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Abstract
Modern land seismic data are typically acquired using high spatial trace density with small source
and receiver arrays or point sources and sensors. These datasets are challenging to process due to
their massive size and relatively low signal-to-noise ratio caused by scattered near-surface noise.
Therefore, prestack data enhancement becomes a critical step in the processing flow. Nonlinear
beamforming had proved very powerful for 3D land data. However, it requires computationally
intensive estimations of local coherency on dense spatial/temporal grids in 3D prestack data
cubes. We present an analysis of various estimation methods focusing on a trade-off between
computational efficiency and enhanced data quality. We demonstrate that the popular sequential
«2+ 2+ 1» scheme is highly efficient but may lead to unreliable estimation and poor
enhancement for data with a low signal-to-noise ratio. We propose an alternative algorithm called
«dip+ curvatures» that remains stable for such challenging data. We supplement the new
strategy with an additional interpolation procedure in spatial and time dimensions to reduce the
computational cost. We demonstrate that the «dip+ curvatures» strategy coupled with an
interpolation scheme approaches the «2+ 2+ 1»method’s efficiency while it significantly
outperforms it in enhanced data quality. We conclude that the new algorithm strikes a practical
trade-off between the performance of the algorithm and the quality of the enhanced data. These
conclusions are supported by synthetic and real 3D land seismic data from challenging desert
environments with complex near surface.

Keywords: data enhancement, noisy seismic data, kinematic parameters estimation,
beamforming

1. Introduction

Improving land seismic data quality has been an active field
of research over the last several decades. A conventional and
well-established way to obtain records with a good signal-to-
noise ratio is to use source and receiver arrays directly during
field acquisition. Arrays enhance weak reflection signals with
high apparent velocity while suppressing strong near-surface

arrivalswith low speeds.With an increasingdemand formore
accurate seismic imaging for subtler low-relief structures and
stratigraphic traps, the seismic industrymoves toward higher
density surveys expected to improve the resolution and infor-
mation content of the data (Bagaini et al. 2010; Bakulin et al.
2018; Cordery 2020). Finer inline and cross-line samplings
both for shots and receivers are achieved at the expense of
decreasing or eliminating the field arrays. The ultimate goal
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is to use geometries with very fine spacing intervals in all
directions together with point source and point-receiver sys-
tems. It is acknowledged that the quality of a point-receiver
data is degraded in such a case. However, the tremendously
increased fold with advanced processing techniques is ex-
pected to compensate for this reduced quality and provide
better images due to the preservation of tiny signals dur-
ing recording and their summation in final migration. Since
acquisitions with fine sampling in all directions remain out
of reach for economic reasons, field arrays’ simple mimick-
ing during the data-processing stage is impossible. This leads
to a requirement for new denoising and data-enhancement
techniques that can deal with extremely noisy and relatively
coarsely sampled data in a more advanced manner than the
simple grouping of traces used before.

Different methods were developed in the past to attenu-
ate coherent and incoherent noise in seismic records. Among
them are classical prediction-filtering methods (Canales
1984;Gulunay 1986; Abma&Claerbout 1995;Wang 1999),
various optimum-weighted stacking approaches (Robinson
1970; Rashed 2014), several filtering techniques in f-x and
f-k domains (Stewart & Schieck 1989; Duncan & Beresford
1994;Naghizadeh 2012;Naghizadeh& Sacchi 2012), plane-
wave destruction filtering (Fomel 2002), methods based on
slant stacking and Radon transform (Kelamis & Mitchell
1989; Trad et al. 2003; Ibrahim & Sachi 2014), techniques
using other sparse representations of seismic data includ-
ing wavelets, seislets and curvelets (Herrmann & Hennen-
fent 2008; Fomel & Liu 2010; Mousavi et al. 2016), rank-
reduction-based methods (Ulrych et al. 1988; Oropeza &
Sacchi 2011; Chen & Sacchi 2015) and recent machine-
learning-based algorithms (Gadylshin et al. 2020; Saad &
Chen 2020; Gao et al. 2021).

Coherency-based data-enhancement techniques are
widely used in the poststack domain (Marfut et al. 1998).
They can be applied to improve the signal level in prestack
data in pre- and postmigrated domains. Themain techniques
from this category are based on a local slant stacking of the
data and selection of the most coherent components. More
advanced approaches, coming mainly from the common-
reflection surface (CRS) (Zhang et al. 2001; Baykulov &
Gajewski 2009) and multifocusing theory (Berkovitch et al.
2011), use second-order approximations of the wavefront.
This allows one to describe the events’ kinematical trajec-
tories better and stack locally along them to increase SNR.
The moveout can be characterised by a global operator or a
local one. The local operators’ methods appear most flexible
for enhancing challenging 3D land data where heterogeneity
and static issues often invalidate any global moveout be-
havior. At the same time, these methods rely on intensive
numerical search for optimal coherency over the entire
5D data domain, making them computationally expensive.
By representing a traveltime surface locally as a general

second-order curve (Hoecht et al. 2009; Buzlukov & Landa
2013), a nonlinear beamforming algorithm was introduced
for enhancing massive challenging land datasets (Bakulin
et al. 2020).

