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Abstract
Local traveltime operators are an effective way to describe local kinematic wavefronts. They are
useful for many applications. One of them is nonlinear beamforming for enhancing the
signal-to-noise ratio of challenging seismic data. The so-called 2+2+1 method is a pragmatic
approach to estimate unknown local traveltime operators from input data. However, its efficiency
still has much room for improvement when the solution space is big. We accelerate the 2+2+1
method using graphics processing unit (GPU) computing with the Compute Unified Device
Architecture (CUDA) programming language. We detail the CPU- and GPU-based 2+2+1
search algorithms and demonstrate the efficiency improvement using synthetic and field data
examples. Compared to a standard multi-core CPU implementation, our new GPU
implementation achieves almost the same quality results at only∼10% run-time cost.

Keywords: GPU, signal restoration, geophysical signal processing, approximation algorithm,
parallelization

1. Introduction

Seismic prospecting is a powerful tool in oil and gas explo-
ration for retrieving subsurface geological information, and
the related seismic data acquisition schemes are evolving all
the time. Bakulin et al. (2020) introduced the current trend
for modern three-dimensional (3D) land seismic data acqui-
sitions. As better wavefield sampling can potentially benefit
subsequent data processing, high-channel-count surveys or
even single-sensor surveys are more andmore preferred over
the traditional schemeof acquiring sparsedatawith largefield
arrays. However, a significant disadvantage of using denser
grids of smaller receiver arrays is the very low signal-to-noise
ratio (SNR) of raw data. Figure 1 in Bakulin et al. (2018) is
a representative comparison of the raw data quality between
a traditional data acquisition scheme and a modern scheme.
As of today, it is still a general technical challenge for the

seismic industry to deal with modern 3D land seismic data
properly.

Nonlinear beamforming (NLBF) is a recently proposed
technology to improve the quality of modern 3D seismic
data. The complete theory behindNLBF has been discussed
in Bakulin et al. (2018, 2020). In a nutshell, it is a two-step
process: in the first step, local traveltime operators of NLBF
parameter traces are estimated by maximizing a semblance-
based cost function; next, every trace in the original dataset
is stacked with its nearby traces via the guidance of the
estimated local traveltime operators for SNR improvement.
To some extent, NLBF is similar to some other traveltime-
operator-based technologies in the field of seismics, such
as the Common Focus Point technology (Hindriks &
Duijndam 1999; Sun et al. 2014), the Common Re-
flection Surface (CRS) technology (Zhang et al. 2001;
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Jäger et al. 2001) and the multifocusing technology
(Berkovitch et al. 2011). However, NLBF stands out from
the other algorithms in its flexibility: NLBF can work in
different data domains, such as shot-gather domain, receiver-
gather domain, cross-spread domain, etc.; NLBF can also be
applied to data after normal moveout corrections (NMO).

Estimating local traveltime operators from an input seis-
mic dataset is very challenging and time-consuming. As dis-
cussed in Sun et al. (2022), the target function involved
in estimating these operators is highly nonlinear, so an ef-
ficient solver is much needed. Commonly seen and used
global optimization solvers, such as simulated annealing
(Metropolis et al. 1953; Ingber 1996), differential evolu-
tion (Storn and Price 1997) and genetic algorithms (Sun
and Verschuur 2014; Sun et al. 2016; Sun et al. 2017;
Acuna and Sun 2020), could be potential candidates for
this nonlinear problem. Recently we have demonstrated the
success of applying the efficiency-improved genetic algo-
rithm to estimate local traveltime operators for NLBF (Sun
et al. 2022). As a pragmatic solution, it is also a com-
mon practice to use local-search solvers for this nonlin-
ear problem. The 2+2+1 method is such a solver to esti-
mate local traveltime operators (Bakulin et al. 2018). It has
been successfully used in real data processing (Bakulin et al.
2020; Bakulin et al. 2021). Note that for the CRS technol-
ogy, a pragmatic local-search solver, similar to the 2+2+1
method, is also in existence and often used in practice ( Jäger
et al. 2001).

