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Summary 
 
Nonlinear beamforming is an effective method to enhance the quality of noisy seismic data. It uses local traveltime 

operators to describe local wavefronts, and then stack neighboring traces guided by these operators to enhance 

data quality. The 2+2+1 method is a pragmatic solver for estimating local traveltime operators from input data, 

but its calculation efficiency is not satisfying when the solution space is big. We speed up the 2+2+1 method using 

graphics processing unit (GPU) computing with the Compute Unified Device Architecture (CUDA) programming 

language. We introduce our GPU-based 2+2+1 algorithm, and demonstrate its efficiency improvement using a 

field data example. A speed-up factor of ~10 is obtained compared to the CPU version of the 2+2+1 method.  
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Introduction 
 
Nonlinear beamforming (NLBF) is a recently proposed technology for enhancing 3D seismic data 
quality (Bakulin et al., 2020; Sun et al., 2022a). NLBF first estimates local traveltime operators 
directly from data, and later stacks every trace in the input data with its neighboring traces along 
wavefronts determined by local traveltime operators. To some extent, NLBF is similar to many other 
operator-based technologies, including the Common Focus Point technology (Sun et al., 2014; Sun 
and Verschuur, 2014), the Common Reflection Surface technology (Jäger et al., 2001) and the 
multifocusing technology (Berkovitch et al., 2011), but NLBF stands out as due to its versatility: it 
can deal with data in different domains and it can also work with NMO-corrected data. 
 
The key to the success of NLBF is to efficiently estimate local traveltime operators from data, as this 
usually has to solve millions or even billions of nonlinear optimization problems per input gather (Sun 
et al., 2022a). The 2+2+1 method is a pragmatic solver for estimating local traveltime operators 
(Bakulin et al., 2018), but its efficiency in general is not satisfying enough when the solution space 
becomes large. 
 
GPU (graphics computing unit) computing via the CUDA (Compute Unified Device Architecture) 
programming language has become an important high-performance computing tool (NVIDIA, 2020), 
and nowadays more and more supercomputers are powered by GPUs, for example the Dammam-7 
supercomputer (Moss, 2021). We hereby introduce our GPU-assisted 2+2+1 method, yielding a 
speed-up factor of ~10 over our previous 2+2+1 method running on the CPU platform. 
 
The 2+2+1 method 
 
Due to the space limitation, in this paper, we can only briefly introduce the 2+2+1 method in NLBF. 
For comprehensive details, please refer to Sun et al. (2022b).  
 
The local traveltime operators in NLBF are defined by a second-order mathematical equation: 
∆t(x, y; x0, y0) = t(x, y) − t(x0, y0)    

= A ∙ (x − x0) + B ∙ (y − y0) + C ∙ (x − x0) ∙ (y − y0) + D ∙ (x − x0)2 + E ∙ (y − y0)2 ,           (1) 
where t(x, y) is the traveltime of the trace at (x, y), t(x0, y0) is the traveltime of the NLBF parameter 
trace at (x0, y0), and {A, B, C, D, E} are the unknown coefficients for a local traveltime operator at 
t(x0, y0). To estimate these unknown coefficients {A, B, C, D, E}, we optimize a semblance-based cost 
function: 
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where u(xi, yi; t) represents a time sample of the trace at (xi, yi) in an input gather, M is the total 
number of traces inside the spatial aperture of the local traveltime operator, and N is the total number 
of time samples within the temporal aperture of the local traveltime operator.  
 
The 2+2+1 method is a local search method, and it estimates {A, B, C, D, E} in three steps: by setting 
{B, C, E} to 0s, it first finds the optimal values of {A, D} using a subset of data extracted along the y 
direction via a brute-force search; next and likewise, it finds the optimal values of {B, E} via brute-
force searching a data subset extracted along the x direction by setting {A, C, D} to 0s; finally, it finds 



               

 
Sixth EAGE High Performance Computing Workshop 

19-21 September 2022, Milan, Italy 
 

the optimal value of {C} via another brute-force search using the complete dataset with {A, B, D, E} 
fixed at their already estimated values. As the 2+2+1 method requires three brute-force searches, 
when the solution space is large, the computation efficiency is still a challenge. 
 
The 2+2+1 CPU / GPU algorithm 
 
Figure 1 presents our 2+2+1 method implemented on both the CPU platform and the GPU platform. 
The CPU algorithm, shown in the left picture of Figure 1, is a straightforward implementation of the 
2+2+1 method, and the foreach loop in green is parallelized via OpenMP directives for efficiency.  
 

 
 

Figure 1: Pseudo code for the 2+2+1 CPU algorithm (left) and the 2+2+1 GPU algorithm (right). 
 

 

 
Figure 2: Pseudo code for the CUDA kernel in the 2+2+1 GPU algorithm. 