Different strategies for evaluating event coherency have
been proposed in the past. One of the early optimisation
techniques for CRS parameter search was based on a se-
quential refinement proposed by Jager et al. (2001) and
Mann (2002). The following methods evolved to enhance
and optimise the parameter search starting from simple two-
step parameter refinement for 2D data and finishing with a
global optimisation for 3D data by Garabito & Cruz (2019).
Likewise, since early work on the multifocusing method
(Berkovitch et al. 1994; Gelchinsky et al. 1999), there was
steady progress in estimating kinematic parameters. The lat-
est publications are devoted to global optimisation (Fam &
Naghizadeh 2019).

This study discusses different estimation strategies with
the application to the nonlinear beamforming (NLBF) algo-
rithm. We provide insights into these strategies’ quality and
performance trade-offs in the context of 3D land seismic pro-
cessing ofmassive datasetswith petabytes of data.Wepresent
an optimised version of the algorithm to enhance 3D single-
sensor data that uses a novel scheme based on the sequen-
tial estimation of dips and curvatures of kinematic surfaces
on sparse grids with the subsequent interpolation to a dense
grid. We provide a comparison based on synthetic and real-
data examples showing the advantages of the proposed strat-
egy compared topreviously known schemes.A synthetic data
example provides a direct assessment of the effect of variable
signal-to-noise ratio on the accuracy of estimated kinematic
parameters. We benchmark various approaches against the
most comprehensive algorithm of global 5D optimisation on
a real-data example.

2. Method

The main idea of the nonlinear beamforming method is to
describe traveltime moveout locally as a second-order sur-
face, estimate its parameters and perform local summation
along this local moveout to improve a signal-to-noise ra-
tio. Considering a data space with a coordinate vector x⃗ =
(xs, ys, xr, yr) defined by source and receiver x and y coor-
dinates, the traveltime t, can be locally represented using a
Taylor series expansion as:

t(x⃗0 + Δx⃗) = t(x⃗0) + L⃗TΔx⃗ + Δx⃗TNΔx⃗, (1)

where L⃗ is a first-derivative gradient vector, and N is a ma-
trix of second derivatives. In total, 14 unknown coefficients
of the vector L⃗ and matrix N define the local traveltime sur-
face at a current position in 5D seismic volume. Estimat-
ing all these kinematic parameters is too costly from the
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computational point of view. Simplificationof equation (1) is
usually required. In the current work, we fix two arbitrary di-
rections in the data space and consider sections of the trav-
eltime surface along the two remaining directions only. This
reduces the number of unknown parameters to five. We esti-
mate these local kinematic parameters by scanning different
trajectories and finding one with the best coherency defined
by a semblance function’s maximum value.

2.1. Estimation of kinematic parameters

Considering only two variable spatial coordinates and sim-
plifying equation (1), we obtain the following second-order
traveltime approximation in a 2D plane with respect to some
reference point (x0, y0):

t (x, y) = t (x0, y0) + A ⋅ (x − x0) + B ⋅ (y − y0)

+C ⋅ (x − x0) (y − y0) + D ⋅ (x − x0)
2

+ E ⋅ (y − y0)
2, (2)

where x and y represent two selected coordinates in the
data domain. A, B, C, D and E are five unknown kinematic
parameters to be estimated. The estimation can be done
by maximising semblance or other coherency measures in
multi-dimensional parameter space. In this framework, dif-
ferent estimation strategies are possible. In the following, we
will consider some of them in more detail.

2.1.1. 5D brute force strategy. If we have a wavefield
U(x, y; t) then using the notation from equation (2), a
standard definition of semblance function can be written as
follows:

S =

∑N
j=1

{∑M
i=1 U(xi, yi; tj (xi, yi)

}2

M
∑N

j
∑M

i U(xi, yi; tj (xi, yi))
2 , (3)

where M is a number of traces within a spatial estimation
window, N is a number of the time samples in a time win-
dow and moveout t(xi, yi) is calculated using equation (2).
A straightforward brute force strategy consists of probing all
possible values of kinematic parameters A, B, C, D, E within
predefined limits and choosing those values that provide the
maximumof the semblance function.More sophisticated ap-
proaches based on global search methods (Garabito & Cruz
2019) can also be adapted into this scheme to improve the al-
gorithm’s performance. In this work, we use the full 5D strat-
egy as a reference for the results’ quality, i.e. we consider the
5D brute force search the best possible solution.