Since the launch of the Compute Unified Device Archi-
tecture (CUDA) programming language in 2007, graphics
processing unit (GPU) computing has become prevalent in
high-performance computing. In addition, more and more
supercomputers today are powered by GPUs (“Top 500”,
2021) as they are more energy-efficient than traditional su-
percomputers powered only by CPUs. GPU computing has
found many successful applications so far, such as fluid dy-
namics simulation (Elsen et al. 2008), finite-element simu-
lation (Klöckner et al. 2009), reverse-time migration (Shi &
Wang 2016; Li et al. 2018), geostatistical inversion (Liu &
Grana 2019), and so on. Nowadays, it is common to have
an application-software package implemented for both CPU
and GPU platforms simultaneously in the seismic industry.

This paper introduces ourwork in accelerating the 2+2+1
method for estimating local traveltime operators in NLBF
using GPU computing via the CUDA programming lan-
guage. The rest of this paper is organized as follows: we first
briefly introduce the local traveltime operators; next, we de-
tail the 2+2+1 method and its algorithmic implementations
for both CPU and GPU platforms; finally, by using both a
synthetic dataset and a challenging field dataset, we demon-
strate the efficiency gain of our GPU implementation over
the CPU version on estimating local traveltime operators for
NLBF.

2. Local traveltime operators

Generally speaking, there are two categories of methods ex-
ploiting traveltime information. One category refers to first-
arrival time by traveltime, and traveltime tomography meth-
ods (Zelt &Chen 2016;Chen&Zelt 2017;Chen et al. 2017;
Liao et al. 2017; Li et al. 2020) all belong to this category.
The other category refers to a kinematic wavefront by travel-
time, and traveltime-operator-based technologies (Hindriks
& Duijndam 1999; Zhang et al. 2001; Jäger et al. 2001;
Berkovitch et al. 2011; Sun et al. 2014; Sun et al. 2022), in-
cluding the method discussed in this paper, all belong to this
category. Although local traveltime operators have been dis-
cussed before (Hoecht et al. 2009; Buzlukov & Landa 2013;
Bakulin et al. 2018; Bakulin et al. 2020; Sun et al. 2022), for
the sake of discussion completeness, we briefly introduce this
topic.

A local traveltime operator describes a seismic kinematic
wavefront.Mathematically, it is a second-order operator with
five unknown parameters (Sun et al. 2022):

Δt (x, y; x0, y0) = t (x, y) − t (x0, y0)

= A ⋅ (x − x0) + B ⋅ (y − y0)

+C ⋅ (x − x0) ⋅ (y − y0)

+D ⋅ (x − x0)
2 + E ⋅ (y − y0)

2, (1)

where t(x, y) is the travel time of the trace located at
(x, y) in a seismic gather, t(x0, y0) is the travel time
of the NLBF parameter trace located at (x0, y0) and
the coefficients {A,B,C,D,E} are the unknown NLBF
parameters for a seismic kinematic wavefront cen-
tered at t(x0, y0). In a rigorous mathematic language,
these coefficients {A,B,C,D,E} should be written as
{A(x0, y0, t),B(x0, y0, t),C(x0, y0, t),D(x0, y0, t),E(x0, y0, t)}
since they are functions of both spatial location and time.
However, for the convenience of writing, in the rest of this
paper, we will just present them as {A,B,C,D,E}.

Note that the coordinates (x, y) and (x0, y0) shown
in equation (1) should be treated as general coordinates as
they are not limited to physical coordinates. For instance, if
local traveltime operators are to be estimated for a 3D shot
gather, then actual receiver coordinates can be used in equa-
tion (1); however, if local traveltime operators are to be es-
timated for a bunch of 2D shot gathers with the same re-
ceiver line, then we can use the source station number as the
x coordinate and the receiver station number as the y co-
ordinate in equation (1). The latter scheme also applies to
cross-spread gathers.

