
Deep-learning-based local wavefront attributes and their application to 3D
prestack data enhancement

Kirill Gadylshin1, Ilya Silvestrov2, and Andrey Bakulin2

ABSTRACT

The work presents a novel workflow to accelerate the esti-
mation of local wavefront attributes (LWAs) from massive 3D
prestack seismic data using deep learning (DL) focusing
on data enhancement. A standard estimation method based
on a semblance-based brute-force optimization provides good
results but is time consuming. Amodification of the U-net con-
volutional neural network, commonly used in image process-
ing applications, is proposed to link the seismic data with the
wavefront attributes. Color pixel image input for the neural
network is generated through a straightforward seismic data
regularization based on supergrouping followed by red, green,
and blue encoding. The proposed workflow can be adapted to
any 3D prestack seismic volume. Conventional semblance-
based attributes estimation is required for the training step
but only for approximately 1% of the total data. The prediction
step is very efficient and reduces the overall run time signifi-
cantly. The verification of the proposed approach is performed
on challenging real land and marine data sets. As a result, DL-
based estimation of LWAs accelerates computation up to 200
times compared to the standard method. The attributes from
the proposed DL-based approach indicate an acceptable match
compared with the brute-force semblance-based optimization
results. Conventional and proposed estimation methods result
in comparable prestack data enhancement results for more re-
liable seismic processing in challenging areas.

INTRODUCTION

Extracting kinematic traveltime information from prestack seismic
wavefields can enhance seismic data processing and imaging. Rou-
tinely, a conventional velocity analysis is used for this purpose by

fitting the reflection traveltimes with a global hyperbolic curve. An
estimated normal-moveout velocity represents the reflection wave-
field’s most commonly used kinematic wavefront attribute. Such a
global attribute is defined at zero offset. It approximates the reflection
moveout for all offsets within a small-spread approximation and all
azimuths at an arbitrary common-midpoint position. In contrast, local
kinematic wavefront attributes are estimated for each particular
offset, azimuth, or any other point in a 5D prestack data volume.
The most known local kinematic attributes are dips of local events
(first-order traveltime derivatives) estimated from prestack data in
common-shot or common-receiver gathers, which definition can
be traced back to the method of controlled directional reception
(Rieber, 1936; Riabinkin, 1957). Wavefront curvatures defined by
the second-order traveltime derivatives represent more advanced
attributes characterizing the kinematics of the wavefield.
Kinematic wavefront attributes are used by a variety of seismic

data processing methods. The first-order traveltime derivatives are
used in slope- or stereo-tomography methods (Billette and Lambaré,
1998; Lambaré, 2008; Lambaré et al., 2014; Bakulin et al., 2021a) to
estimate depth velocity models. Fomel (2007) shows how local event
slopes can be used to accomplish different time-domain imaging
tasks, from normal-moveout correction and Dix inversion to prestack
time migration. Curvatures of normal and normal-incidence-point
wavefronts at zero offset are used in the common-reflection-surface
(CRS) method to produce stacked seismic sections with an improved
signal-to-noise ratio (S/N) (Mann et al., 1999). An alternative ap-
proach for such enhanced stacking is the multifocusing (MF) method
(Berkovitch et al., 2008), formulated in terms of common-reflection-
element and common-reflection-point wavefronts’ curvatures. In
addition to stacking, the zero-offset kinematic parameters from these
two methods can be used for reflection tomography (Duveneck,
2004), diffraction imaging (Berkovitch et al., 2009; Rad et al.,
2018), data interpolation (Xie and Gajewski, 2017), and prestack data
enhancement (Baykulov and Gajewski, 2009). Common-offset gen-
eralizations of the CRS and MFmethods use a larger number of local
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attributes to describe the kinematics of the wavefront at an arbitrary
offset. Thus, they do not rely on global hyperbolic assumptions of the
zero-offset approximations and provide better stacking and data en-
hancement capabilities (Zhang et al., 2001; Müller and Spinner,
2010; Berkovitch et al., 2011). A more general representation of
the local stacking operators as the second-order traveltime approxi-
mations is used by Hoecht et al. (2009) to interpolate seismic data and
by Buzlukov and Landa (2013) for prestack signal enhancement in
the common-offset domain. Bakulin et al. (2018b, 2020) extend this
approach to arbitrary seismic gathers and develop nonlinear beam-
forming (NLBF) technique to efficiently enhance massive 3D pre-
stack land seismic data for different applications, such as imaging,
first-break picking, and full-waveform inversion (FWI).
Estimating the kinematic attributes is usually the computationally

demanding part of data processing algorithms discussed previously.
For modern high-density 3D seismic surveys, the size of the prestack
data can reach thousands of terabytes. Consequently, computing re-
sources and runtime become a bottleneck when the tedious estima-
tion of the kinematic attributes must be executed on such massive
data volumes. This often requires millions of core hours and becomes
an insurmountable limitation for real-data applications. In addition,
their multiple recomputations might be necessary at different spatial
scales for adaptive multiscale processing (Bakulin et al., 2019).
Therefore, different approaches are proposed to optimize the estima-
tion stage. For example, the earliest applications of the CRS method
rely on a search in a dimension-reduced data set, in which different
kinematic attributes are estimated by optimizing a semblance-based
coherency function in sequential order (Mann et al., 1999). To facili-
tate the coherency optimization, more advanced approaches use
global search methods, such as the evolutionary-based Nelder-Mead
algorithm (Xie and Gajewski, 2016), very fast simulated annealing
(Garabito, 2018), or an efficiency-improved genetic algorithm (Sun
et al., 2022a). In addition, different strategies can be applied for
estimating the kinematic parameters based on quality versus perfor-
mance trade-offs (Bakulin et al., 2021b). Furthermore, modern hard-
ware architectures also can improve performance (Sun et al., 2022b).
Other schemes are proposed to estimate the kinematic parameters as
an alternative to the coherency-based optimization approaches de-
scribed previously (using semblance or other coherency measures
as a cost function). They include a plane-wave destruction method
(Fomel, 2002; Santos et al., 2011), a multiple linear regression rep-
resentation (Hellman, 2014), and a structure-tensor-based approach
(Waldeland et al., 2018). However, when one faces the low quality
of seismic data, which often is the case in land seismic applications,
the standard semblance optimization approaches generally demon-
strate the most robust results.
Recently, a strong interest in machine-learning-based approaches