2.1.2. «2 + 2 + 1» strategy. The so-called «2 + 2 + 1»
strategy consists of a sequential search first for two coeffi-
cientsA andD, then for B and E and then for a remaining co-

efficientC, with thefirst four beingfixed (Bakulin et al.2020).
In more detail, the algorithm can be written as follows:

(i) First, we fixed the value y0 on a so-called estimation
grid, where the parameters are to be estimated. Taylor
series, in this case, is defined by two parameters only:

t (x, y0) = t (x0, y0) + A ⋅ (x − x0) + D ⋅ (x − x0)
2
.

(4)

So, in the direction of x-coordinate, we have to solve the
optimisation problem of defining only two parametersA and
D. Only a subset of data ensemble is used in this step, which
may influence estimation robustness, as we show later. Since
the number of parameters is decreased by three, and the data
dimension is reduced by one, the total computation cost for
this new problem is roughly four orders of magnitude less
than the full 5D problem.

(ii) Second, we fix another direction, i.e. value x0 and use
a similarly sparse estimation grid. Taylor series, in this
case, is defined by two other parameters:

t (x0, y) = t (x0, y0) + B ⋅ (y − y0) + E ⋅ (y − y0)
2
.

(5)

So in the direction of y-coordinate, we have to solve the
optimisation problem of searching for E and D parameters.
The computational cost of this step is similar to the first one.

(iii) Finally, after fixing parameters A, B, D, E estimated in
point (x0, y0), we search for the remaining coefficient
C using equation (2). A full 2D patch of data extracted
from the vicinity of (x0, y0) is used. In this case, the data
dimension ismore extensive since we use an entire data
ensemble but only estimate a single parameter C. As a
result, the computational cost is similar to the first and
second steps. Overall, the «2 + 2 + 1» scheme gives
us amore efficient algorithm compared to the 5D brute
force solution, with a computational cost being less by
roughly four orders of magnitude because we reduced
search space from 5D to 2D (three orders), and we re-
duced the number of traces used for estimation in the
vicinity of each point (x0, y0) by approximately one or-
der (from 2D ensemble to 1D line).

2.1.3. Objective functions for «2 + 2 + 1» strategy vs. 5D
brute force strategy. Apart from the optimisation method it-
self, there is also an essential difference in objective function
computation between the «2 + 2 + 1» and 5D approaches.
Figure 1 shows a typical ensemble structure selected from
a field dataset. The 5D strategy uses an entire ensemble of
traces inside the red rectangle for estimation. In contrast,
the sequential «2 + 2 + 1» strategy uses only an oriented
strip of several lines along each coordinate direction denoted
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Figure 1. Distribution of the traces for a single ensemble in a cross-spread
gather, shown for a field dataset used in this study. Each dot denotes a lo-
cation of seismic traces with relative source X and receiver Y coordinates
(origin (0,0) corresponds to the geometric center of the cross-spread).The
red square encloses all traces of the single ensemble used for nonlinear
beamforming. All these traces contribute during summation to produce
enhanced output trace in the middle (black dot). In the 5D brute force
strategy, all ensemble traces are alsoused for parameters estimation. In con-
trast, the«2+ 2+ 1» strategy only uses traces bounded by blue rectangles
oriented along the x or y axes during the first and second estimation steps,
respectively. In the presence of noise, the data subset’s size may influence
the estimated parameters.

by blue rectangles. In an ideal case, a single well-sampled
line would be sufficient to estimate dips/curvatures in each
vertical plane x-t or y-t. However, each strip is designed to
contain 2–3 central lines for field data, essentially forming a
‘fat’ line to deal with geometry imperfections, missing traces
and noise. These choices, along with the data quality, may
affect the estimation process. Let us demonstrate this point
by analysing the semblance-based objective function’s cross-
sections using synthetic and real field data.