For an input seismic gather, to estimate parameters
{A,B,C,D,E} of a local traveltime operator at (x0, y0, t), we
need to maximize a semblance-based cost function defined

390

D
ow

nloaded from
 https://academ

ic.oup.com
/jge/article/19/3/389/6597029 by guest on 05 June 2022



Journal of Geophysics and Engineering (2022) 19, 389–402 Sun et al.

by

S (x0, y0)

=

∑N
j=1

{∑M
i=1 u

[
xi, yi; tj (x0, y0) + Δt (xi, yi; x0, y0)

]}2

M
∑N

j=1
∑M

i=1
{
u
[
xi, yi; tj (x0, y0) + Δt (xi, yi; x0, y0)

]}2 ,

(2)

where u(xi, yi; t) represents a time sample of the trace located
at (xi, yi) in the seismic data gather,M is the total amount of
traces inside the spatial aperture of the local traveltime op-
erator and N is the total amount of time samples within the
temporal aperture of the local traveltime operator.

Equation (2) is a highly nonlinear function of parame-
ters {A,B,C,D,E}, and several methods have been used as
its solvers so far, including the 2+2+1method (Bakulin et al.
2018), the 5D brute-force search method (Sun et al. 2022),
the sequential dips-and-curvatures strategy (Bakulin et al.
2021), the adaptive simulated annealing (Ingber 1996), the
efficiency-improvedGeneticAlgorithm(Acuna&Sun2020)
and the inpainting with deep neural networks (Gadylshin et
al. 2020), among others. This paper focuses on the 2+2+1
method.

3. The 2+2+1method and its CPU andGPU
algorithms

The 2+2+1 method is a solver based on a local-search
scheme that is commonly implemented as a part of theNLBF
technology (Bakulin et al. 2018; Bakulin et al. 2021; Sun
et al. 2022). We use figure 1 to explain this method in detail.
We first parameterize the whole solution space by regularly-
placedNLBFparameter tracesmarked by red dots in figure 1.
Green dots represent seismic traces, and the red-circled black
dot represents the NLBF parameter trace of interest, which
the 2+2+1 method is working on. We refer to the coordi-
nates of this NLBF parameter trace of interest by (x0, y0).
Yellow areas in figure 1 represent spatial areas used for esti-
mating different parameters of local traveltime operators in
the 2+2+1 method. The 2+2+1 method first sets {B, C, E}
at (x0, y0) to zeros and searches for the optimal values of {A,
D} at (x0, y0) in a brute-forcemanner using all traces existing
in its estimationaperture shown infigure1a.Next, theparam-
eters {B, E} at (x0, y0) are found in the same manner as {A,
D} using traces in its estimation aperture shown in figure 1b.
Finally, the 2+2+1 method fixes already estimated parame-
ters {A, B,D, E} andfinds the optimal value of {C} at (x0, y0)
using traces falling into its estimation aperture via another
brute-force search, as shown in figure 1c. Even though the
2+2+1 method is a local-search method, as it involves three
sequential brute-force searches, should the solution space for
parameters {A, B, C, D, E} be very big, its calculation cost is
still very significant.

Figure 1. Spatial apertures for estimating various parameters: (a) {A, D},
(b) {B, E} and (c) {C}.ReddotsmarkNLBFparameter traces, and seismic
traces aremarked by green dots. The yellow area illustrates the spatial aper-
ture for the local traveltime operator, and the red-circled black dot marks
the target NLBF parameter trace.

Our CPU algorithmic implementation of the 2+2+1
method, shown in Table 1, has been successfully deployed in
industrial seismic processing. It is based on a straightforward
implementation of the method. For every NLBF parameter
trace, we first collect traces falling into different apertures re-
lated to the estimation of parameters {C}, {A, D} and {B, E}.
Next, for every time window of this NLBF parameter trace,
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Table 1. The 2+2+1 CPU algorithm

we estimate its corresponding local traveltime operators in
three steps:

• Set {B, C, E} to zeros; scan all combinations of {A, D}
in their solution space using traces falling into the aper-
ture of {A, D}, as shown in figure 1a; the combination
that maximizes our semblance-based cost function, i.e.
equation (2), is picked out as the optimal pair {A, D}
for the local traveltime operator at this time window of
this NLBF parameter trace.