has emerged in seismic data processing and interpretation (Yu and
Ma, 2021). Different techniques are proposed to attenuate the strong
noise in the data. Zhu et al. (2019) use DeepDenoiser neural net-
work to separate noise and signal by learning a nonlinear regression.
Yu et al. (2019) apply an approach based on a deep convolutional
neural network (CNN) initially proposed for image denoising by
Zhang et al. (2017) to remove three kinds of seismic noise: random
noise, linear noise, and multiples. Kaur et al. (2020) propose a
CycleGAN algorithm to suppress ground roll. A physics-constrained
solution based on a combination of unsupervised and supervised
deep-learning (DL) approaches for ground-roll attenuation is pro-
posed by Pham and Li (2022). In seismic interpretation, the locali-

zation of faults, dips, and layers is similar to object detection
problems in computer vision. Deep neural networks (DNNs) for im-
age classification are used in seismic attribute analysis (Das et al.,
2019; Feng et al., 2020; You et al., 2020). Zu et al. (2021), Huang
et al. (2021), and Gadylshin et al. (2021) present approaches for local
slope estimation by CNNs directly from the prestack data. A method
for interpolation of wavefront attributes using inpainting with a par-
tially CNN is presented by Gadylshin et al. (2020).
This paper explores a DL-based approach to significantly accel-

erate the estimation of local wavefront attributes (LWAs) with a
focus on prestack data enhancement using the NLBF method. The
outline of the paper is the following. First, the NLBF method and
the LWAs are briefly discussed. Then, we describe the neural net-
work architecture used to derive the attributes from the prestack data
and explain its training and application workflow. Finally, the ob-
tained results for challenging marine and land data are presented
and discussed, focusing on prestack data enhancement.

METHOD

Local wavefront attributes

First, let us briefly define the local kinematic wavefront attributes.
Because the main focus of this work is the enhancement of prestack
seismic data using NLBF (Bakulin et al., 2020), the definition is tied
to this approach; however, the extension of the results to other ap-
proaches and applications is straightforward. According to the follow-
ing formula, enhancement with NLBF constitutes a local weighted
summation of neighboring traces using local time-shift corrections:

uðx0; y0; t0Þ ¼
X
x∈B0

wðx; yÞuðx; y; t0 þ Δtðx; y; x0; y0ÞÞ; (1)

where uðx; y; tÞ is a trace with spatial coordinates x and y and time t
defined at each point of a 3D X-Y-T prestack data subvolume. The two
spatial coordinates are arbitrary and depend on the type of input seis-
mic gather. It could be either receiver X and Y coordinates if we con-
sider common-shot data, shot X and Y coordinates in the case of
common-receiver data, or shot X and receiver Y coordinates if we
deal with the cross-spread gathers. The enhanced trace’s coordinates
after beamforming are given by x0 and y0: The summation is accom-
plished within a local rectangular region B0 around the position of the
enhanced trace along a traveltime surface with a moveout
Δtðx; y; x0; y0Þ. In NLBF, it is assumed that a second-order surface
can locally approximate this moveout as follows:

Δt ¼ tðx; yÞ − t0ðx0; y0Þ
¼ AΔxþ BΔyþ CΔxΔyþDΔx2 þ EΔy2; (2)

where A, B, C, D, and E are the unknown wavefront attributes and
Δx ¼ x − x0 and Δy ¼ y − y0 represent the spatial shifts of the
summed trace with respect to the output trace. Thewavefront attributes
are defined independently for each 3D input seismic gather on a regu-
lar estimation grid in the X-Y-T volume. They are functions of the pre-
stack time and the spatial point coordinate and are local in this regard.
The estimation grid does not necessarily coincide with the data grid.
Usually, it is chosen to be sparser to achieve better performance. More
technical details about the grids and the usage of the wavefront attrib-
utes in the NLBF method can be found in Bakulin et al. (2020). In the
standard estimation approach, the unknown coefficients A and B
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(wavefront first spatial derivatives or dips) andC,D, and E (wavefront
second derivatives or curvatures) are estimated by brute-force search-
ing over different beamforming surfaces and picking the one with the
best coherency defined by a maximum value of a semblance function
S (Taner and Koehler, 1969). The conventional NLBF method uses a
so-called “2 + 2 + 1” estimation strategy (Buzlukov and Landa, 2013;
Bakulin et al., 2021b). In the beginning, a search is performed for
parametersA andD in the X-T plane and independently for parameters
B andE in the Y-T plane using 2D cross sections of
the seismic data extracted from the 3D subvolume.
In the final stage, the last parameter C is estimated
in the 3D X-Y-T cube after fixing the previous four
parameters. Likewise, this study focuses on the
similar plane-by-plane estimation of parameters
A, B, D, and E, but using machine-learning
approach. The remaining parameter C is not esti-
mated (this is outside the scope of the paper) and is
set to zero in all the examples.

