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Summary 
 
Modern land seismic data are typically acquired using high spatial trace density but single sensors or 

small source and receiver arrays. These datasets are challenging to process due to their massive size 
and rather low signal-to-noise ratio caused by scattered near surface noise. Prestack data enhancement 

becomes a critical step in processing flow. Nonlinear beamforming was proven very powerful for 3D 

land data. It requires computationally costly estimations of local coherency on dense spatial/temporal 
grids in 3D prestack data cubes and poses inevitable trade-off between performance of the algorithm 

and quality of the obtained results. In this work, we study different optimization schemes and discuss 

practical details required for applications of the algorithm to modern 3D land datasets with hundreds 

of terabytes of data. 
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Introduction 

The land seismic industry is moving toward high-density surveys using smaller source/receiver arrays 

or single sensors. Large field arrays with 5-10 m intra-arrays spacing used in the past were designed to 

attenuate strong noise caused by ground-roll and multiple scattering in the near-surface. Theoretically, 

denser data sampling and decreased size of the arrays should allow better sampling of the noise 

wavefield facilitating its attenuation during processing stage. In practice, high-density surveys with 

uniform and dense 5-10 m sampling in all directions remain prohibitively expensive with current sensor 

technology. Current practice is to acquire orthogonal 3D surveys with smaller inline and much larger 

crossline spacing. With small arrays or single sensors, such acquisition results in massive datasets with 

rather low signal-to-noise (SNR) ratio that are challenging to process. Conventional processing 

techniques such as surface-consistent scaling and deconvolution, statics estimation and velocity 

analysis, all require good prestack SNR and deliver suboptimal results otherwise. This particularly 

affects quality of prestack inversion that requires reliable and accurate prestack amplitudes in the 

gathers. Therefore, data enhancement step becomes critical component in processing of modern high-

channel count and single-sensor seismic surveys. 

Coherency-based data enhancement techniques are widely used in the post-stack domain, and can be 

applied to improve the signal level in prestack data in pre-migrated and post-migrated domains. The 

main techniques from this category are based on local slant stacking of the data and selection of the 

most coherent components. More advanced approaches, coming mainly from common-reflection 

surface (CRS) and multifocusing theory, utilize second-order approximations of the wavefront to better 

describe kinematic of the events and to stack locally along them to increase SNR. The moveout can be 

described using either by a global operator or a local one. The latter type of the methods appear most 

flexible for enhancing challenging 3D land data where static issues often invalidate any global moveout 

behavior. At the same time, these methods rely on intensive numerical search for optimal coherency 

over the entire 5D data domain making them computationally expensive.  By representing a traveltime 

surface locally as a general second-order curve (Buzlukov and Landa, 2013), a nonlinear beamforming 

algorithm was introduced for enhancing massive challenging land datasets (Bakulin et al., 2019). In this 

work, we discuss implementation details of this algorithm and provide insights into its quality and 

performance, and the trade-offs for 3D land processing operating on massive datasets with petabytes of 

data. 

Method 

The main idea of the nonlinear beamforming method is to describe traveltime moveout locally as a 

second-order surface, estimate its parameters and perform local summation along this local moveout to 

improve the signal-to-noise ratio. Considering the data space with a coordinate vector         

�⃗� = (𝑥𝑠, 𝑦𝑠, 𝑥𝑟, 𝑦𝑟) defined by source and receiver x and y coordinates, the traveltime, t, can be locally

represented using a Taylor series expansion as: 

𝑡(�⃗�0 + ∆�⃗�) = 𝑡(�⃗�0) + 𝐴𝑇∆�⃗� + ∆�⃗�𝑇𝐵∆�⃗�,    (1)

where 𝐴 is a first-derivative gradient vector and 𝐵 is a matrix of second derivatives. In total, 14 unknown

coefficients of vector A and matrix B define the local traveltime surface at a current sample. Estimation 

of all these kinematic parameters is too costly from the computational point of view and simplifications 

of formula (1) are usually required. In the current work, we fix two arbitrary directions in the data space 

and consider sections of the traveltime surface along two other directions only. This reduces the number 

of the unknown parameters to five. We estimate these local kinematic parameters by scanning many 

different trajectories and finding one, with the best coherency defined by the maximum value of a 

semblance function. Optimization can be implemented either as a simultaneous global 5D search for all 