First, let us consider a simple plane event from syn-
thetic data (figure 2) with zero dips and curvature values, i.e.
A=B=C=D=E=0. Figure3 shows slicesof the semblance
from equation (3) depending on the chosen optimisation
strategy. The first column presents 2D cross-sections of the
objective function for «2+ 2+ 1» strategy along planes (A,
B) and (D,E) and 1D cross-section along the direction of pa-
rameter C. Cross-sections are produced while fixing remain-
ing parameters to their optimal values. For the noise-free syn-
thetic event, picking the maximum semblance value along
each transection provides a good approximation of the actual
kinematic trajectory, i.e. estimated A = B = C = D = E = 0.
Recall that the semblance objective function in equation (3)
uses summation over a limited subset or fat lines (figure 1).
The middle column (figure 3d–f) shows the same cross-

Figure 2. Synthetic data with the planar event and the investigated point
on the event.

sections but with the full objective function (1) used for the
5D strategy, using all ensemble traces instead of narrow strips
in figure 1.We stress again that themiddle column uses a dif-
ferent objective function. However, cross-sections are done
at the same parameter planes as estimated by the original
«2+ 2+ 1» strategy from figure 3a–c. Finally, the right col-
umn (figure 3g–i) shows cross-sections of the same full 5D
objective function but dissected through the values of opti-
mal parameters estimated from the 5D brute force strategy.
For synthetic data with an ideal signal and absence of noise,
both strategies estimate correct parameters. Besides, cross-
sections of objective function exhibit very similar behavior
(figure 3). This synthetic example validates a simplified se-
quential «2 + 2 + 1» strategy widely used in various ap-
proaches (Mann 2002; Buzlukov & Landa 2013) as a com-
putational timesaver.

Now let us perform a similar analysis of objective function
using real data with significant noise. First, we select a point
of interest located alongwith a relatively coherent and robust
event at the near offset (blue dot in figure 4). We calculate
similar cross-sections as was done in the synthetic example
(figure 5). Cross-sections for the left and center columns are
comparable, suggesting that objective functions are similarly
shaped for «2 + 2 + 1» (figure 5a–c) and 5D brute force
strategy (figure 5d–f) when dissections are taken along the
optimal parameters estimated by «2+ 2+ 1» approach. Al-
though the 5D brute force approach (figure 5g–i) provides
more focused and less oscillating results for the (A, D) pair
andC value, the actual estimatedparameters between5Dand
«2+ 2+ 1» approaches are similar.

We chose a point in a noisier area at a far offset
in a final test, where the signal-to-noise ratio is low
(red dot in figure 4). In contrast to previous examples,
we see very different behavior of the objective func-
tions from the «2 + 2 + 1» and the 5D approaches
(figure 6). Differences between the left (figure 2a–c) and
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Figure 3. Cross-sections of the objective function for a synthetic dataset consisting of a single planar event. The left (a, b, c) column of images shows
cross-sections of the «2+ 2+ 1» objective function (data from ‘fat’ lines parallel to each coordinate axis as shown in figure 1). Cross-sections are taken
through the optimal values of the parameters as obtainedwith the «2+ 2+ 1» strategy. From top to bottom, each display (a, b, c) shows the first, second
and third steps of the conventional «2+ 2+ 1» approach correspondingly. The middle column (d, e, f) shows the 5D objective function’s slices but is
still drawn through the same estimated values from the «2+ 2+ 1» approach as in the left column. Finally, the right column (g, h, i) shows slices of 5D
objective function but drawn through the optimal parameters estimated with the 5D brute force approach. White dots denote the optimal values of the
parameters for each case.

Figure 4. Real data and two investigated points located on the ‘visible
event’ and the ‘noisy event’.

right (figure 6g–i) columns are not unexpected in case of
complex objective function. The sequential «2+ 2+ 1» ap-
proximation may fail to capture the objective function com-
plexity in the presence of noise. However, differences be-
tween the left (figure 6a–c) and the middle (figure 6d–f)
columns confirm that the data ensemble’s size is a signifi-

cant culprit. The bigger the ensemble, the more resilient the
estimation approach is to noise. The mere fact that cross-
sections change shape for «2 + 2 + 1» and 5D objective
functions (compare figure 6a–c and figure 6d–f) suggest that
despite forming ‘fat’ lines in «2 + 2 + 1» approach (fig-
ure 1), the limited size of the data subsets still leads to less
reliable estimation. Therefore, we might expect differences
in the estimation results between the two strategies, espe-
cially on the noisy data (figure 7). Similar to the coordinate
descent method, additional iteration strategies may improve
«2+2+1»schemes.Nevertheless, usageof anundecimated
data ensemble (e.g. full 2D data patch) appears the most reli-
able approach to overcome the effects of intense noise on the
estimation. This study shall propose a new alternative strat-
egy that uses an entire undecimated ensemble to estimate all
five parameters but sequentially in contrast to the 5D brute
force solution. It will maintain the computational efficiency
of sequential optimisation whilemitigating noise effects sim-
ilar to the 5D approach.

2.1.4. Sequential «dips + curvatures» strategy. We propose
an alternative estimation strategy for kinematic parameters
comprising of two sequential steps. During the first step,
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Figure 5. Same as figure 3, but for the ‘visible event’ from real data (figure 4a): (a, b, c) show, correspondingly, the first, second and the last steps of the
«2 + 2 + 1» approach (left); (d, e, f) show cross-sections of 5D objective function at the estimated values from the «2 + 2 + 1» approach (middle)
and (g, h, i) show cross-sections of 5D objective functions at the estimated values from the 5D brute force approach (right).

