
Geophys. J. Int. (2020) 223, 1888–1898 doi: 10.1093/gji/ggaa422
Advance Access publication 2020 September 8
GJI Marine Geosciences and Applied Geophysics

Inpainting of local wavefront attributes using artificial intelligence for
enhancement of massive 3-D pre-stack seismic data

Kirill Gadylshin,1,2 Ilya Silvestrov3 and Andrey Bakulin3

1Institute of Petroleum Geology and Geophysics, pr. Koptyug 3, 630090, Novosibirsk, Russia. E-mail: gadylshin@gmail.com
2Novosibirsk State University, Pirogova 2 St., 630090, Novosibirsk, Russia
3EXPEC Advanced Research Center, Saudi Aramco, Dhahran, Saudi Arabia

Accepted 2020 September 1. Received 2020 August 17; in original form 2020 January 30

S U M M A R Y
We propose an advanced version of non-linear beamforming assisted by artificial intelligence
(NLBF-AI) that includes additional steps of encoding and interpolating of wavefront attributes
using inpainting with deep neural network (DNN). Inpainting can efficiently and accurately
fill the holes in waveform attributes caused by acquisition geometry gaps and data quality
issues. Inpainting with DNN delivers excellent quality of interpolation with the negligible
computational effort and performs particularly well for a challenging case of irregular holes
where other interpolation methods struggle. Since conventional brute-force attribute estimation
is very costly, we can further intentionally create additional holes or masks to restrict expensive
conventional estimation to a smaller subvolume and obtain missing attributes with cost-
effective inpainting. Using a marine seismic data set with ocean bottom nodes, we show that
inpainting can reliably recover wavefront attributes even with masked areas reaching 50–75
per cent. We validate the quality of the results by comparing attributes and enhanced data from
NLBF-AI and conventional NLBF using full-density data without decimation.

Key words: Image processing; Neural networks; Numerical approximations and analysis;
Seismic noise.

I N T RO D U C T I O N

In the early days of artificial intelligence (AI), it tackled and solved
problems that are intellectually difficult for human beings, but rel-
atively straightforward for computers. The real challenge to AI
proved to be addressing the tasks that are straightforward for people
to perform, but difficult for people to formally describe—problems
that we solve intuitively (Goodfellow et al. 2016). Recently, deep
learning approaches succeeded in image processing tasks such as
object recognition, denoising, super-resolution (Halpert 2018), im-
age inpainting (Liu et al. 2018), seismic trace interpolation (Man-
delli et al. 2018; Wang et al. 2020) and seismic compressive sensing
(Li et al. 2019).

In seismic imaging, the desire to improve reservoir description
combined with advances in acquisition technology is pushing the
amount of collected seismic data into the ‘big data’ category (Araya-
Polo et al. 2017). Pre-stack data from modern high-density seismic
surveys can reach hundreds and thousands of terabytes in size. Such
data can often have a reduced signal-to-noise ratio, particularly in
the case of single-sensor land seismic data, therefore, demanding
new algorithms and approaches for its efficient processing and inter-
pretation (Bakulin et al. 2018). One of the ways to leverage massive
seismic data sets is to use pre-stack seismic attributes, namely some
derivatives of the recorded data allowing us to represent it in a

more compressed way as well as perform necessary manipulations,
for instance, enhancement or interpolation. A classic example of
such an attribute is a normal moveout velocity, which is usually
picked or evaluated on a regular coarse grid, and then interpolated
between the gridpoints serving as a critical ingredient to perform
seismic imaging. Many novel approaches based on pre-stack data
require estimation of multiple attributes for each particular point
in the data cube, and their simultaneous calculation and usage is
of great importance. Examples of such approaches are multidimen-
sional data-driven local stacking and data enhancement techniques
such as partial common-reflection surfaces (CRS) stack (Baykulov
& Gajewski 2009), non-hyperbolic multifocusing (Berkovitch et al.
2011), and non-linear beamforming (NLBF, Bakulin et al. 2018,
2020). They all require the estimation of at least five wavefront at-
tributes on a dense spatial and temporal grid, namely the 3-D X-Y-T
grid. Direct estimation of wavefront attributes is usually the most
time-consuming part of the entire workflow. In practical applications
to real data, several challenges may require efficient interpolation
of wavefront attributes. Most acute of these challenges are:

Acquisition geometry issues. 3-D seismic data may suffer from
a significant irregularity of sources or receivers associated with
existing infrastructure or environmental constraints. This results in:
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DNN-based inpainting of wavefront attributes 1889

Figure 1. Acquisition geometry from a 3-D land seismic survey conducted
in an urban area with restricted access: black dots denote vibrator positions,
whereas purple ones show receiver locations. Observe overall irregularity
(blue arrows) and significant large gaps (red arrows) that would lead to holes
where wavefront attributes cannot be estimated reliably and would require
interpolation.

Figure 2. Flowchart of a proposed workflow. The parallelograms show
input and output data, whereas the rectangles show different parts of the
code/algorithm.

(i) Irregular/sparse distribution (Fig. 1, blue arrows), leading to
unreliable estimation of wavefront attributes. Quality control ap-
proaches often flag spatial subvolumes where reduced density may
render wavefront attributes below acceptable quality. Nevertheless,
pre-stack data still require enhancement, and therefore interpolation
of kinematic parameters from other reliable subvolumes may be the
only option.

(ii) Significant gaps without any sources or receivers (Fig. 1,
red arrows), leading to a similar effect along the edges. Enhanc-
ing data in the vicinity of such holes benefits from interpola-
tion/extrapolation of wavefront attributes. Besides this, the recon-
struction of missing data in such areas demands reliable wavefront
attributes that can only be obtained by interpolation.

Data quality issues. Even when data is present, there are often spa-
tial or temporal zones with high noise or ‘bad’ data that result in
the unreliable estimation of wavefront attributes. Such flagged areas
still contain seismic signals that could be salvaged using multidi-
mensional stacking, provided a reliable estimate of the wavefront
attributes is obtained. Interpolation of wavefront attributes is often

Figure 3. Wavefront attributes are estimated on a dense spatial-temporal
grid within the entire volume of pre-stack seismic data. Local second-order
traveltime surface (green surface) represents the estimated best fit moveout
to actual seismic events observed at each temporal and spatial point of the
grid (red dot). The surface is described by five coefficients representing
wavefront attributes (dips and curvatures). The dashed dark blue line de-
notes a parameter trace in (X, Y, T) space where estimation is conducted.
Parameter traces on a regular grid with defined spacing are required for
data enhancement. Solid blue lines specify the extent of the rectangular
estimation aperture.

a last resort. However, it should be able to handle the completely un-
predictable spatial/temporal nature of such zones in the 3-D X-Y-T
data grid.
Drive to computational efficiency. Even in the absence of two issues
above, there is a constant need to improve computational efficiency
for ever-increasing data volumes with high-density seismic data.
One way to efficiently address it is by limiting computations of
wavefront attributes to a reduced number of gridpoints followed by
an interpolation to a complete volume. In contrast to uncontrollable
effects of acquisition and data quality issues, excluded zones for
performance improvement can be designed regularly or irregularly.
Uniform exclusions or masking can benefit from established, simple
methods such as bilinear interpolation.

In practice, all three factors above are simultaneously at play,
with the first two factors being outside of our control. Quality con-
trol algorithms can flag problematic areas caused by acquisition
and data quality issues ahead of the estimation process resulting
in irregularly placed space–time masks scattered around the data
volume. The resulting final mask is a superposition of masks from
all three of the causes described. When the portion of the mask
caused by the first and second factors is significant, then there is a
need to handle the interpolation of irregularly masked data even if
the regular mask was selected for improving compute efficiency in
the third step. Under these circumstances, we focus here on design-
ing and validating an efficient inpainting method that can handle
the general case of interpolation in the presence of arbitrary non-
uniform masking. To further stress-test the proposed algorithm, we
deliberately focus on the escalating proportion of random irregular
masks as a worst-case scenario. While regular-only masking for per-
formance improvement may be less demanding, we believe that the
new algorithm may have the potential to compete in computational
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Figure 4. Example of colouring (encoding stage) for multiple kinematic wavefront attributes required for NLBF. Three quantities are encoded into a single
RGB image comprised of three channels: red—dips, green—curvatures, and blue—semblance.