• Likewise, set {A,C,D} to zeros; scan all combinations of
{B, E} in their solution space using traces falling into the
aperture of {B, E}, as shown in figure 1b; the combina-
tion that maximizes our semblance-based cost function,
i.e. equation (2), is picked out as the optimal pair {B, E}
for the local traveltime operator at this time window of
this NLBF parameter trace.

• Fix {A, B, D, E} at the previously estimated values; scan
{C} in its solution space using traces falling into the
aperture of {C}, as shown in figure 1c; the value that
maximizes our semblance-based cost function, i.e. equa-
tion (2), is pickedout as theoptimal value {C} for the lo-
cal traveltimeoperator at this timewindowof thisNLBF
parameter trace; the best semblance value is also saved

as the final semblance value {S} corresponding to these
estimated parameters {A, B, C, D, E}.

In Table 1, the part highlighted in green is parallelized via
OpenMP directives for efficiency gains, i.e. the loop over the
timedirection in aNLBFparameter trace is carriedout inpar-
allel by different CPU threads.

From the perspective of hardware design, a GPU is for a
completely different purpose from a CPU (NVIDIA 2020).
A CPU is designed to be a low-latency device to excel at
executing a sequence of operations as fast as possible. A
GPU is designed to achieve an as-high-as-possible instruc-
tion throughput. To achieve this goal, aGPUpays the price of
slower single-thread performance than a CPU. Furthermore,
a GPU comes with a much larger memory bandwidth than
a CPU to effectively support its higher instruction through-
put.We design ourNLBF2+2+1GPUalgorithm to allow us
to take full advantage of GPUs’ high instruction throughput,
and it is thusmore complex than our CPU version.We adopt
a hierarchic algorithm design, explained below:

• As data have to be organized andmoved from themem-
ory to GPU via CPU, and different parameter combi-
nations, i.e. {A, D}, {B, E} and {C}, require different
data, we first overlap data organizationwith data transfer
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Table 2. The 2+2+1 GPU algorithm. The green parts are explained in Tables 3 and 4

Table 3. The pseudocode for adaptively building the thread block and block grid for the CUDA kernel in the 2+2+1 GPU algorithm

using asynchronous copy. As different NLBF parameter
traces create a natural opportunity for parallel computa-
tion for aGPU, we further exploit the concept of CUDA
stream to overlap data transfer with GPU computation
among different NLBF parameter traces. The ‘foreach’
loops in Table 2 show this top-level algorithm design in
detail.

• As a GPU is designed as a natural vector-calculation
machine, we need to unwrap ‘for’ loops in the CPU

version as much as possible for efficiency gains. Con-
sidering that real input data may be of any size, we
have to adaptively build thread blocks and block grids
for our CUDA kernel. Table 3 shows the pseudocode
for our adaptive design. We first parallelize the com-
putational burdens of different time windows in an
NLBFparameter trace via thread blocks. In otherwords,
one thread block is used to deal with the local trav-
eltime operator at a single time window of an NLBF
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Table 4. The pseudocode for the CUDA kernel in the 2+2+1 GPU algorithm
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Figure 2. (a) The 2D synthetic model that is a slice from the 3D SEAMArid velocity model. (b) Source and receiver distributions for the 2D synthetic
dataset.

parameter trace. Considering we deal with seismic data,
the limit of the x dimension of a block grid, which is
231-1 (NVIDIA 2020), is definitely more than enough
for the time dimension of NLBF parameter traces, so
the block grid can just be set as (Nt, 1, 1), where Nt is
theNLBFparameter trace’s timedimension.One thread
evaluates one parameter combination for parallel com-
putation inside each thread block. However, since the
maximum number of threads in a block can only be
1024 due to the limitation of hardware design (NVIDIA
2020), while our solution dimensions are unpredictable
as they depend on users’ choices, we then have to build