 
Our GPU algorithm for the 2+2+1 method is designed to make the best usage of GPUs’ high 
instruction throughput, and the right picture in Figure 1 shows its pseudo code. Our GPU algorithm 
follows a hierarchic design: 
• As data has to be first organized and transferred from memory to GPU, we overlap data 

organization with data transfer via the help of CUDA streams. 
• Since GPUs are designed as a natural vector-calculation machine, we unwrap the foreach loops in 

the CPU version via adaptively building thread blocks and block grids. One thread block is used 
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to deal with a local traveltime operator at a single time window of an NLBF parameter trace. 
Since the time dimension of a seismic trace is definitely smaller than the maximum x dimension 
of a block grid, which is 231-1 (NVIDIA, 2020), we just set the block grid to be (Nt, 1, 1), where 
Nt is the time dimension of an NLBF parameter trace. One thread in each thread block evaluates 
one parameter combination. Since the maximum number of threads in a thread block can only be 
1024 (NVIDIA, 2020) but the amount of parameter combinations is unpredictable, we adaptively 
build the thread-block size threadmax: first take the maximum solution dimension as its trial 
solution, threadmax=max(NA·ND, NB·NE, NC), where NA, NB, NC, ND, and NE are the solution 
dimensions of parameters {A, B, C, D, E}; next, round threadmax to the least integer multiple of the 
warp size, which is 32 by definition (NVIDIA, 2020); finally, take the larger value between the 
current threadmax and the maximum thread amount in a block as the final threadmax, i.e., 
threadmax=max(threadmax, 1024). 

• The CUDA kernel directly estimates parameters {A, B, C, D, E} for one local traveltime operator at 
a single time window of an NLBF parameter trace, and its detailed pseudo code is shown in 
Figure 2. 

 
Example 
 
We use a 3D single-sensor field dataset acquired from a desert environment (Sun et al., 2022a) to 
demonstrate the efficiency improvement of the 2+2+1 GPU algorithm over the 2+2+1 CPU algorithm. 
The test environment for the 2+2+1 CPU algorithm comprises 2 Xeon Gold 6136 CPUs (3.00 GHz, 
12 cores), and all 24 cores are engaged in the calculation via OpenMP directives. The environment for 
the 2+2+1 GPU algorithm comprises 1 NVIDIA Tesla V100 GPU with 32 GB onboard memory, and 
only 1 core of a Xeon Gold 6142 CPU (2.60 GHz, 16 cores) is engaged. The operation system for the 
CPU (GPU) test is Red Hat 7.x (CentOS 7.x). Both algorithms are implemented by C++, and the 
compilation environments are: for the CPU version, Intel Parallel Studio XE 2017 Update 2 is used; 
for the GPU version, CUDA 9.0 Update 4 along with Intel Parallel Studio XE Update 4 are used. 

 
Figure 3: (Left/Right) Semblance values and parameters {A, B, C, D, E} for some selected parameter 

traces in the field data example calculated by the 2+2+1 CPU/GPU algorithm.  
 
Several receiver lines of the raw data are shown in the left picture of Figure 4. This single-sensor 
dataset is highly contaminated by the near-surface scattering noise, and hence no signals can be easily 
recognized. In our calculation, the spacing between NLBF parameter traces is 50 m in both x and y 
direction, and the relevant apertures for different parameters are: 300 m by 35 m for {A, D}, 35 m by 
300 m for {B, E} and 300 m by 300 m for {C}. The concrete search schemes for different parameters 
are [-10-3 s/m : 1.33*10-5 s/m : 10-3 s/m] for {A, B} and [-4.44*10-7 s/m2 : 4.44*10-8 s/m2: 4.44*10-7 
s/m2] for {C, D, E}. The estimated semblance values and parameters {A, B, C, D, E} for some 
selected NLBF parameter traces are shown in Figure 3, and clearly we can observe that they are 
visually identical although they differ slightly at the floating-number level as they are calculated in 
different hardware and software environments. In terms of calculation time, the 2+2+1 GPU version 
takes about 147.39 s while the 2+2+1 CPU version takes about 1639.94 s. So on this test example, the 
GPU algorithm yields a speed-up factor of 11.1 over the CPU algorithm. The middle and right 



               

 
Sixth EAGE High Performance Computing Workshop 

19-21 September 2022, Milan, Italy 
 

pictures in Figure 4 show the correspondingly enhanced receiver lines by applying these estimated 
NLBF operators. Similar to Figure 3, we can see that these results are visually identical although they 
differ a little bit at the floating-number level.  

 
Figure 4: (Left) Several receiver lines of the raw data. (Middle/Right) The corresponding enhanced 

data by NLBF with the 2+2+1 CPU/GPU algorithm.  
 
Conclusions 
 
GPU computing is an effective way to improve the calculation efficiency of the 2+2+1 method to 
estimate local traveltime operators, and this will benefit the geophysics community to use the 
nonlinear beamforming technology for enhancing low-quality field data at a much larger scale. 
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