Figure 5. Original encoded RGB image of multiple attributes (a), randomly generated image mask (b) and an image with the mask applied (c).

efficiency with more straightforward interpolation approaches ap-
plicable in this specific case. However, this point is left beyond the
scope of this study.

OV E RV I E W O F A P P L I C A B L E
I N T E R P O L AT I O N M E T H O D S

Inpainting is the process of reconstructing lost or deteriorated parts
of images and videos. It is also known as image interpolation and
refers to the application of sophisticated algorithms to replace cor-
rupted parts of the image data. All the existing techniques use
information from the available known image areas to fill the gap. In
the commonly used OpenCV (open computer vision) library, two
different algorithms are popular. The first of these algorithms is
based on a fast marching method (Telea 2004). The algorithm starts

from the boundary and goes inside the region of interest, grad-
ually filling all unknown regions. Another approach is based on
fluid dynamics and utilizes partial differential equations (Bertalmio
et al. 2001). The basic principle is heuristic: travelling first along
the edges from known regions to unknown regions. The algorithm
continues isophotes while matching gradient vectors at the bound-
ary of the inpainting region. Missing colour is filled to reduce the
minimum variance in that area.

Along with the classical interpolation techniques, DNN-based
image super-resolution approaches demonstrate superior perfor-
mance and outcomes (Ledig et al. 2017). Recent deep learning
approaches led to significant advances in image inpainting. A major-
ity of these methods focus on inpainting inside rectangular regions
located around the centre of the image and often rely on expensive
post-processing (see Liu et al. 2018, and references therein). DNNs
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DNN-based inpainting of wavefront attributes 1891

Figure 6. Data acquisition geometry for the marine data sets recorded with
ocean bottom nodes. Shot positions are shown in blue, and receivers are in
red. Green points designate selected locations identifying common-receiver
gathers that were included in a limited training data set (0.8 per cent of the
total data size).

use convolutional filters on images, replacing the removed content
with a fixed value, which is often dependent on the initial values
used. To properly handle irregular masks, Liu et al. (2018) proposed
using partial convolutions, where the convolution is masked and
renormalized to be conditioned only on valid pixels. This model
outperforms other methods for irregular masks. In this study, we
evaluate applications of the DNN based on partial convolutions to
the problem of inpainting of local wavefront attributes.

D N N - B A S E D I N PA I N T I N G O F
WAV E F RO N T AT T R I B U T E S F O R N L B F

General workflow

To address the interpolation challenge in the context of data en-
hancement, we pursue a novel approach referred to as NLBF-AI.
First, we evaluate the wavefront attributes inside unmasked areas
using the conventional estimation approach. Then, we reconstruct
or inpaint remaining attributes using a leading-edge machine learn-
ing (ML) technique—a DNN with partial convolutional layers (Liu
et al. 2018). This inpainting is based on training a DNN to pro-
vide high-resolution output for a given low-resolution input. We
use ‘low-resolution’ as a general term designating a sparse vol-
ume with masked areas irrespective of the actual spatial size and
distribution of masked elements. Similarly, ‘high-resolution’ sim-
ply denotes a densely filled volume with attributes available at all
points. Inpainting is significantly more computationally efficient
than the standard calculation of attributes at each location, whereas
it is fully capable of capturing a sufficient level of detail required
for data enhancement. A schematic workflow is presented in Fig. 2.

First, we assemble a cumulative mask caused by the effects of
acquisition geometry, data quality issues, as well as exclusion ar-
eas deliberately created to increase computational performance. We
then proceed with computing wavefront attributes in unmasked ar-
eas from pre-stack seismic data. Grids with random exclusion areas
are well suitable for efficient sampling and capturing of the main
wavefront features present for specific geologies within the vol-
ume of interest. We associate these computed multiple attributes
with coloured images using a particular encoding scheme trans-
forming multiparameter attributes into a single point of a coloured
image. Once we obtain the encoded images containing desired at-
tributes, the trained DNN based on partial convolutions inpaints the

Figure 7. Evaluating multiparameter wavefront attributes predicted by trained DNN in a single vertical plane. From left- to right-hand panel: masked, predicted
and original attributes, along with the difference between predicted and original attributes plotted using the same scale (last column). The top row represents
dips, whereas the bottom row shows curvatures.
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Figure 8. Evaluating enhanced data: input data (a), conventional NLBF (b), NLBF-AI (c) and the difference between the two versions of NLBF data (d).