Figure 6. Same as figure 5, but for the ‘noisy event’ from real data (figure 4b): (a, b, c) show, correspondingly, the first, second and the last steps of the
«2+ 2+ 1» approach (left); (d, e, f) show cross-sections of 5D objective function at the estimated values from the «2+ 2+ 1» approach and (g, h, i)
show cross-sections of 5D objective functions at the estimated values from the 5D brute force approach (right).
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Figure 7. Parameter B obtained by different estimation strategies: (a) the
5D brute force approach and (b) the «2+ 2+ 1» strategy.

we find only the dips but in both coordinate directions. Like-
wise, during the second step, we fix estimated dips and esti-
mate all three curvatures. Compared with the «2 + 2 + 1»
strategy, both steps of this approach use the entire undeci-
mated data ensemble (full 2D patch) instead of limited sub-
sets used in the «2 + 2 + 1» method. During the first step,
curvaturesC,D andE are set to zero. The brute force strategy
searches for optimal dips A and B that maximise semblance-
based objective function in equation (3). Likewise, we fix
dips A andB during the second step and use brute force strat-
egy to find curvatures C, D and E. This alternative sequen-
tial strategy finds all five parameters with much less compu-
tational effort than the 5D brute force approach.

2.2. Interpolation of kinematic parameters

After choosing an appropriate strategy, one needs to select
a grid in the data domain to estimate these parameters. Ir-
respective of the strategy, using every trace and time sample
is not computationally feasible for massive datasets. A faster
method is a so-called operator-oriented approach (Hoecht

et al. 2009). The ‘operator’ defines a traveltime surface used
for the local moveout correction. Kinematic parameters are
estimated and stored as samples of so-called parameter traces
at the decimated uniform grid in data space. These param-
eters define traveltime trajectories for summation. They are
assumed valid for the neighborhoods between the estimated
grid points. The coarser the spatial grid of parameter traces,
the faster algorithm performs. However, a too-coarse grid
may not accurately capture complex moveouts, leading to in-
coherent summation and loss of data quality for enhanced
traces located far from the operator traces. To mitigate these
effects in this study, we also invoke parameter interpolation:
estimating parameters on coarser regular or random grids,
then interpolating them to a dense original grid. While ad-
vanced interpolation and inpainting techniques can be con-
sidered (Gadylshin et al. 2020), we find that the simplest lin-
ear interpolation method is suitable when coarse and dense
grids are regular. The ratios of the coarsened and initial grid’s
spatial steps are denoted by kx and ky. Likewise, instead of
estimating parameters at every time sample, we coarsen the
time axis with a ratio of kt> 1 to further reduce the number
of estimations.

2.3. Proposed optimal solution

Anoptimal strategy should provide a reasonable trade-off be-
tween enhanced data quality and computational efficiency
for practical applications. For real data, a reasonable trade-
off is achieved with the sequential strategy «dips + curva-
tures» done on a sparser grid followed by the parameter in-
terpolation as described previously (figure 8). This scheme is
far more computationally affordable compared to the global
5D search algorithms. At the same time, it provides more ro-
bust kinematic parameters than a sequential «2 + 2 + 1»
strategy (Hoecht et al. 2009; Bakulin et al. 2020), which may
get trapped in a local maximum and limit the enhancement
power for data with a low signal-to-noise ratio. We support
these conclusions with numerical tests using real land data
from the complex desert environment.

3. Synthetic data example

Let us compare the robustness of different estimation strate-
gies as a function of signal-to-noise ratio using a controlled
synthetic event superimposedwith variable noise taken from
real data. We take the geometry of real cross-spread gather
shown in figure 4. The signal is represented by a single hy-
perbolic reflection event with a Ricker’s wavelet of dominant
frequency 30 Hz. The synthetic gather is generated by com-
bining a signal with noise taken from real land data. To verify
robustness to noise, estimation is repeated for different levels
of SNR from −60 to 40 dB. We specifically evaluate NLBF
estimation using «2 + 2 + 1» and «dips + curvatures»
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Figure 8. Flow chart of the new proposed optimal strategy for 3D seismic data enhancement.