LWA deep neural network

The wavefront attributes in the NLBF method
are estimated at each point of a 3D regular spa-
tial and temporal grid covering each input seis-
mic gather, so the semblance optimization
problem must be solved many times, resulting
in computationally costly operation. This study
proposes using a DNN to accelerate the expen-
sive standard semblance-based optimization
workflow. CNNs, which are usually applied
to the analysis of visual imagery, rely on local
coherency (LeCun et al., 2015) and, hence, have
the potential to extract coherency information
from seismic data as well. A particular case
of CNN, initially proposed for biomedical im-
age segmentation, is a U-Net (Ronneberger
et al., 2015), an encoder-decoder CNN with skip
connections. Our LWA DNN is a modification
of the original U-net with additional layers.
LWA DNN directly links prestack seismic data
with wavefront attributes. The actual network
architecture (Figure 1) is based on the one used
by Gadylshin et al. (2020) for attributes’ in-
painting, with the main difference in exploiting
a conventional convolutional layer instead of
partial convolutions. The LWA DNN encoder
part contains eight convolutional layers fol-
lowed by batch normalization with rectified
linear unit (ReLU) activation function
(Fukushima, 1969). The decoder part has eight
upsampling layers followed by a convolution
operation with LeakyReLU activation (Glorot
et al., 2011). The LWA DNN input and output
are 512 × 512 red-green-blue (RGB) images,
similar to conventional image-oriented applica-
tions. By design, every output image point con-
tains all information from the input image. The
TensorFlow (Abadi et al., 2016) library with
graphical processor unit (GPU) support is used
for the numerical implementation.

LWA DNN training

The training step is used to estimate the neural network weights
according to Figure 2a. We use approximately 1% of the total num-
ber of input gathers uniformly distributed over the survey area to
create the training data set. First, the LWAs are estimated for this
data set using a conventional semblance-based optimization ap-
proach on a regular estimation grid, discussed previously. Although

Figure 1. The schematical drawing of the LWAs DNN architecture for direct kinematic
attributes estimation. Regularized prestack seismic gather (on the left) flows through the
encoder-decoder CNN with skip connections (shown by arrows) and is converted to
RGB image (on the right) encoding two output LWAs and semblance. The number
of channels in the corresponding layers is shown at the bottom.

Figure 2. A flowchart of the proposed DNN-based workflow including (a) the training
step to calculate the weights of the DNN and (b) the prediction step at which the network
is applied to estimate the wavefront attributes.

LWA DNN V279
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the attributes are defined on the regular grid, the irregularity in the
acquisition usually occurs in practice. Because the neural network’s
input and output are images with constant pixel size, data regulari-
zation is a required step in the proposed workflow. In the current
work, we use a so-called supergrouping — a simplified 3D local
stacking (after introducing the moveout corrections using legacy
velocities) of nearby traces in a sliding window with a small summa-
tion aperture (Bakulin et al., 2018a). An example of this step is shown
in Figure 3. It shows that supergrouping acts as an efficient regulari-
zation that collects signals onto a rectangular grid. Although we use
supergrouping for simplicity here, other more advanced regulariza-
tion techniques also can be applied similarly. The regular seismic
data are naturally converted to the RGB image space using a
grayscale colormap. This transformation is achieved by rescaling
the data onto interval [0,1] via linear mapping. Then, the input image
for the training step is created by generating a pixel triplet as
huðx; tÞ; uðx; tÞ; uðx; tÞi, with each colored component (red, green,
and blue) having the same value after rescaling. In the case of the
wavefront attributes, for each time-space point of the regular estima-
tion grid, a scaled triplet of dip and curvature in one spatial
direction and semblance (hA;D; Si or hB;D; Si) is transformed into

a <Red, Green, Blue> color image pixel (Figure 4). Each pair of
color images — input seismic gather and corresponding color-coded
attributes — form a single training sample, as shown in Figure 1.
To calculate the size of the training data set, let us consider a

single 3D seismic gather. The NLBF estimation grid has the size
of Nest

t × Nest
x × Nest

y grid points, where Nest
t is the number of time

samples and Nest
x and Nest

y are the number of estimation grid points
along the x- and y-directions, respectively. Performing the NLBF
estimation step for the dip and curvature pairs in the X-T plane
(A and D attributes) and Y-T plane (B and E attributes) results in
Nest

x þ Nest
y training samples. If we assume the fixed size of the seis-

mic gathers and hence the constant size of the estimation grid and
NG is the number of seismic gathers used for the creation of the
LWA DNN training data set, then the total number of training sam-
ples in the data set equals to NG · ðNest

x þ Nest
y Þ.

The DNN training is performed on a multi-GPU node in parallel
mode. For optimization, we use the Adam algorithm with an initial
learning rate of 2 × 10−4. The loss is mean-square error function.
To avoid overfitting, we use the early stopping regularization
technique.

LWA DNN application

After completing the training step and obtaining
the neural network weights, we are ready to apply
the trained LWA DNN to predict the LWAs for
the remaining 99% of the data (Figure 2b). Similar
to the training step, the data are first regularized
via supergrouping and converted to RGB images
using a grayscale colormap. Then, the data go
through the trained LWA DNN, which outputs the
predicted wavefront attributes encoded in the RGB
images. Decoding these images provides the
LWAs on the regular estimation grid, similar to the
standard semblance-based estimation approach.
Finally, these attributes are used for prestack data
enhancement following the typical beamforming
used by NLBF.

MARINE DATA EXAMPLE

As a first example, let us consider the modern
marine multiazimuth ocean-bottom node (OBN)
data set. It is designed for FWI and possesses

Figure 3. An example of a common-receiver gather from a long-offset marine OBN data
set (a) before and (b) after regularization via supergrouping.