Figure 9. NRMS between two versions of the gather enhanced using wave-
front attributes computed on the full dense grid (standard NLBF) and in-
terpolated with the inpainting (NLBF-AI). NRMS is calculated trace by
trace using a sliding window of 150 ms. The average NRMS for the entire
ensemble is around 21 per cent indicating that gathers are nearly identical
for processing purposes.

remaining masked regions and predicts a complete high-resolution
coloured image (filling gaps or holes). The last step is decoding the
predicted coloured image back into multiple attribute spaces result-
ing in a dense inpainted grid over the entire volume as required for
enhancement.

Non-linear beamforming

As an example, we illustrate the application of this approach for
the estimation of local wavefront attributes used in non-linear time-
delay beamforming (Bakulin et al. 2020). NLBF belongs to a family
of multidimensional stacking approaches (references) that are crit-
ical for pre-stack enhancement of data with the low signal-to-noise
ratio, as demonstrated on many practical examples by Bakulin et
al. (2018, 2020). However, challenges above associated with wave-
front attributes estimation often limit NLBF applicability. We aim
to address them through a novel inpainting approach. To understand
this novel implementation, it is essential to remind the algorithmic
details of NLBF-based data enhancement. This method comprises
a local summation of nearby traces after application of time shifts
and formally can be written as:

u (x0, y0, t0) =
∑

x∈B0

w (x, y) u (x, y, t0 + �t) , (1)

where u(x, y; t) represents a trace with coordinates x and y. The
coordinates of the output trace after beamforming are given by x0,
y0. The summation is performed over a local region B0 (defined by
summation aperture) around the output trace along a traveltime sur-
face with some moveout �t . We assume that a second-order surface
can locally approximate wavefront with the following moveout:

�t = t (x, y) − t0 (x0, y0) = A�x + B�y + C�x�y

+D�x2 + E�y2, (2)

where A, B, C , D and E are unknown wavefront attributes that also
serve as beamforming coefficients; �x and �y represent spatial
shifts of the summed trace to the output trace.

The first step in the NLBF data enhancement procedure is the
estimation of local kinematic attributes that describe coherent local
events. These parameters are usually estimated using an operator-
oriented approach (Hoecht et al. 2009). In this scheme, distinctive
auxiliary parameter traces are introduced, and the estimation of
wavefront attributes is done in samples of parameter traces using all
actual data traces within an area defined by the estimation aperture
(Fig. 3).

The unknown coefficients A, B (first-order derivatives of the
wavefront, or dips) and C , D, E (second-order derivatives, or cur-
vatures) are estimated by scanning many different beamforming
surfaces and finding one with the best coherency characterized by
the maximum value of a semblance function, S. Optimization can
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DNN-based inpainting of wavefront attributes 1893

Figure 10. Various versions of wavefront attribute A (dip) reconstructed by different methods (from left- to right-hand panel): zero-value infill, interpolation
using Telea’s algorithm, DNN inpainting, brute-force calculation using ‘2 + 2 + 1’ scheme from standard NLBF (reference). The second row shows images
with the corresponding errors calculated as a straight difference between the reconstructed and reference values.

be implemented either by simultaneously searching for all five pa-
rameters, or sequentially searching for one parameter after another
as in coordinate-descent method. Current practical implementations
of NLBF (Bakulin et al. 2020) are based on hybrid ‘2 + 2 + 1’
strategy, searching first for parameters A and D in the X − t plane,
than B and E in the Y − t plane, and finally finding parameter C in
the X - Y plane with the first four parameters being fixed.