our thread-block size, threadmax, adaptively: first take the
largest solution dimension among NA⋅ND, NB⋅NE and
NC (where NA, NB, NC, ND and NE are the solution di-
mensions of parameters A, B, C, D and E, respectively)
as its trial value, i.e. threadmax = max(NA⋅ND, NB⋅NE,
NC); next, round threadmax to the least integer multi-
ple of 32 larger than threadmax (ceiling), where 32 is the
hardware-defined warp size of GPUs (NVIDIA 2020);
finally, subject to the limitation of the maximum 1024
threads in a block, take the larger value between the cur-
rent threadmax and 1024 as the final thread-block size,
i.e. threadmax =max(threadmax, 1024).
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Figure 3. (a) NMO-corrected raw gathers from several receiver lines (b)
and (c) show the same gathers after enhancement by NLBF with the
2+2+1 method implemented on CPU and GPU, respectively. (d) Data
difference between theCPU andGPU result plotted using a different scale
from (a)–(c).

• The CUDA kernel for our 2+2+1 method directly esti-
mates parameters {A, B, C, D, E, S} for one local trav-
eltime operator at a single time window of an NLBF
parameter trace, and this is the low-level algorithm de-
sign of our NLBF 2+2+1 GPU algorithm. With all
the data pertaining to different parameters available in
theGPUmemory, each thread in the block evaluates the
cost function, i.e. equation (2), using either a particular
parameter combination (for {A,D} and {B, E}) or a par-
ticular parameter value (for {C}), stores the correspond-
ing semblance value in a specific array location corre-
sponding to this thread, and finally asks the 0th thread
in the block to pick out the best semblance value and its
corresponding parameter combination (for {A, D} and
{B, E}) or parameter value (for {C}). Please note that
the best semblance value from the parameter {C} esti-
mation is the final semblance value {S} corresponding
to this set of estimated parameter values {A, B, C, D, E}.
Eventually, this 0th thread passes the estimated param-
eters {A, B, C, D, E, S} to the GPU memory. The pseu-
docode of our CUDA kernel is shown in Table 4, with
all its technical details presented.

To summarize, the CPU algorithmic implementation is
a one-to-one translation of the 2+2+1 method, where the
calculation is parallelized in the time direction of NLBF pa-
rameter traces via OpenMP directives to achieve efficiency
gains. In contrast, the GPU algorithmic implementation of
the 2+2+1 method takes the best advantage of a GPU’s
high instruction throughput by exploiting different inherent
GPU features: it uses asynchronous copy to overlap CPU
data organization with data transfer from CPU to GPU; it
uses CUDA streams to parallelize computations on different
NLBF parameter traces; it uses thread blocks to calculate lo-
cal traveltime operators ofNLBFparameter traces and it uses
threads to evaluate equation (2) over different concrete solu-
tion spaces.

4. Examples

In this section, we use one synthetic and one challeng-
ing single-sensor field dataset, which were already described
in other NLBF-related publications (Sun et al. 2022), to
demonstrate the efficiency gains achieved by our 2+2+1
GPU algorithm over the CPU version on estimating local
traveltime operators in NLBF. The hardware environment
running the 2+2+1 CPU version comprises two Xeon Gold
6136CPUs (3.00GHz, 12 cores), and all 24 cores are actively
engaged via OpenMP directives in our tests. The 2+2+1
GPUversion runs on a singleNVIDIATeslaV100GPUwith
32 GB onboard memory, and only one core of a Xeon Gold
6142 CPUs (2.60 GHz, 16 cores) is involved. The operating
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Figure 4. (a) and (b) Semblance values and parameters {A, B, C, D, E} for some selected NLBF parameter traces estimated by the 2+2+1 CPU and
GPU versions, respectively. (c) Difference panels between the CPU and the GPU result plotted using different scales from (a) and (b)
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Figure 4. Continued.

Figure 5. Source and receiver distributions for the challenging 3D single-
sensor field dataset.

system running on our CPU (GPU) platform is Red Hat 7.x
(CentOS 7.x). Both the CPU version and the GPU version
of the 2+2+1 method are coded in C++. However, due to
some practical limitations, we use the following compilers:
Intel Parallel Studio XE 2017 Update 2 for the CPU version
andCUDA9.0Update 4 jointly with Intel Parallel Studio XE
2017 Update 4 for the GPU version.

