data shown in 
Figure 1, where the distortions are not limited to specific areas but 
spread throughout the gather, affecting first arrivals, ground roll, 
and reflections alike. While there is a common perception that 
certain near-surface imprints might “heal” as we go deeper, it is 
clear that speckle noise does not exhibit the same behavior. As the 
arrow in Figure 7 points out, even deep reflectors continue to show 
a cluttered pattern. Similar to how water droplets on a windshield 
can obscure the entire view, the near-surface heterogeneity, despite 
only occupying a small volume fraction of the section as a whole, 
can obscure the seismic gather from top to bottom.

The use of mathematical clutter as a substitute for the near-
surface scattering layer (Bakulin et al., 2020, 2021, 2022) repre-
sented a meaningful advancement in the pursuit of a realistic 
“geologic clutter” model that accurately portrays the stromatopo-
roid-coral buildup. It is important to highlight that the statistical 
characteristics of the geologic clutter, such as the concentration 
of the buildups (Figure 6a), can exhibit consistency within specific 
geologic regimes. Thus, it is feasible to locally approximate the 
geologic clutter as a “random-like” heterogeneity, in line with the 
assumptions of speckle noise (Bakulin et al., 2022).

The distortions depicted in Figure 1 are not limited to isolated 
or exceptional common-shot gathers; rather, they persist over 

Figure 7. Representative common-shot gathers for each subsurface model: (a) the layered model; (b) the model with a near-
surface scattering layer of 40 m thickness; and (c) the model with a near-surface scattering layer of 120 m thickness. The 
heterogeneous near-surface layers, as shown in Figures 5 and 6, create an escalating speckled appearance in (b) and (c), in 
contrast to the regular character of the layered model. The arrow identifies the deep reflector used for the phase analysis.
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distances spanning tens of kilometers or more, which is in line 
with the expected extent of subsurface geologic features. In 
complex areas, field data may exhibit gradual lateral character 
variations attributable to geologic environment changes. These 
changes could stem from variations in the total thickness of the 
scattering formations, as well as variations in the concentration 
and/or thickness/length of the buildups (Figures 6a–6c).

Both the mathematical clutter and the geologic clutter models 
generate a similar speckled appearance in the synthetic seismic 
data with random phase perturbations, mirroring the observations 
made in field data. This further reinforces their usefulness as 
representative models.

Phase analysis. Let us assess whether simulated gathers for 
geologically feasible near-surface heterogeneity comply with the 
multiplicative model equations 1–3 with random phase perturba-
tions. We focus on the deep, strong reflector labeled in Figures 6 
and 7. To calculate the local phase, we follow a similar procedure 
to the one used for real data in Figure 4.

First, we generated a locally stacked version from a dense 2D 
single-sensor acquisition. Rather than using nonlinear beamform-
ing, we performed a simple supergrouping (Bakulin et al., 2018) 
of 30 neighboring common-offset traces collected over a 300 m 
aperture. Figure 8 depicts the time windows used to analyze 
model 1 with a 40 m buildup complex. When a near-surface 
scattering layer is present, the reflection events display jittery and 
speckle-like behavior, as shown in Figure 8a. The zoomed-in view 
in Figure 8d reveals that the jitteriness is not caused solely by 
simple time shifts but also by complex variations in the waveform 
from trace to trace. The locally stacked data (Figures 8b and 8e) 
exhibit much smoother behavior, approaching the clean data 
(Figures 8c and 8f), where all heterogeneities are removed. Thus, 
the locally stacked data can be conceptually considered a modified 
data set in a simplified model, where at least smaller-scale het-
erogeneities were either removed or smoothed out.

Figure 9 shows the distribution of residual phase obtained by 
computing the difference between the phase of raw and locally 
stacked data, using the same method as employed for the field 
data. The first major observation is that all phase deviations are 
quasi-normal in nature and approximately symmetric at about 
zero. This suggests that the phase variations randomly oscillate 
around the beamformed phase (i.e., phase of locally stacked data), 
exhibiting symmetry in both positive and negative directions 
consistent with the random noise model proposed. The second 
major observation is that the spread or standard deviation of the 
phase distribution increases at higher frequencies. This can be 
physically intuitive as fixed distributions of buildups are less 
disruptive to longer wavelengths (lower frequencies).

Figures 10 and 11 show the same analysis for model 2, which 
features a buildup complex spanning 120 m. In these figures, 
waveform distortions are stronger and demonstrate larger changes 
from trace to trace, despite the relatively tight receiver sampling 
of 10 m (compare Figures 10a and 8a, or 10d and 8d). This 

Figure 9.  Histograms of the residual phase distribution at various frequencies, namely (a) 20 Hz, (b) 30 Hz, and (c) 40 Hz. The residual phase is obtained by calculating the difference in the 
wrapped phase between the raw data in Figure 8a and the locally stacked data in Figure 8b. The histograms reveal two key findings. First, we observe a quasi-normal distribution that is 
approximately symmetric around zero. Second, we can see that the distribution’s spread or standard deviation increases with higher frequencies.