Figure 9. Parameter A (dip) obtained with the «2 + 2 + 1» estimation strategy without interpolation (kt = 1, kx = ky = 1) for synthetic gather with
single hyperbolic reflection and variable levels of noise taken from real data: (a) SNR= 10 dB, (b) SNR=−15 dB and (c) SNR=−25 dB. Profile of the
estimated parameterA along the hyperbolic event (dashed line) is comparedwith the ground truth (solid line) for different levels of noise: (d) SNR= 10
dB, (e) SNR=−15 dB and (f) SNR=−25 dB. These observe good estimation above−15 dB and unreliable estimation at−25 dB.

strategies with and without interpolation. Comparing es-
timated parameter A with the ground truth, one can see
that both strategies have similar robustness for a higher
SNR (higher than−15 dB). Accurate estimation is achieved
along with the entire event with acceptable errors (figures 9–
11). However, at lower SNRs, the «2 + 2 + 1» strat-
egy loses its robustness earlier than the «dips + curva-
tures» strategy as seen by comparing figures 9f and 10f for
−25dB. Large and frequent deviations become abundantly
present along the event in figure 9f. This happens with-

out the interpolation of the estimation grid. In contrast, the
«dips + curvatures» strategy maintains similar estimation
quality evenat−25dBwithout interpolation (figure10f). Es-
timationerrors increasewith interpolation.However, they re-
main acceptable for practical applications (figure 11f). Sim-
ilar behavior is observed for other kinematic parameters
(not shown).

A similar trend is observed in figure 12, analysing mean
absolute percentage error (MAPE) in individual parame-
ters along the entire event as a function of SNR. One can
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Figure 10. Same as figure 9, but obtained with the «dips+ curvatures» estimation strategy without interpolation (kt= 1, kx= ky= 1). These observe
reliable estimation all the way to−25 dB.

Figure 11. Same as figure 10 but obtained with the «dips+ curvatures» estimation strategy with interpolation (kt= 11, kx= ky= 2). These observe
an increased error at−25 dB (f) but are still of acceptable estimation quality for data enhancement.
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Figure 12. Mean absolute percentage error (MAPE) for estimated parameters as a function of SNR: (a) MAPE for parameter A (dip) and (b) MAPE
for parameterD (curvature). (c) Absolute values of the semblance function versus SNR. Solid line—«dips+ curvatures»without interpolation (kt= 1,
kx= ky= 1), dashed line—«dips+ curvatures» with interpolation (kt= 11, kx= ky= 2), dash-dotted line—«2+ 2+ 1» estimation strategy without
interpolation (kt= 1, kx= ky= 1). Noise borrowed from real data is used in all examples. Observe smaller errors for «dips+ curvatures» at the lower
end of the SNR range.

Table 1. Comparison of computational effort and errors in estimated parameters for different estimation strategies measured as MAPE of all five
parameters averaged over SNR interval of [−20 0] dB.

Strategy kx,ky kt Number of traces used for estimation Estimation time MAPE

«2+ 2+ 1» 2 11 80 (‘fat’ line) 0 h 1 min 13.3%
«2+ 2+ 1» 1 11 80 (‘fat’ line) 0 h 3 min 12.5%
«2+ 2+ 1» 1 1 80 (‘fat’ line) 0 h 23 min 10.7%
«Dips+ curvatures» 2 11 840 (2D patch) 0 h 33 min 6.7%
«Dips+ curvatures» 1 11 840 (2D patch) 2 h 13 min 6.0%
«Dips+ curvatures» 1 1 840 (2D patch) 23 h 56 min 4.3%

observe smaller MAPE values for the «dips + curvatures»
as compared to the «2 + 2 + 1» strategy without interpo-
lation (figure 12). Specifically, in the practically interesting
SNR range of less than 0 dB (where NLBF should be ap-
plied),weobserve that the«dips+ curvatures» strategywith
interpolation has a lower level of error than the «2+ 2+ 1»
strategy without interpolation.

To include other parameters into account, we now com-
pute MAPE for all five parameters further averaged over
the SNR interval [−20 0] dB. The upper bound (0 dB)
represents SNR when enhancement is rarely needed. The
lower bound of −20 dB is chosen for this specific example

as SNR corresponding to the smallest trustable semblance
values (figure 12c). Table 1 shows MAPE versus the com-
putational times for different estimation strategies. It may
help analyse the trade-off between quality and computa-
tional speed.We conclude that for desired fast computational
times, the «dips + curvatures» strategy with interpolation
(kt = 11, kx = ky = 2) provides a smaller error in esti-
mated parameters than the «2 + 2 + 1» strategy without
interpolation. Since computational effort is comparable for
both strategies, this suggests that «dips+ curvatures» as the
best candidate in terms of quality/speed ratio for data with
low SNR.
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Figure 13. Parameter B (left) and maximum semblance (right) obtained with different estimation strategies: (a, b) 5D brute force estimation, (c, d)
sequential estimation of dips and curvatures and (e, f) the«2+ 2+ 1» approach. Brute force and sequential approaches provide amore stable estimation
of parameter B and higher semblance values than the «2+ 2+ 1» procedure.