Figure 4. Example of coloring (encoding stage) for two kinematic wavefront attributes and semblance required for NLBF. The multiple attributes
are encoded into a single RGB image comprised of three channels: red — dips, green — curvatures, and blue — semblance. The schematically
shown min and max values in the dip and curvature colorbars specify the estimation intervals used for search in the dimension-reduced data set.
The semblance colorbar is limited by the estimated minimum and maximum semblance values.
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ultralong offsets up to 20 km. Complex bathymetry and near-sur-
face velocity variation lead to significant distortions of the recorded
wavefield, as shown in Figure 3a. As a result, even early arrivals
often are obscured and incoherent. Enhancement with NLBF is re-
quired to precondition these data for first-break picking and FWI, as
discussed by Kim et al. (2019, 2020).
The data are acquired with a 50 m × 50 m shot spacing and

100 m × 300 m receiver (OBNs) spacing in inline and crossline di-
rections. The survey area is 20 km × 31 km, containing 95 receiver
lines or 11,027 common-receiver gathers (Figure 5). The resulting
full prestack volume size is approximately 15 TB. The LWA
DNN method is applied to this data set to estimate local dips and
curvatures for NLBF enhancement with a focus on early arrival
events. First, a conventional estimation of local wavefronts attributes
is performed based on brute-force semblance optimization as a per-
formance reference test. The estimation and summation apertures
(defined as half-offsets from the estimation grid point) equal 500 m
and 250 m, respectively. The Shaheen-II HPC cluster from KAUST
(King Abdullah University of Science and Technology, 2023a) is
used with a single CPU node having a dual-socket 16 core Intel Has-
well processor. The running time of the conventional algorithm is
2500 s per one seismic gather on a single CPU node. Hence, the
attributes estimation on the entire data set requires at least 25 h using
300 Shaheen-II CPU nodes, making it challenging for a regular pro-
duction processing flow.
For DL-based workflow, we also start with the standard attributes

estimation based on the brute-force semblance-based optimization
technique but only using 1% of all common-receiver gathers (Fig-
ure 5). Then, estimated dips, curvatures, and semblance are converted
to colored RGB images. Trace density in this data set often changes
within one gather, creating additional challenges for implementing
LWA DNN. By applying the supergrouping-based regularization,
the data are obtained on a regular grid with slightly enhanced S/N
(Figure 3b). Next, the LWA DNN training and verification are
performed. For this OBN data set, approximately 50,000 training
samples (pairs of the seismic data and the corresponding wavefront
attributes on a 512 × 512 grid) are obtained. As a rule of thumb, the
data set is randomly split in a proportion of 80/20. Here, 80% of the
data are used directly to update the LWA DNN weights during the
training. In contrast, the remaining 20% are used to control the gen-
eralization error (validation loss). As the loss function on the valida-
tion set starts to grow, we halt the training and work with the DNN
weights obtained after the 20th epoch (Figure 6). The LWA DNN
training is performed on the Ibex cluster also from KAUST (King
Abdullah University of Science and Technology,
2023b). The learning process on a single GPU
node with four Nvidia Tesla P100 takes approxi-
mately 1900 s.
An example of the predicted-encoded attrib-

utes is shown in Figure 7. A visual comparison
of the DNN prediction and the semblance-based
result, considered as ground truth, shows a rea-
sonable visual match between the two in terms of
the RGB images. Then, attributes are decoded
into physical values allowing us to make a more
quantitative comparison (Figure 8). Although the
results of the two methods are not identical, there
is a good correspondence between them, espe-
cially in terms of dips and semblance values.

Figure 5. The marine 3D OBN data set acquisition geometry. Posi-
tions of receivers are shown in dark gray, whereas shots are in blue.
The training data set is generated using common-receiver gathers
with the receivers’ positions indicated by the thick red points.

Figure 6. The training loss (red) and the validation loss (blue) for
the 3D marine OBN example are plotted versus epoch number. The
arrow indicates the epoch when the early stop regularization is
applied (generalization error starts to grow).

Figure 7. The LWA DNN prediction results for the 3D marine OBN data set: (a) the
seismic data, (b) the predicted-encoded LWAs, and (c) the ground truth computed by
conventional semblance-based optimization method.
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The curvatures are the least reliable estimation parameters, which
are typical for a standard semblance-based optimization. Despite
some differences, we conclude that the DNN prediction results rea-
sonably match the standard semblance-based method.
Estimating LWAs is an intermediate step in the signal enhance-

ment procedure. To evaluate the influence of the predicted attributes
on the beamforming result itself, the original raw data (Figure 9a)

are compared with the data after enhancement using conventional
(Figure 9b) and DNN-based NLBF (Figure 9c). Because, in this
case, data enhancement is focused on the early arrivals for FWI
application, the ranges (minimum and maximum) of possible dips
and curvatures are chosen correspondingly. Consequently, some
dipping events visible at later arrivals are partially suppressed.
Although the internal regularization step is used in the DNN-based

estimation workflow, the raw input and the en-
hanced output data have the same irregular
geometry. This is confirmed by the geometry
gap visible as a vertical stripe in Figure 9a–9c.
The difference between the two versions of the
enhanced data obtained by a simple subtraction
is reasonably small for practical purposes (Fig-
ure 9d). To quantitatively assess the enhancement
results, we calculate the normalized root mean
square (NRMS) (see Appendix A) between
two sets of data obtained with the standard
and DL-based NLBF implementations (see Fig-
ure 9e and 9f). The NRMS is a sensitive repeat-
ability metric of phase and amplitude similarity
between two traces extensively used in 4D seismic
(Kragh and Christie, 2002). TheNRMS plot is cal-
culated in a trace-by-trace manner using a sliding
window of 200ms. In the areas where the coherent
signal dominates (i.e., high S/N), almost perfect
repeatability (low NRMS) is achieved. In contrast,
in the areas where the noise prevails (low S/N),
lower repeatability (high NRMS) is observed.
The NRMS distribution histogram for the entire
gather (Figure 9f) shows the mean NRMS value
of approximately 31%, which often is acceptable
even for different vintages of 4D data.
The DNN-based prediction time for one