AI-assisted NLBF (NLBF-AI)

Following in the footsteps of the ‘2 + 2 + 1’ strategy, let us first
outline the estimation step restricted to X − t plane only. Only the
dip A, curvature D, and semblance S are evaluated using a subset
of the data and output at each time sample of parameter traces:

�t = t (x) − t0 (x0) = A�x + D�x2. (3)

For a fixed point (t, x) of the regular grid, our encoding stage
transforms a triplet of multiparameter attributes 〈A, D, S〉 into a
coloured image pixel 〈Red, Green, Blue〉 (RGB). As a result, local
wavefront attributes A, D, and semblance S in each 2-D plane are
represented now as a single coloured image (Fig. 4). We store RGB
images without compression, that is we are still using floating-point
values in the three channels. By design, we have a bijection (one-
to-one correspondence) between coloured image and pair of local
kinematic attributes along with the associated semblance.

We further assume that the three factors described above resulted
in a masked area where wavefront attributes have to be interpo-
lated. Intuitively, it is clear that interpolation may become harder
with the increasing volume of the masks. We quantitatively evaluate
the quality of interpolated attributes and enhanced data as a func-
tion of the escalating mask proportion. To stress-test the algorithm
and maintain generality, we generate irregular masks as a random
combination of geometrical objects like circles, straight lines, and
sectors of an ellipse with random coordinates, sizes and inclinations
(Fig. 5). The only parameter that is predefined by the user is a mask
area as a percentage of the total image. In all points (t, x) where the
mask is applied, wavefront attributes are interpolated, and compu-
tation is avoided. If only a third factor of computing efficiency is of
the essence, then the area of the mask as a percentage of the total
area represents the total computational savings. Then, we construct
the convolutional DNN with a U-Net like architecture (Ronneberger
et al. 2015) using partial convolutions (Liu et al. 2018). To properly
handle irregular masks, the usage of partial convolutional layers is
essential. The technical details related to the suggested DNN are
presented in the Appendix.

Full enhancement of pre-stack 3-D data requires the estimation
of dips and curvatures in two orthogonal planes (X − t and Y − t).
The hybrid ‘2 + 2 + 1’ approach estimates A and D in one plane,
B and E in another, and cross-coupling parameter C during the
final step. To extend the above method from a single 2-D plane, we
note that seismic offset gathers behave similarly in both orthogonal
planes. Indeed, each plane contains a 2-D snapshot or cross-section
of the same original 3-D wavefield recorded along a specific azimuth
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Figure 11. Same as Fig. 9, but for parameter D.

inside the subsurface. As a consequence, the inpainting workflow
can handle orthogonal offset planes simultaneously. To achieve this,
we perform a single DNN training using representative gathers
mixed from both planes and then apply identical predictions to
inpaint dips and curvatures in each cross-section. As a result, we
obtain estimates of A, B, D and E , whereas the remaining parameter
C is separately evaluated at the end using conventional means.

A P P L I C AT I O N T O A M A R I N E O B N
DATA S E T

DNN training

The crucial step in deep learning is the training of the neural net-
work. The first question to answer whether we should use pre-trained
DNN for all types of seismic data, or should we retrain our network
for every particular type of the data or even for every specific geo-
graphic region? The answer depends on many factors, such as train-
ing time as compared to the local kinematic attributes estimation
time. Another consideration is a dependence on specific features of
the seismic data that may be present in some areas and absent in
the others (overfitting related to the non-representativeness of the
training data set).

In our field case study, we use a marine data set recorded with
OBNs and airguns with a pre-stack volume of around 15 TB. The
data consists of 11 027 common-receiver gathers. The OBN survey
size is 20 km × 31 km, comprising of 95 receiver lines. Enhance-
ment of data with a low signal-to-noise ratio in the entire offset
range from zero to 20 km is a geophysical must for velocity model
building, specifically to achieve reliable first-break picking for to-
mography and robust waveforms for FWI.

To make out method practical on giant seismic volumes, the DNN
is trained only on a small subset of data shown in Fig. 6. We uti-
lize 1 per cent of all common-receiver gathers and then calculate
the kinematic wavefront attributes using conventional NLBF. Cal-
culated attributes are converted into a collection of ‘RGB’ images.
These data are randomly split into a training data set (80 per cent of
images), and a validation data set (20 per cent). To achieve diver-
sity and representativeness, common-receiver gathers are extracted
from an evenly spaced nearly regular subgrid (Fig. 6).