five parameters, or sequential estimation of one parameter after another as in a coordinate-descent 

method. The sequential strategy is more computationally attractive; however, it may get trapped into a 

local maxima and produce erroneous results when the signal-to-noise ratio in the data is low. Another 

hybrid solution is to utilize a sequential “2+2+1” strategy (Hoecht et al., 2009), searching first for a pair 

of parameters (first and second traveltime derivatives) in one plane, then in another plane, and then for 

mixed derivative coupling both directions. Figure 1 shows real-data example illustrating comparison of 
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the global 5D search and the sequential “2+2+1” strategy. The global 5D search was done using two 

approaches. In the first one, a brute force method was applied where we scan all possible values of five 

kinematic parameters to maximize semblance function. In the second one, we use adaptive simulated 

annealing method to make global optimization more efficient. The “2+2+1” strategy was implemented 

using the brute force method only. As one can see, the “2+2+1” strategy provides a slightly noisier 

semblance panel showing that this method is less robust with respect to noise. At the same time, overall 

semblance behaviour is similar to 5D case, and the enhanced data themselves are comparable.  

To evaluate computational performance of the approaches, we compare number of semblance 

calculations required for all the three methods. Search intervals encompass range of possible dips and 

curvatures of seismic events (measured as maximum moveout in ms over a defined aperture length). 

Figure 2 depicts relative computational effort involved in a single parameter estimation step at one time 

sample for a synthetic numerical test. As expected, number of calculations for 5D brute-force approach 

significantly exceeds that of two other methods. In addition, it rapidly increases with increasing size of 

the searching intervals. The number of calculations required for 5D simulated annealing is also big, but 

it remains more or less constant when intervals increase. The “2+2+1” strategy shows best performance 

with number of required semblance calculations being one to two orders of magnitude less than for 5D 

simulated annealing approach. Taking into account massive size of the prestack seismic datasets and 

comparable quality of the results, we conclude that “2+2+1” strategy is a reasonable compromise 

between quality and performance, at least for the data with a moderate noise level as considered in this 

example.  

Figure 1 Quality comparison between different semblance optimization strategies. Estimated 

semblance values for brute-force hybrid “2+2+1” approach (a) are slightly noisier than for simulated 

annealing 5D optimization (b) and brute-force hybrid 5D approach (c).  Data enhancement results are 

comparable between brute-force hybrid “2+2+1” (d), simulated annealing 5D method (e), and brute-

force global 5D  approach (not shown here). Original data is depicted in (f) for reference. 

Optimizing spatial and temporal estimation grid 

Once we settled optimization strategy for each spatial/temporal location, next step is to optimize the 

global grid used for parameter estimation in the entire dataset. Using every trace and every time sample 

is not computationally feasible for massive datasets. More optimal method is a so-called operator-

oriented approach (Hoecht et al., 2009), where “operator” defines a traveltime surface along which the 
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local moveout correction is done. In this approach, kinematic parameters are estimated and stored at 

samples of sparse so-called parameter traces that are located at decimated uniform grid in data space. 

After estimation step, these parameters define estimated travel-time trajectories spread around the 

neighbourhood and used to perform local summation for each of the actual data traces. The coarser the 

spatial grid of parameter traces, the faster algorithm performs. At the same time, too coarse grid may 

reduce accuracy of estimated moveouts and reduce quality of enhanced data traces located far from the 

operator traces. It is convenient to introduce a ratio (𝐾𝑒𝑠𝑡) between the step size of the estimation grid

and a summation aperture that defines size of the area used for stacking (beamforming). The value of 

𝐾𝑒𝑠𝑡 between 0.3 and 1 was found experimentally to provide reasonable results. Smaller value of  𝐾𝑒𝑠𝑡

usually leads to better quality of the summation results, but the computational effort increases. For a 

fixed ratio of  𝐾𝑒𝑠𝑡 (say 0.7 in the current case), there are ways to further improve computational

efficiency by estimating parameters on a coarser regular or random grid, and then interpolating 

parameters to the original grid defined by  𝐾𝑒𝑠𝑡. While advanced interpolation and inpainting techniques

are subject of other studies (Gadylshin et al., 2019), here we focus on simplest linear interpolation 

solution. We define the ratio between the grid steps of this new coarser grid and the originally chosen 