common-receiver gather takes approximately 3 s
in contrast to the 2500 s required for the standard
semblance-based estimation approach. If training
and prediction time are counted together, the pro-
posed method speeds up the conventional wave-
front attributes estimation scheme by two orders
of magnitude (Table 1). A regular NLBF estima-
tion time (second column in Table 1) and LWA
DNN training data set generation time (third col-
umn) are evaluated for a single Shaheen-II CPU
node. For example, suppose one uses 300 CPU
nodes and spends approximately 25.5 h to per-
form a regular NLBF estimation. In this case,
to normalize the output per unit of computing re-
sources, we report elapsed time of 7650 h (25.5 h
multiplied by 300 nodes) to quote the time re-
quired for a single node to complete the workflow.
In contrast, the LWA DNN training time (fourth
column) and prediction time (fifth column) are
calculated using a single Ibex GPU node, so no
normalization is required. The DL-based NLBF
estimation time (sixth column in Table 1) is a
sum of LWA DNN training data set generation
time, training time, and prediction time. The last
column in Table 1 (speed-up factor) is a ratio

Figure 8. Example of attributes prediction by LWA DNN for the 3D marine OBN data
set. (a) The conventionally estimated dips, (d) curvatures, and (g) semblance and (b) the
DNN-predicted dips, (e) curvatures, and (h) semblance. (c, f, and i) The horizontal pro-
files (at t = 2.5 s) comparing conventionally estimated (red) and DNN-predicted
(blue) attributes: (c) dips, (f) curvatures, and (i) semblance. The conventionally esti-
mated and predicted attributes are plotted using the identical colorbar.

Figure 9. Comparisons of the marine OBN data enhanced with standard and DNN-
based NLBF: (a) input data, (b) standard NLBF, (c) DNN-based NLBF, (d) the differ-
ence obtained by a simple subtraction between two versions of NLBF data shown with
the same scale, (e) the corresponding NRMS, and (f) its histogram.
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between a regular NLBF estimation time and DL-based NLBF
estimation time. We emphasize that 99% of the data were processed
using only a single GPU node. At the same time, to process 15 TB of
the 3D prestack data in a reasonable time, one has to use hundreds of
CPU nodes. These results demonstrate the ability of LWA DNN to
predict good-quality wavefront attributes, bypassing the expensive
standard semblance-based estimation scheme.

LAND DATA EXAMPLES

Synthetic land data from SEAM Arid data set

Before moving to a more challenging real land data example, the
proposed DNN-based workflow is applied to realistically complex
synthetic elastic data from the SEAM Arid model data set
(Oristaglio, 2012). The model represents complex near-surface con-
ditions typical to a desert environment that significantly deteriorate
seismic wavefield and may lead to extreme challenges during data
processing (Regone et al., 2017; Bakulin and Silvestrov, 2021c).
The near surface consists of alternating high- and low-velocity
layers creating complex wavetrains of near-surface arrivals overlay-
ing the weak reflections. In addition, the model contains shallow
and deep karst fields creating volumetric scattering of all arrivals.
The model is 10 km × 10 km in horizontal extent and 3.75 km in
depth (Figure 10). A typical field 3D orthogonal acquisition geom-
etry is extracted from the original dense SEAM
Arid data set with inline and crossline spacing for
receivers of 25 m and 150 m, respectively. Like-
wise, source inline and crossline spacing inter-
vals are 50 m and 100 m. Nine-geophone
arrays are further stimulated to mimic typical on-
shore acquisition in a desert environment. The
data have been passed through a conventional
data processing flow, including linear and ran-
dom noise attenuation. This experiment aims
to assess the feasibility of LWA DNN to predict
the wavefront attributes without consequent data
enhancement. As in the previous example, we
use the estimation aperture of 500 m and the
summation aperture of 250 m.
Estimation of the attributes is performed in the

cross-spread domain benefiting from the densest
sampling available in the acquisition geometry at
hand. Centers of cross-spread gathers (intersec-

tions of receivers lines and orthogonal to them sources lines) are
depicted as blue points in Figure 10. As in the previous example,
1% of the data are used for LWA DNN training (red points in
Figure 10). The selected cross-spread centers are extracted from
an evenly spaced regular subgrid to achieve the diversity and rep-
resentativeness of the training data set. Similar to the previous ex-
ample, we randomly split the training data set and use 80% of the
images for training and 20% to manage the generalization error.
After the training stage, the LWADNN is applied to a testing data

set not previously seen by the neural network. Figure 11a shows an
example of input gather from this testing set and the LWA DNN
output colored image with encoded attributes. For comparison, a
standard semblance-based optimization approach is applied to ob-
tain ground truth results and encode these attributes using the same
coloring scheme. Figure 11b shows a good correspondence between
RGB images from the LWADNN output and the standard approach.
Then, colored images are decoded back to compare the individual
attributes (Figure 12). We can see a reasonable match between the
dip and curvature attributes obtained with the traditional and the
proposed LWA DNN approaches. For example, Figure 12i com-
pares values extracted for all offsets at approximately 1.2 s with
good agreement, especially in the middle section. Although in
the conventional algorithm, the semblance is computed as an objec-
tive function (using 3D ensembles and not 2D slices; Bakulin et al.,
2020), in the proposed method, the semblance values are predicted

Table 1. Compute time for different DL-based NLBF steps compared with the regular NLBF estimation time derived from
various numerical experiments.