The training is performed on a modern high-performance com-
puting cluster Ibex from KAUST (https://www.hpc.kaust.edu.sa/ibe
x) using a single-node with four Tesla GPUs P100. Compute time
used for training is negligible compared to the calculation time re-
quired for the estimation of kinematic attributes for the whole data
set. To avoid overfitting, we use validation-based early stopping reg-
ularization techniques. The error on the validation data set is used as
a proxy for the generalization error in determining when overfitting
has begun.

The trained network inpaints encoded wavefront attributes de-
livering complete high-resolution images without holes. Applying
a decoder to these images finalizes the workflow and provides re-
quired wavefront attributes (A, B, C , D and E) at every point of
the pre-stack estimation grid in space and time.

Verification through comparison of standard and
AI-assisted NLBF

To evaluate the quality of inpainted attributes, we create a testing
data set consisting of randomly positioned common-receiver gath-
ers that are different from the training and the validation data set.
The neural network has not seen wavefront attributes estimated from
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DNN-based inpainting of wavefront attributes 1895

Figure 12. Similarity/repeatability quantified as NRMS between data enhanced with standard NLBF and NLBF using various methods of attribute interpolation.
The top row displays NRMS computed in a sliding window, whereas the bottom row shows a histogram showing NRMS distribution for: (a) zero-value infill;
(b) Telea inpainting and (c) DNN inpainting. DNN leads to the smallest NRMS values demonstrating the closest similarity to the reference and indicating
better interpolation quality.

these gathers before. We calculate the error between kinematic at-
tributes obtained with the conventional method and DNN inpainting
using the Frobenius norm. We find that the average accuracy of re-
constructed kinematic attributes using a testing data set is ∼95 per
cent. Fig. 7 confirms that infilled values using the neural network are
similar to the attributes calculated using the traditional estimation
scheme of the NLBF algorithm.

Since attribute estimation is an intermediate step of NLBF en-
hancement, it is desirable to quantitatively evaluate how the in-
painting of attributes affects data after beamforming (Fig. 8). We
use normalized RMS (NRMS) to measure repeatability or simi-
larity between two versions of enhanced data with and without
interpolation. NRMS is a rigorous sample-by-sample metric used
for evaluating repeatability between two data sets in 4-D seis-
mic (Kragh & Christie 2002). The NRMS varies in the range of
[0,200] per cent where the value of 0 per cent indicates perfect
repeatability (identical traces), and 200 per cent corresponds to
uncorrelated traces. In the presence of strong reservoir signals,
NRMS on the order of 20–40 per cent often remains acceptable
for this exceptionally accurate task of identifying minute 4-D reser-
voir differences. If such differences are acceptable in 4-D seis-
mic, we postulate that, in the context of seismic processing for
exploration, similar values of NRMS would imply that two pro-
cessing results must be nearly identical for a practical purpose.
The NRMS plot (calculated trace by trace using a sliding win-
dow with a 160 ms length) between two versions of the data, en-
hanced using a fully computed dense grid of wavefront attributes

and one infilled with the inpainting, is shown in Fig. 9. The av-
erage NRMS of 30 per cent suggests a very close similarity be-
tween the two data. Zooming into local details, in the areas with a
high signal-to-noise ratio (coherent signal dominates), we achieve
almost perfect repeatability or low NRMS (dark blue colour). In
contrast, areas with a low signal-to-noise ratio (random noise dom-
inates) exhibit low repeatability or high NRMS (red colours). Such
behaviour is expected for areas dominated by noise since sem-
blance has no clear global maxima due to a lack of coherent
events. Instead, there are many small local maxima due to noise,
thereby making difficult any stable estimation of the wavefront at-
tributes.