4. Real-data examples

4.1. Comparison of different estimation strategies

Let us now analyse and understand the advantages and dis-
advantages of the described estimation strategies based on
a series of real-data numerical experiments using nonlinear
beamforming. The goal is to identify the optimal strategy in
terms of quality and computational cost.

As afirst example,weuse legacy land seismicdata acquired
with 72-geophones arrays and five vibrators per sweep in a

challenging desert environment with poor data quality. The
data have passed through major denoising steps, including
high-amplitude and linear-noise attenuation (figure 14a). As
can be seen, the data’s noise level is relatively high, and the
reflection events are hardly visible even with large field ar-
rays. We applied nonlinear beamforming in the cross-spread
domain using different estimation strategies. The estimated
parameter B (dip) and corresponding maximum semblance
values are shown in figure 13. The remaining parameters
exhibit similar behavior (not shown). The brute force 5D
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Figure 14. Typical common-shot gathers before (a) and after enhancement with NLBF (b) using 5D brute force solution (used as reference data).
NRMSmetric computed for reference data and data obtained by various estimation strategies: the (c) ‘dips+ curvatures’ and (d) «2+ 2+ 1» approach.
Sequential estimation (c) provides the enhancement result closer to the reference as manifested by the lower values of the NRMS compared to the
«2+ 2+ 1» approach.

Table 2. Comparison of computational effort and enhanced data quality for three estimation strategies used for NLBF. Data from the 5D brute force
approach is considered the best achievable reference. The closeness of the enhanced data to the reference is evaluated using the NRMSmetric, with
smaller values indicating better similarity.

Strategy  

Metric

«2+ 2+ 1» «Dips+ curvatures» 5D brute force

Estimation time 11 min 8 h 40 min 1666 h 40 min
Number of traces used for estimation 80 (‘fat’ line) 840 (2D patch) 840 (2D patch)
Average semblance 0.011 0.020 0.025
NRMS 40% 29% 0% (reference)

estimation strategy shows the semblance function’s stable
behavior. The estimated parameter B corresponds with the
weak reflection events visible in figure 14. A similar, al-
though the slightly noisier result, is obtained using the strat-
egy with the sequential estimation of dips and curvatures.
The «2 + 2 + 1» strategy provides the most unstable re-
sult with the lowest optimal semblance value and large spa-
tial variations in dip parameter B that are not consistent with
the structure of reflected events. Tomake a quantitative com-
parison, we compute average semblance values for the whole
gather (Table 2). We also use the normalised mean-squared
(NRMS) metric (Kragh & Christie 2002) to evaluate the
data’s closeness to those enhanced by the 5D brute force

estimation strategy, which is considered the best achievable
result in this case. This strategy provides the biggest average
semblance comparing to other solutions, which justifies its
use as a reference. Differences between the data obtained us-
ing the5Dbrute force approach and twoother strategieswere
calculatedusing theNRMSmetric computed in a slidingwin-
dow. As shown in figure 14, strategy with the sequential es-
timation of dips and curvatures provides data closer to the
reference solution than the «2 + 2 + 1» strategy. The av-
erage NRMS metric value calculated over the entire gather
is around 29% for the «dips + curvatures» strategy. In con-
trast, it is higher at 40% for the «2 + 2 + 1» approach.
Lower NRMSmeans closer similarity to a reference solution
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Figure 15. Parameter B estimated by the «dips + curvatures» approach using various decimation/interpolation parameters in space and time: (a) no
interpolation (kt= 1, kx= ky= 1); (b) kt= 11, kx= ky= 2; (c) kt= 11, kx= ky= 3 and (d) kt= 11, kx= ky= 4. For each casewith decimated estimation
grids (b–d), we linearly interpolate computed parameters to the same dense grid as for the case without interpolation (a).

confirming that the latter approach provides better quality
enhancement.

As a next step, we examine a computation cost for all the
strategies. Table 2 shows a comparison of running times re-
quired to estimate kinematic parameters for one cross-spread
gather. Although the full 5D brute force approach provides
the best results in terms of quality, it is unacceptably slow for
practical applications at this time. The «2 + 2 + 1» strat-
egy provides the best result in performance and shows a 40×
faster computational time compared to the «dips + curva-
tures» strategy.