Numerical experiment

Regular NLBF
estimation
time (h)

LWA DNN
training data set

generation time (h)

LWA DNN
training
time (h)

LWA DNN
prediction
time (h)

DL-based
NLBF estimation

time (h)

DL-based NLBF
speed-up
factor

Marine OBN data set 7650 77 0.52 9.2 86.72 88

Synthetic land SEAM data set 1323 14 0.24 8.7 22.94 57

Real land single-sensor experiment 1 76 0 0 0.37 0.37 205

Real land single-sensor experiment 2 76 0.78 0.11 0.37 1.26 60

Real land single-sensor experiment 3 76 0.78 0.3 0.37 1.45 52

To normalize the comparison, standard NLBF estimation time and training data set generation time were estimated as if a single CPU node on the Shaheen-II HPC cluster is used.
Likewise, the LWA DNN training and prediction time was estimated on a single GPU node of the Ibex cluster.

Figure 10. (a) The SEAM Arid velocity model and (b) the corresponding acquisition’s
cross-spread centers are plotted as blue points in the shot X/receiver Y domain. Red points
indicate the positions of the selected cross spreads used for LWA DNN training.
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by the LWA DNN along the 2D slices without actual computation
from the data. To more fairly compare the quality of the estimated
attributes, we directly recalculate semblance values using the esti-
mated A and D parameters by these methods using the same actual
2D slice of the data extracted from the X-T plane (Figure 12j and
12k). This more direct like-for-like comparison reveals that sem-
blance values from the standard method are higher and more

spatially consistent. In other words, the conventional method finds
slightly more coherent events than the LWADNN. Nevertheless, the
event kinematics are still similar, and the differences are unimpor-
tant for the data enhancement application.
In terms of performance, the LWA DNN training takes approx-

imately 850 s. For this numerical experiment, combining the train-
ing data set generation time with the LWA DNN training and

prediction time, we arrive at 23 h to perform
DL-based NLBF estimation. In comparison, the
regular NBLF estimation time is approximately
1323 h (see Table 1). The obtained speed-up fac-
tor of approximately 57 is significant for practi-
cal applications.

Field single-sensor data from the desert
environment

In the final example, the proposed LWA DNN
approach is applied to broadband single-sensor
single-source land 3D data from the desert envi-
ronment (Pecholcs et al., 2012; Cordery, 2020).
Figure 13 shows an example of a common-
receiver gather after passing through a compre-
hensive data processing flow. Despite the signifi-
cant effort in processing, reflected waves remain
largely invisible. Furthermore, such single-sen-
sor data from the desert environment are known
to have the lowest S/N and are very challenging
to process (Bakulin et al., 2020; Cordery, 2020).
Therefore, signal enhancement algorithms, such
as NLBF, are essential for such data sets.
In acquisition, orthogonal source and receiver

lines 75 m and 150 m apart are used, each with
12.5 m inline station spacing. As a result, cross-
spread gathers with a high density 12.5 m× 12.5 m
grid require approximately 1 h per gather for
the standard attributes estimation based on a
brute-force semblance optimization. Similar to
the previous examples, we use the estimation aper-
ture of 500 m and the summation aperture of
250 m. Therefore, significant computational re-
sources are required to process the entire data
set with many gathers. As in the previous exam-
ples, the DNN-based workflow provides computa-
tional savings for such high-density 3D data. For
this example of the LWADNNworkflow, a single-
source line consisting of 460 cross-spread gathers
is used.
Similar to the previous examples, we create a

sparse training data set (approximately 1% of the
total data) to calculate the weights of the DNN.
However, in this case, three different experiments
are considered to develop the optimal DL-based
workflow. The first two are applications of the
transfer learning approach with and without ad-
ditional limited training using the initial LWA
DNN weights acquired in the synthetic SEAM
Arid model experiment. The third experiment
is LWA DNN training from scratch using only
field data.

Figure 11. The LWA DNN prediction results on SEAM Arid data set: (a) the seismic
data, (b) the predicted-encoded attributes, and (c) the ground truth computed by conven-
tional semblance-based optimization method.

Figure 12. Example of attributes prediction by LWA DNN for the 3D marine OBN data
set. (a) The conventionally estimated dips, (d) curvatures, and (g) semblance and (b) the
DNN-predicted dips, (e) curvatures, and (h) semblance. (c, f, i, and l) The horizontal pro-
file of conventional and DNN-predicted values at t = 1.2 s. (c) Dips, (f) curvatures, and
(i) semblance with DNN-predicted attributes in blue and conventionally estimated in red.
Please note that (g) semblance is computed using an entire set of optimal parameters (dips
and curvatures) and using 3D ensembles of the data. In contrast, panel (h) is predicted
by DNN using a 2D slice of the data (i.e., 2D ensembles). For a more direct comparison,
(j–l) show semblance panels recalculated using the exact same X-T slice of 2D data and
substituting actual A andD parameters estimated by each of the methods. The result for the
conventional method is shown in (j) and for the DNN-based method in (k).
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Transfer learning with no additional training (experiment 1)

First, we only use LWA DNN weights obtained after training on
the synthetic SEAMArid data. It allows determining to what degree
the DNN trained on synthetic data can handle challenging field data
that was not seen before. Such a question is reasonably justified for
this case because the synthetic model and data replicate, to a large
extent, data features typical for an arid environment in which the
real data are acquired. In addition, these data sets have similar band-
widths and these are sorted into the cross-spread domain. Next, we
apply the pretrained LWA DNN to predict wavefront attributes for
the field single-sensor data with these similarities in mind. The pre-
dicted dips and curvatures are shown in Figure 14a and 14e. Com-
paring them with the conventional semblance-based optimization
solution (Figure 14d and 14h), one can see that the LWA DNN re-
solves some general features of the attributes, such as correctly pre-
dicting positive dips on the left and negative dips on the right.
However, the absolute values and more detailed features remain un-
resolved. This can be seen from Figure 15a and 15d, in which the
dips and curvatures attributes are extracted along the horizontal pro-
file at 1 s traveltime. The magnitudes of the DNN-predicted dips
and curvatures are lower than the reference solution, and overall,
their behavior is smoother.