Quality comparison with other interpolation approaches
and the effect of the total percentage of the masked areas

To evaluate the quality of interpolation, we compare DNN inpaint-
ing with commonly used fast marching inpainting (Telea 2004) im-
plemented in the Open Source Computer Vision Library (OpenCV,
https://opencv.org). The reconstructed parameters are shown in
Figs 10 and 11. We also compare the results with a most straight-
forward zero-value infill that simply assigns zero values to dips and
curvatures inside the interpolated areas. DNN inpainting provides
better results compared to fast marching, which, in turn, outper-
forms zero-value infill. As before, we are interested in data recon-
struction quality after beamforming, so we calculate NRMS be-
tween the data enhanced using attributes from these three scenarios
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Figure 13. Effect of the total percentage of the masked area on enhanced data. Data enhanced with standard NLBF is used as a reference so that NRMS plots
and histograms are computed for the difference between conventional NLBF results and NLBF-AI with the mask of 30 per cent (a), 50 per cent (b) and 75 per
cent (c), respectively. A more significant percentage of masked areas leads to increased NRMS and reduced similarity. Nevertheless, mean values of 13, 21 and
37 per cent suggest that all data versions are nearly identical for seismic processing purpose to one obtained with standard NLBF.

and original data enhanced by NLBF (Fig. 12). The average NRMS
between NLBF and NLBF-AI using inpainting is only 21 per cent.
Even from a strict point of view of 4-D seismic, such repeatability
indicates excellent agreement despite the total percentage of the
masked area being relatively high at 50 per cent. In contrast, av-
erage NRMS values for zero-value infill and Telea inpainting are
higher, ∼62 and ∼41 per cent, respectively. We conclude that the
proposed AI approach delivers enhanced data that is measurably
closer to the desired reference obtained without parameter interpo-
lation.

How much decimation can be tolerated before there is a signif-
icant impact on data quality? To answer this question, we eval-
uate three different DNN inpainting scenarios with mask areas
covering 30, 50 and 75 per cent of the total area, respectively.
The corresponding NRMS plots and histograms are presented in
Fig. 13. The average NRMS values are ∼13, 21 and ∼37 per
cent, for the total percentage of masked areas 30, 50 and 75
per cent, respectively. While increasing NRMS indicates less and
less similarity, the actual values are still acceptable for explo-
ration processing. Going above 75 per cent leads to an escalat-
ing NRMS, indicating loss of resolution on wavefront attribute
estimation. We conclude that masking of 50–75 per cent of the
attributes on offset plane images represents the optimal range
for computational performance: it delivers a significant speedup
factor of 2–3x while maintaining reasonable similarity (NRMS
∼ 20–40 per cent) to original data, enhanced without interpola-
tion.

D I S C U S S I O N

We have shown that NLBF-AI with embedded inpainting effec-
tively addresses practical need to interpolate wavefront attributes
within large volumes with irregular gaps caused by acquisition ge-
ometry and data quality issues. In data enhancement with standard
NLBF, the estimation phase consumes more than 90 per cent of
the computational cost. In NLBF-AI, we have the flexibility to split
the estimation phase between inpainting and conventional brute-
force attribute calculation. Inpainting computing time is virtually
negligible compared to traditional estimation time. As a result, per-
formance improvement can be achieved that is proportional to the
masked volumes. Creating additional controlled masking, we could
restrict conventional estimation to an even smaller volume and let
intelligent DNN inpainting to reconstruct parameters in the remain-
ing parts. In the presented example with random masking of 50
per cent, we accomplish the speedup factor of two. Overall masked
volume is always a combination of subvolumes masked due to ac-
quisition geometry, data quality as well as exclusion areas aimed
to reduce computation. At the same time, we have demonstrated
that enhanced data with standard NLBF and NLBF-AI are nearly
identical for processing purposes. While more standard interpo-
lation methods can deliver quality similar to inpainting with the
periodic placement of exclusion zones, they are prone to failure
when masked areas become substantial or experience irregularity.
At the same time, the computational cost of the inpainting approach
is affordable and approaching the cost of these standard methods.
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Since regularity of exclusion zones cannot be guaranteed on real
field data (due to the unpredictable nature of acquisition geometry
and data quality issues), we reason that using a more general inpaint-
ing approach in all cases could make good practical sense. In case
of deliberate masking of 50–75 per cent of the volumes for com-
putational purposes, the achieved speedups have a material impact
on reducing processing turnaround of massive modern pre-stack
seismic data sets with sizes comprising hundreds and thousands of
terabytes. Periodic decimation could be another option that is easily
handled by all methods inpainting included.