Figure 8. Time windows around deep reflector extracted from common-shot gathers 
in Figure 7 selected for phase analysis: (a) raw data for model 1 with a near-surface 
scattering layer of 40 m thickness; (b) locally stacked data of the same data from 
(a); (c) clean data in layered model with all buildups removed. Zooms into near-offset 
range [–200,200]m are shown in (d)–(f). Notably, we can observe distorted arrivals in 
panel (a)/(d), while the events after local stacking in panel (b)/(e) are much smoother, 
approaching the clean data in panel (c)/(f). It is worth noting that the reflector has been 
flattened by applying normal moveout corrections.
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observation aligns with the mechanism portrayed in Figure 2. 
The increased thickness of the scattering layer gives rise to a 
broader range of forward-scattering near-ballistic arrivals, resulting 
in more intricate and rapidly varying interference patterns.

The histograms of the phase variations shown in Figure 11 
support the visual observations regarding the more severe distor-
tions, and have a wider spread or standard deviation at each 
frequency than in Figure 9 for model 1. Given the approximately 
similar concentration and geometry of the buildups in both model 1 
and model 2 (Figures 6a–6c), the observed discrepancy in the 
spread between them indicates a clear dependence of phase per-
turbations on the thickness of the scattering layer. A larger thick-
ness of the scattering layer leads to more pronounced phase 
perturbations. Further studies are required to gain a deeper insight 
into this relationship and to develop a comprehensive understand-
ing of the underlying dynamics.

Despite the difference in the magnitude of phase perturbations, 
the same two main conclusions can also be drawn from model 2 

as from model 1. First, the plots in Figure 11 exhibit a symmetric 
and near-Gaussian distribution of phase variations, indicating 
the quasi-random nature of the residual phase fluctuations. This 
finding holds for all the plots, further emphasizing the consistent 
character of the observed phase perturbations. Second, there is a 
noticeable increase in the spread or standard deviation as the 
frequency increases. This aligns with the experimental frequency-
perturbation relationship in field data, emphasizing the frequency-
dependent nature of the speckle noise model.

Considering both model 1 and model 2 together confirms the 
quasi-random nature of the residual phase and the frequency-
dependent spread of perturbations.

Other potential geologic sources of speckle noise
We have shown how speckle noise may be attributed to meter-

scale facies heterogeneity arising from the distribution, growth 
pattern, and property variations within the stromatoporoid-coral 
buildups. We acknowledge that these types of reefal geobodies 
are not exclusive to the occurrence of speckle noise. Similar 
heterogeneities have been observed in other geologic formations 
as well. For example, the Upper Cambrian microbial buildups in 
Texas (Khanna et al., 2020), terminal Proterozoic to Cambrian 
thrombolite-stromatolite reefs in Namibia (Adams et al., 2005), 
Aptian Lithocodium-Bacinella buildups in Oman (Rameil et al., 
2010), and Albian rudists buildup in Texas (Janson et al., 2015) 
all exhibit comparable growth patterns to the buildup facies 
examined in our study. It is likely, therefore that the geologic 
origin of speckle noise may extend beyond the stromatoporoid-
coral buildup alone.

Extensive research has documented various drastic (negative) 
impacts on seismic data of small-scale geologic heterogeneity in 
igneous rock, including intrusive (Eaton et al., 2003) and extrusive 
(Ziolkowski et al., 2003) formations. Reflection seismology tends 
to lag behind other geophysical methods when it comes to hard-
rock environments. This is primarily due to intense scattering 
noise, which disrupts reflections to a greater extent compared to 
sedimentary basins. Ziolkowski et al. (2003) even proposed 
modifying the acquisition process to acquire preferentially lower 
frequencies in light of this challenge. This is primarily due to 
intense scattering noise, which disrupts reflections to a greater 

Figure 11. Same as Figure 9 but for model 2 with a 120 m buildup complex. Observe a more extensive spread at each frequency due to the increased thickness of the near-surface scattering 
layer compared to Figure 9. This greater spread emphasizes that the magnitude of phase variations is influenced not only by the sizes and distribution of heterogeneity (which remain 
consistent between model 1 and 2) but also by the thickness of the scattering layer.