Transfer learning with additional limited training (experiment 2)

In the next experiment, the same pretrained neural network from
the synthetic data is used, but additional limited training is applied
using the field single-sensor data to further adapt the DNN weights
for this specific case. Only four training epochs are run, taking ap-
proximately 400 s. The prediction results obtained with this new
neural network are shown in Figures 14b, 14f, 15b, and 15e. We
clearly observe much better correspondence to the conventional
reference solution. In case, additional training allows DNN LWA
to resolve attributes’ magnitudes and outline further details not re-
vealed in the previous experiment.

Training LWA DNN from scratch using only
field data (experiment 3)

In the final experiment, the LWA DNN is
trained from scratch using only a small subset
(1%) from the field data and randomly initialized
DNN weights before the training. The training
process takes approximately 1100 s, more than
two times the training time spent in the previous
experiment with the pretrained network. The cor-
responding predicted attributes from the testing
data set are shown in Figures 14c, 14g, 15c,
and 15f. Overall, the results are very close to
the ones obtained in experiment 2.
To judge the quality of estimated beamforming

trajectories, we recalculate the semblance values
using the estimated wavefront attributes from all
three experiments. The semblance obtained after
the standard NLBF estimation subroutine is used
as a reference. The corresponding average sem-
blance coherency measures per training seismic
gather are provided in Table 2 for different experi-
ments. As expected, the best average semblance is

for the reference test (0.0150). Out of three DNN versions, the second
experiment gives the highest value of 0.0124, slightly lower than the
reference. Converting these semblance values to S/N values (see
Bakulin et al., 2022), we obtain a very low S/N value of approxi-
mately −20 dB, which illustrates the challenges faced during the
processing of such data. Finally, the mean absolute percentage error
(MAPE) value is calculated between the parameters from the refer-
ence test and three LWA DNN training experiments (see Table 3). In
this case, the best MAPE value also is obtained in experiment 2

Figure 13. The example of cross-spread gather from single-sensor
land data (AGC applied).

Figure 14. (a–d) Dips and (e–h) curvatures for single-sensor land data predicted by the
LWA DNN using different scenarios: (a and e) transfer learning experiment 1, (b and
f) transfer learning experiment 2, (c and g) training from the scratch experiment 3, and (d
and h) the reference from conventional estimation used as ground truth.
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(31%). The third experiment comes closely behind (35%), whereas
the worst MAPE of 46% characterizes the first experiment.
Whereas comparing attributes and semblance values provides in-

sights into the performance of the DL-based estimation approaches,
the ultimate goal is to obtain enhanced prestack data. Therefore, let us
compare the enhanced data generated by these three experiments
(transfer learning, transfer learning with additional short training,
and LWA DNN training from scratch) and contrast them to the con-
ventional NLBF (Figure 16). Despite the predicted attributes’
differences, the final enhanced prestack seismic data appear very sim-
ilar, even for transfer learning experiment 1. Finally, the NRMS met-
ric is calculated over the area shown by a red rectangle in Figure 16e.
NRMS metric quantifies the sample-by-sample similarity between
DL-based and conventionally enhanced data. For example, the
average NRMS for experiment 1 is approximately 59% (Figure 17a).
Likewise, it is approximately 32% for experiment 2 (Figure 17b)
and approximately 37% for experiment 3 (Figure 17c). Although
59% may be somewhat high for 4D processing, such results could
still be acceptable for conventional 3D processing. However, it is
clear that additional training on the field data gives a significant edge,
with the reduction in NRMS to 32% representing a considerable
improvement in similarity. NRMS metric suggests that the optimal
DL-based scenario is experiment 2, leading to the best semblance
value and prestack data closest to what is achieved with conventional
NLBF.
The overall DL-based NLBF performance is summarized to-

gether with the regular NLBF estimation in Table 1. Although the
regular NLBF is performed on hundreds of CPU nodes of the

Shaheen-II HPC cluster, in the summary table, the time for a single
CPU node is presented to compare it with LWA DNN computation
on a single GPU node of the Ibex cluster. The total estimation time
within the LWA DNN workflow comprises training data set gener-
ation, training, and prediction time. For marine and land data testing
data sets, the DNN-based workflow provides a significant speed-up
factor compared to a regular NLBF estimation procedure varying
from 52 to 205, depending on the estimation scenario.

DISCUSSION

We have shown that direct estimation of wavefront attributes
from 3D prestack data using LWA DNN can significantly speed up
data enhancement without unduly sacrificing the quality of the re-
sults. Although the DNN-predicted attributes are acceptable for en-
hancement, their accuracy tends to be lower than those obtained by
the standard semblance-optimization approach. Other geophysical
applications of the wavefront attributes, such as tomography or dif-
fraction separation, can be more sensitive to the attributes’ quality
and may require more detailed analysis. Another potential applica-
tion of the DL-based approach is to reduce the search intervals for
the standard semblance-based methods by using the predicted
attributes as a preliminary estimated value.
Currently, we use colored RGB images representing 2D slices of

the encoded dips, curvatures, and corresponding semblance values
as output. Although the semblance value can be directly recalcu-
lated once the dips and curvatures are estimated, predicting it with
DNN gives us additional confidence in the results and allows us to

quality control them. An alternative implementa-
tion may exclude semblance from the training/
prediction and focus only on dips together with
curvatures or dips only. Moreover, it also is
possible to avoid converting the attributes to
RGB images. In this study, we primarily do it
to achieve easy visual correspondence with the
previous image-based DNN applications and to
simplify the visual quality control during the
training. In fact, any properly normalized tensor
with an arbitrary number of channels (wavefront
attributes, their combinations, or some functions
of wavefront attributes) could be used. The same
reasoning also could be applied to the input data,
meaning that the regularization and the gray-
scale-based color encoding steps might be
avoided or implemented differently than in the
current workflow using another network archi-
tecture.
The optimization of LWA DNN architecture

that could lead to more accurate attributes could

Figure 15. The horizontal profiles of conventional and DNN-predicted values at t = 1 s
for single-sensor land data. The comparison of the (a–c) predicted dips and (d–f) cur-
vatures for three numerical experiments: transfer learning (experiment 1 — a and d),
transfer learning with additional short training (experiment 2 — b and e), and LWA
DNN training from scratch (experiment 3 — c and f). Conventional estimation results
are shown in red, whereas DNN predictions are in blue.