estimation grid as 𝐾𝑖𝑛𝑡
𝑥 , assuming that the same steps are used in both spatial dimensions.  Figure 3

shows a comparison between the originally enhanced data (𝐾𝑖𝑛𝑡
𝑥 = 1) and the data, where the estimation

of parameters was done every second spatial point following by parameter interpolation (𝐾𝑖𝑛𝑡
𝑥 = 2). The

achieved speedup in the second case is four times (due to 2D estimation grid), while the enhancement 

results are comparable (Figure 4a). It is interesting to note that performing summation at this coarser 

grid without additional parameter interpolation (equivalent to the usage of 𝐾𝑒𝑠𝑡 = 1.4 ), significantly

deteriorates the results (Figure 4b). 

To increase performance of the algorithm, similar approach can be applied along the temporal axis as 

well. Instead of estimating parameters at every time sample, we prescribe a coarser time grid with a 

ratio of  𝐾𝑒𝑠𝑡
𝑡   with respect to the sampling. Since the semblance during a coherency search is calculated

in a certain time window, the half-window size appears as good candidate for a grid step in time direction 

as confirmed by numerical computations. NRMS values (Figure 4c) obtained with such a step (𝐾𝑒𝑠𝑡
𝑡 =

11 in this case) are comparable to the previous spatial interpolation results with 𝐾𝑖𝑛𝑡
𝑥 = 2. In the current

example, additional performance speedup is a factor of four. Increasing 𝐾𝑒𝑠𝑡
𝑡  beyond 11 (half-window

size) produces data with larger NRMS values indicating unacceptable deviation from a reference dataset 

without use of interpolation (Figure 4d).   

Conclusions 

Efficient implementation of nonlinear beamforming based on estimating local coherency on dense 

spatial/temporal grids in 3D prestack data cubes poses inevitable trade-off between performance of the 

algorithm and quality of the obtained results. We demonstrate that hybrid “2+2+1” optimization scheme 

provides reasonable compromise between speed and quality and lead to reliable results on both synthetic 

and real data. It remains computationally demanding for massive 3D land datasets. To achieve additional 

speedup, we implement estimation of kinematical parameters on coarser grids in space and in time 

followed by interpolation back to original grid. With not too aggressive grid decimation, straightforward 

linear interpolation delivers very similar enhanced data as measured by sensitive NRMS repeatability 

metric. For aggressive decimation, interpolation can still be applicable but more advanced parameter 

interpolation schemes are required.  
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Figure 2 Relative computational effort estimated for different optimization strategies. First column 

specifies values of maximum dip and curvature that define search intervals. Remaining columns shows 

number of required semblance calculations to obtain a solution. Observe significantly smaller number 

of calculations in “2+2+1” strategy.  

Figure 3 Original data (a), enhanced data without parameter interpolation  (𝐾𝑖𝑛𝑡
𝑥 = 1) (b) and with

interpolation (c) where the estimation of parameters was done at every second spatial point following 

by parameter interpolation (𝐾𝑖𝑛𝑡
𝑥 = 2). Observe similar quality of (b) and (c).

Figure 4  NRMS values quantify repeatability or similarity between reference dataset enhanced using 

original dense grid and other versions of enhanced data obtained using different interpolation 

approaches: (a) 𝐾𝑒𝑠𝑡 = 0.7, 𝐾𝑖𝑛𝑡
𝑥 = 2, 𝐾𝑖𝑛𝑡

𝑡 = 1; (b) 𝐾𝑒𝑠𝑡 = 1.5, 𝐾𝑖𝑛𝑡
𝑥 = 1, 𝐾𝑖𝑛𝑡

𝑡 = 1;
(c) 𝐾𝑒𝑠𝑡 = 0.7, 𝐾𝑖𝑛𝑡

𝑥 = 1, 𝐾𝑒𝑠𝑡
𝑡 = 11; (d) 𝐾𝑒𝑠𝑡 = 0.7, 𝐾𝑖𝑛𝑡

𝑥 = 1, 𝐾𝑒𝑠𝑡
𝑡 = 32. Average NMRS values are

27% for (a), 51% for (b), 30% for (c) and 36%  for (d) with smaller values indicating closer resemblance 

to reference dataset. We consider NRMS ≤ 30% as an acceptable range here. 