Figure 10. Same as Figure 8 but for model 2 with 120 m buildup complex. Observe more 
severe waveform distortions caused by thicker near-surface scattering layer.
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extent than in sedimentary basins. They found that conventional 
methods employed at higher frequencies were ineffective in 
addressing the scattering noise issue. This is consistent with our 
findings suggesting weaker phase variations at lower frequencies. 
Hard-rock settings are gaining importance due to the renewed 
focus on critical minerals and geothermal energy.

To summarize, small-scale heterogeneity is widespread across 
various geologic settings, and a major breakthrough in enhancing 
seismic resolution could be achieved by effectively addressing 
speckle noise using novel workflows such as seismic time-fre-
quency masking (Bakulin et al., 2023). Hence, it is crucial to 
comprehend and address speckle noise for various applications, 
including oil and mineral exploration, geothermal energy, and 
carbon storage monitoring.

Conclusions
In the realm of deep exploration, a central focus lies on 

thoroughly characterizing the velocities of near-surface and 
shallow overburden layers. The goal is to mitigate their adverse 
impacts on imaging target areas. This study examines scenarios 
where the near surface exhibits prominent concentrations of 
small-scale heterogeneities. As a result, the entire wavefield 
becomes cluttered or speckled, presenting challenges for efficient 
processing and imaging.

To address these issues, we introduce a speckle mechanism 
and noise model that reveal the reflection distortions arising from 
meter-scale near-surface scattering. We identify scattering noise 
as a propagation distortion arising from forward scattering on 
numerous small-scale heterogeneities. This noise resembles the 
well-known speckle noise observed in fields like optics and acous-
tics. Taking inspiration from these fields, a seismic speckle noise 
model has recently emerged — a multiplicative random noise 
model that involves random phase perturbations.

Our study constructs a realistic meter-scale geologic model 
for near-surface layers, effectively demonstrating their ability to 
create the distortions predicted by the speckle noise model. This 
demonstration holds crucial significance for several reasons. Firstly, 
it dispels the notion that the resolution of challenges in deep 
imaging solely revolves around refining the characterization of 
the superimposed near-surface noise to the extent that undistorted 
reflections from the targets become apparent upon its removal. 
We demonstrate that speckle noise is a multiplicative signal distor-
tion and cannot be mitigated through subtraction. Secondly, it 
prompts a reevaluation of the concept of an “ideal” near-surface 
model that supposedly resolves all imaging complexities. Speckle 
noise investigations suggest that the pursuit of deterministic models 
to correct these distortions is an unattainable objective. The meter-
scale variations responsible for speckle noise, as presented, remain 
unrecoverable even with advanced techniques for building velocity 
models due to their small size and complex interactions.

Most importantly, validating the multiplicative speckle noise 
model through real-world geologic heterogeneity at the meter 
scale establishes a foundation for effective statistical despeckling 
techniques. Notably, seismic time-frequency masking harnesses 
the full potential of the random multiplicative noise model to 
eliminate detrimental scattering distortions from prestack data. 

This strategy capitalizes on insights from speckle noise studies 
and the multiplicity (fold) of prestack seismic data. As a result, 
phase and amplitude corrections are meticulously guided by 
information derived from locally stacked data.

Through a comparison of phase perturbations in both real-
world and synthetic data, we establish similarities in their fun-
damental statistical properties. The phase perturbations resulting 
from small-scale scattering exhibit a quasi-random nature and 
adhere to a nearly normal distribution. This observation holds 
true for both 40 and 120 m buildup complexes. Additionally, we 
find that increasing the thickness of the near-surface scattering 
layer leads to more pronounced reflection distortions and a wider 
range of phase perturbations. Therefore, the statistical character-
istics of speckle noise are influenced by the geometric and elastic 
properties of the buildup layers and the overall thickness of the 
accommodating scattering layer.

Furthermore, we observe that the spread or standard deviation 
of phase perturbations increases with frequency in both real-world 
and synthetic data. This observation holds significant implications, 
potentially accounting for the loss of higher frequencies during 
local or global stacking in processing. While residual statics only 
address the kinematic aspect of the complex wavefield perturbation 
stemming from small-scale near-surface variations, it falls short 
of fully resolving the problem. In contrast, the speckle noise model 
effectively captures the intricate waveform distortion caused by 
frequency-dependent phase perturbations. This model forms the 
fundamental basis for emerging advanced techniques like seismic 
time-frequency masking, which are designed to correct reflection 
distortions. These innovative methods, known as despeckling or 
decluttering, introduce new processing tools.

Drawing insights from other disciplines to tackle speckle 
noise could significantly accelerate our progress in this field. 
Effectively managing frequency-dependent speckle distortions 
in broadband seismic data represents the next significant step 
in improving seismic imaging in complex near-surface or over-
burden conditions. 
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