Table 2. Average semblance per 3D X-Y-T estimation grid
over the testing data set for three LWA DNN training
scenarios and the reference standard NLBF test.

Experiment 1 Experiment 2 Experiment 3

Reference
value (standard

NLBF)

0.0090 0.0124 0.0116 0.0150

Table 3. The MAPE value computed for each pair of
semblance cubes obtained from the reference case and each
of the three training scenarios.

Experiment 1 Experiment 2 Experiment 3

46% 31% 35%

The reference cube is obtained using a conventional estimation procedure.
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be a topic of further research. There are different
possible options, including the usage of residual
blocks instead of the conventional convolutional
blocks, which in many cases, significantly
improve the quality of the DNN predictions.
Other architectures, different from U-net and
ResUnet, also could be evaluated. Particular
attention should be paid to creating an optimal
training data set. Whereas currently, we use ap-
proximately 1% of the total seismic data uni-
formly distributed over a survey area to create
representative samples, more advanced options
based on gathers’ similarity functions may be
used to provide more diversity in training.
Overall, whereas the results presented in this

study show the great potential of DNN-based
workflows to improve the wavefronts’ attribute
calculations significantly, many potential ways
exist for further improvements. We hope that this
work will be a good starting point for other re-
search studies in this direction.

Figure 16. The comparison of the different enhancement scenarios for single-sensor land data: (a) transfer learning experiment 1, (b) transfer
learning experiment 2, and (c) LWA DNN training from scratch. For comparison, input data are shown in (j) and supergrouped preconditioned
data are shown in (d). The difference between reference test (e) with standard NLBF and various versions of DNN-based enhancement are
presented on plots (f–i) for experiment 1, experiment 2, experiment 3, and supergrouping, respectively. All plots are presented using the
identical colorbar. The red rectangle indicates the area used for the NRMS comparison (see Figure 17).

Figure 17. The NRMS plot computed between reference NLBF data set and various
DNN-based enhancement scenarios for single-sensor land data: (a) transfer learning ex-
periment 1, (b) transfer learning experiment 2, and (c) the LWA DNN training from
scratch experiment 3. The lowest NRMS is observed in (b), suggesting the best sim-
ilarity with reference data.
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CONCLUSION

A novel DNN-based workflow is presented for the accelerated es-
timation of LWAs required to enhance massive 3D prestack seismic
data sets. It is based on an automatic LWAs estimation using a spe-
cially trained convolutional DNN called LWA DNN. During the
training, the workflow performs a conventional semblance-based
attributes estimation for approximately 1% of the total data. The data
regularization step based on supergrouping is incorporated to provide
fully populated input images to DNN. The next step is encoding the
input data and the output attributes into colored images to derive the
inputs analogous to the previous DNN-based applications for visual
imagery analysis. The proposed approach is verified on two challeng-
ing real land and marine data sets. We demonstrate that significant
speed up is achieved using DNN compared to the conventional
method — up to the factor of 200 while preserving an acceptable
quality of the enhanced data as a final output. This new approach may
enable multiscale processing of massive 3D prestack seismic data sets
that are currently too computationally demanding.
Although this workflow is adaptive to a particular seismic data set,

a set of transfer learning experiments is performed to assess the fea-
sibility of predicting the wavefront attributes using the previously vis-
ible input data to the LWA DNN. Numerical tests demonstrate that
the best prediction results for challenging 3D land single-sensor data
are achieved using the LWA DNN pretrained on a synthetic SEAM
Arid data set and supplemented with an additional short training on
the field data at hand (i.e., weights adaptation). This observation as-
sumes that the pretrained LWA DNN weights can be used for accel-
erated local wavefront estimation of analogous data sets, i.e., for data
with similar characteristics: sorting, acquisition, S/N, and bandwidth.
An initial demonstration of the transfer learning approach is provided
using the realistic land synthetic data set as a guide for initial DNN
weights with the additional short retraining and subsequent applica-
tion to the real data. Further investigation of DNN-based workflow is
required from the practical point of view to find the best estimation
strategy in terms of performance and quality.
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APPENDIX A

DEFINITION OF REPEATABILITY AND
FORECASTING ACCURACY METRICS

The NRMS between two traces at and bt at point t0 using a win-
dow size dt is the rms of the difference divided by the average rms
of the inputs and expressed as a percentage:

NRMSðt0Þ ¼
200 × rmsðat − btÞ
rmsðatÞ þ rmsðbtÞ

; (A-1)

where the rms is defined as

rmsðxtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPt0þdt

t0−dtðxtÞ2
N

s
(A-2)

and N is the number of samples in the interval ½t0 − dt; t0 þ dt�. The
NRMS is usually quoted in percent and ranges from 0% to 200%,
with low values representing better similarity or repeatability.
The MAPE is a measure of prediction accuracy of forecasting in

statistics, and it is usually expressed as follows:

MAPE ¼ 100%

N

XN
i¼1

����Ai − Fi

Ai

����; (A-3)

where Ai is the actual value and Fi is the forecast value.
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