Table 5. Run-time comparison between the 2+2+1 CPU version and
the 2+2+1 GPU version on the synthetic dataset

Run no./scheme 2+2+1 GPU (unit: s) 2+2+1 CPU (unit: s)

1 5.87 45.70
2 5.88 45.67
3 5.98 45.64
4 5.66 45.73
5 5.84 45.76
6 5.68 45.55
7 6.04 45.67
8 5.94 45.69
9 5.78 45.45
10 5.90 45.67
Average run-time 5.86 45.65

Regarding specific settings for parameters {A, B, C, D, E}
of local traveltime operators and spacing between NLBF pa-
rameter traces, these have been discussed in Bakulin et al.
(2020). For discussion completeness, hereby we briefly in-
troduce our rules of thumb to define them in practice. Ac-
tual parameter values are controlled by geology and are em-
pirically set. Generally speaking, parameters {A, B} are in
the range of ±10–5 s m−1, and parameters {C, D, E} are in
the range of±10–7 s m−2. Regarding spacing betweenNLBF
parameter traces, it is dependent on the estimation aperture
size, and our empirical choice for the spacing is between 0.30
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Figure 6. (a) Common-shot gathers from several receiver lines extracted
from the raw data. (b) and (c) The same data but after enhancement with
NLBF using the 2+2+1 CPU version and the GPU version, respectively.
(d) Data difference between the CPU and the GPU result plotted using a
different scale from (a)–(c).

and 0.70 times of the estimation aperture size of parameter
{C}, as shown in figure 1.

Our synthetic example is generated using a 2D synthetic
model, a slice from the 3D SEAM Arid velocity model
(Oristaglio 2015; Sun et al. 2022). Figure 2 displays the
model and source and receiver distributions for this synthetic
dataset. The data simulation is done via a finite-difference
engine. The grid spacing is 0.625 × 0.625 m, with both
sources and receivers located at z = 0.625 m. No surface-
related multiples exist in the dataset due to the adoption of
an absorption surface. Both source- and receiver-interval are
25 m, and a Ricker wavelet with a dominant frequency of
20 Hz is used as a source. The time sampling rate is 4 ms,
and the record length is 2.5 s. Before running our 2+2+1
method for estimating local traveltime operators, we first
apply NMO correction to this dataset making reflection
events flattish. Figure 3a shows several raw gathers after the
NMO correction. We can easily see some scattering noise in
the data. For this dataset, we use the receiver location as the
x coordinate and the source location as the y coordinate for
local traveltime operators. The spacing between NLBF pa-
rameter traces is 140m in both x and y directions. The spatial
apertures in x and y dimensions for different parameters are
as follows: 400× 35m for {A,D}, 35× 400m for {B, E}, and
400 × 400 m for {C}. Using the format [min : step : max] to
denote the search space and the search step for each parame-
ter, the actual search schemes are [−10–4 : 10–5: 10–4 s m−1]
for {A, B} and [−1.25×10–7 : 0.25×10–7: 1.25×10–7 s m−2]
for {C, D, E}. Figure 4 shows the estimated semblance values
and parameters {A, B, C, D, E} for some selected NLBF
parameter traces from both the CPU version and the GPU
version of our 2+2+1 method. Figure 4 parts a and b are
visually identical but only exhibit minor differences at the
floating-number level, as shown in figure 4c. Such minor de-
viations are reasonable as these floating results are calculated
using different hardware platforms with distinct software
environments. To appreciate the efficiency gain achieved
by the GPU version over the CPU version and avoid the
influence of system jitter, we run each version 10 times on
this example and take their average run time for a compari-
son. Table 5 lists the detailed information for these 10 runs.
In this example, our 2+2+1 GPU version gains a speed-up
factor of 7.8 over our 2+2+1 CPU version.We further apply
NLBF with these estimated local traveltime operators to
enhance the data (Sun et al. 2022) shown in figure 3a, and
the corresponding enhanced results from the CPU version
and the GPU version are shown in figure 3 parts b and c, re-
spectively.We can clearly see the image quality improvement
as those scattering noise have been nicely suppressed. At the
same time, all major reflection events have been preserved
with very high fidelity. Similar to figure 4, figure 3 parts b
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Figure 7. (a) and (b) Semblance values and parameters {A, B, C, D, E} for some selected NLBF parameter traces in the field data example estimated by
the 2+2+1 CPU version and the GPU version, respectively. (c) Difference panels between the CPU and the GPU result plotted using different scales
from (a) and (b).
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Table 6. Run-time comparison between the 2+2+1 CPU version and
the 2+2+1 GPU version on the challenging 3D field dataset