While an application of the inpainting to seismic data enhance-
ment with NLBF-AI is compelling, similar attribute interpolation
schemes can be applied to a vast collection of problems requiring
the estimation of seismic attributes on massive volumes of pre-stack
seismic data. Possible examples include the estimation of isotropic
or anisotropic velocity fields, parameters for CRS stack, multifo-
cusing parameters, and coefficients for isotropic and anisotropic
amplitude vs offset analysis. Likewise, in the area of seismic mon-
itoring, where multiple images are obtained in calendar time, and
corresponding attributes are extracted many times over, there is a
potential additional benefit of interpolating these parameters with
deep learning without repeating expensive processing and even ac-
quisition.

C O N C LU S I O N S

Local wavefront attributes form a skeleton of multidimensional
pre-stack data and localize dominant coherent local events. Such
a kinematic skeleton creates a foundation for powerful process-
ing steps such as data-driven enhancement and interpolation. For
example, powerful enhancement with non-linear beamforming re-
quires an estimation of five wavefront attributes at every point on
a dense 3-D X-Y-T grid. We present an advanced non-linear beam-
forming method (NLBF-AI) for data enhancement that combines
conventional compute-intensive wavefront attribute estimation with
a cost-effective DNN-based inpainting interpolation. Such a com-
bination allows addressing undesirable irregular gaps in wavefront
volumes caused by acquisition geometry and data quality issues as
well as intensional exclusions for improving computational perfor-
mance. In standard NLBF, estimation is conventionally performed
using costly local or global optimization. Acquisition geometry gaps
and data quality issues may lead to significant irregular exclusion
zones in wavefront attribute volumes. Besides, the brute-force es-
timation phase consumes more than 90 per cent of the computing
effort of overall data enhancement with standard NLBF. NLBF-AI
represents an advanced version combining conventional estimation
with an inpainting method based on DNN that can reliably and ef-
ficiently interpolate 5-D wavefront attributes inside irregular areas
excluded from conventional estimation. Inpainting can handle large
holes and unevenly spaced exclusion areas of arbitrary shapes and
forms. We have applied NLBF-AI to the real OBN data set with
a challenging signal-to-noise ratio and compared it with standard
NLBF. We have shown that even when inpainting has to interpolate
and infill intentionally excluded areas as large as 50–75 per cent, it
still delivers attributes and enhanced data of almost the same quality
as conventional NLBF as judged by strict NRMS metrics. For irreg-
ular exclusion zones, inpainting delivers better quality than other
methods not based on AI. Considering the low computational cost
of inpainting and high quality of interpolated attribute interpola-
tion, we envision increased use of NLBF-AI in seismic processing
of huge seismic volumes.
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A P P E N D I X : D N N D E S C R I P T I O N F O R
I M A G E I N PA I N T I N G

Following Liu et al. (2018), we design a Unet-like image inpaint-
ing architecture based on partial convolutions, Fig. A1. This DNN
contains 16 partial convolutional (PConv) layers, eight upsampling
layers and eight concatenation layers (skip connections). The input
image and mask dimensions are 512 × 512 × 3 (three channels for
each colour component). An activation function for the first eight

PConv layers (encoding, or feature extraction, part of the DNN)
is ReLU, while the last eight PConv layers (decoding part) have
LeakyReLu activation with negative slope coefficient equals to 0.2.
The total number of trainable parameters is 32 865 248.

We implement the partial convolution layer by extending the
existing convolution layer in TensorFlow. The DNN weights were
randomly initialized, and Adam stochastic optimization algorithm
was exploited during the training process.

Figure A1. UNet-like DNN architecture for image inpainting with partial convolutions. Arrows on the right label partial convolution layers: upward black
arrows indicating upsampling layers, downward black arrows show batch normalization, whereas red arrows denote concatenation layers.
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