Run no./scheme 2+2+1 GPU (unit: s) 2+2+1 CPU (unit: s)

1 146.47 1643.79
2 148.36 1641.00
3 146.59 1638.91
4 148.45 1638.96
5 145.87 1639.02
6 147.27 1639.00
7 147.95 1640.70
8 147.86 1639.45
9 147.89 1639.70
10 147.19 1638.82
Average run-time 147.39 1639.94

and c are visually identical, despite minor differences at the
floating-number level, as shown in figure 3d.

Our field data example is an extremely challenging 3D
single-sensor dataset acquired in a desert environment.
Figure 5 shows its source and receiver distributions. This
dataset is sorted for enhancement in the cross-spread do-
main, which is defined as all traces with their sources from
the same source line and their receivers from the same re-
ceiver line (Li 2008). In total, there are 94 sources and 224
receivers, and the spacing for both sources and receivers is 20
m. This field dataset is heavily contaminated by near-surface
scattering noise, which can be appreciated in figure 6a.We do
not observe any coherent events on these raw data gathers.
For this dataset, we use the receiver station number as the x
coordinate and the shot station number as the y coordinate
in equation (1). The spacing between NLBF parameter
traces is 50 m in both the x and y directions. The spatial
apertures in x and y dimensions for different parameters are
as follows: 300× 35m for {A,D}, 35× 300m for {B, E}, and
300× 300m for {C}. The actual search schemes for different
parameters are [−10–3: 1.33×10–5 : 10–3 s m−1] for {A, B}
and [−4.44×10–7 : 4.44×10–8 : 4.44×10–7 s m−2] for {C,
D, E}. Figure 7 parts a and b show the estimated semblance
values and parameters {A, B, C, D, E} of some selected
NLBF parameter traces from both the 2+2+1 CPU version
and the 2+2+1 GPU version. Table 6 lists the detailed
information of 10 different runs for a run-time comparison.
We can see that the 2+2+1 GPU version gains a speed-up
factor of 11.1 over the 2+2+1 CPU version. We also apply
NLBF with the estimated local traveltime operators to en-
hance data from figure 6a. Figure 6 parts b and c show the
corresponding enhanced results. Similar to figures 3 and 4,
results from both the CPU and the GPU version in this
field data example are also visually identical, even though
they differ slightly at the floating-number level, as shown in
figures 6d and 7c.

5. Conclusions

Our paper focuses on the 2+2+1 method for estimating lo-
cal traveltime operators in the nonlinear beamforming tech-
nology and comprehensively introduces its algorithmic im-
plementations on both the CPU platform and the GPU plat-
form. We exploit features of graphics cards and the CUDA
programming language, including asynchronous data copy,
CUDA streams, block grids, thread blocks etc., to fully par-
allelize numerical evaluations of the semblance-based cost
function in the nonlinear beamforming technology. We use
a 2D synthetic example and a challenging 3D single-sensor
field dataset acquired in a desert environment to demonstrate
a speed-up factor of∼10 achieved by our 2+2+1 GPU algo-
rithmover the 2+2+1CPUalgorithm.The considerable effi-
ciency improvement fromthe2+2+1GPUalgorithmgreatly
benefits the nonlinear beamforming technology, which can
help seismic data processing and interpretation in challeng-
ing areas.
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