4.2. Comparison of attributes interpolation strategies

Let us now study the influence of attributes interpolation on
theNLBF results.We performed a series of experiments with
different estimation grid sparsity by varying the coefficients
kx, ky and kt, defined previously. Since the semblance value
during a coherency search is calculated in a particular time
window, the half-window size appears to be the right can-
didate for a decimated grid step in the time direction. We
used the time window of 22 time samples in the numerical

examples, resulting in a 44 ms semblance window at 2-ms
sampling. This is comparable to one period at a dominant
frequency. Therefore, kt = 11 or a decimated time step of
22 ms is selected for interpolation tests. We use equal esti-
mation grid steps for spatial directions along the x and y axes
and investigate coefficients kx = ky = 2, 3 and 4, resulting in
200, 300 and 400 m intervals in the estimation grid. The es-
timated values of parameter B for each of these grids are pre-
sented in figure 15. For kx= 2, estimated parameters closely
resemble the values calculated on an original densest estima-
tion grid before any interpolation in time or space. Further
increasing the spatial grid interval with kx = 3, 4 leads to vi-
sually over-smoothed behavior suggesting loss of resolution.

To quantitatively understand the influence of such inter-
polation on the quality of the enhanced data and estimation
cost, we compare computational times, average semblance
and NRMS values (figure 16, Table 3). Like Table 2, we con-
tinue to use the same reference solution from the 5D strategy
without interpolation. Analysing the results from Tables 2
and 3, we conclude that the strategy with a sequential esti-
mation of dips and curvatures on a sparse grid (kx= ky= 2,
kt = 11) delivers a better solution than the «2 + 2 + 1»
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Figure16. NRMSdifferenceof enhanceddata and referencedata from5Dapproach (no interpolation). Similar to figure 14,we evaluate the«dips+ cur-
vatures» approach using various decimation/interpolation parameters in space and time: (a) no interpolation (kt = 1, kx = ky = 1); (b) kt = 11,
kx = ky = 2; (c) kt = 11, kx = ky = 3 and (d) kt = 11, kx = ky = 4. For each case with decimated estimation grids (b–d), we linearly interpolate
computed parameters to the same dense grid as for the case without interpolation (a). Interpolation with kt = 11, kx = ky = 2 (b) provides an average
NRMS of 35% (Table 3) that is used in this study as an acceptable threshold of similarity with the reference data. In contrast, cases (c, d) deliver average
NRMS above 35%.

Table 3. Effect of interpolation on computational effort and enhanced data quality for the strategy with the sequential estimation of dips and
curvatures. Using sparser grids for estimation with subsequent interpolation leads to a significant reduction in computing time/cost. NRMS values
increase only by a small percentage during interpolation, indicating only slightly worsening similarity but still acceptable for practical purposes.

5D brute force «Dips+ curvatures»

«Dips+ curvatures»
(kx= ky= 2,
kt= 11)

«Dips+ curvatures»
(kx= ky= 3,
kt= 11)

«Dips+ curvatures»
(kx= ky= 4,
kt= 11)

Estimation time 1666 h 40 min 8 h 40 min 12 min 5 min 3 min
Average semblance 0.025 0.020 0.020 0.019 0.020
NRMS 0% (reference) 29% 35% 40% 40%

strategy in terms of semblance values (0.2 vs. 0.11) and qual-
ity while using similar computational effort (12 vs. 11 min).
Therefore, the proposed sequential estimation of dips and
curvatures followedby interpolation provided an optimal ap-
proach for real seismic data striking an excellent trade-off be-
tween computational time and achieved quality. We further
stress that «dips+ curvatures» increase the estimation pro-
cess’s robustness, especially for challenging real data from a
desert environmentwith single sensors and small field arrays.

4.3. Enhancement of first arrivals for land single-sensor
data

As a second real-data example, we consider enhancing early
arrivals for single-sensor land data with the orthogonal ac-

quisition geometry. Receiver spacing is 20 m along the lines
with a cross-line interval of 120 m. Likewise, source inter-
vals are 20 m (inline) and 80 m (cross-line). Only a mi-
nor high-amplitude noise attenuation was applied to the
data in this example to preserve first-arrival energy. At far
offsets, the signal level is very week, and first arrivals are
merely invisible in rawgathers (figure 17a). Figure 17d shows
first-arrival traveltimes picked using an automatic algorithm
on a cross-spread gather. Figure 18 shows the mean of these
first-break picks values as a function of offset. We note that
starting from an offset of approximately 2250 m, the picking
algorithm completely fails and follows a mute function ap-
plied to the data before picking. Hence, it does not provide
reliable information at far offsets that can be useful, particu-
larly for full-waveform inversion applications.
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Figure 17. Far-offset receiver line from a 3D common-shot gather of land single-sensor data after minor preprocessing (a) and corresponding map of
first-arrival traveltimes picked using an automatic algorithm (d). The same gather is shown after enhancement with nonlinear beamforming using the
«2+ 2+ 1» approach without interpolation (b) and «dips+ curvatures»with interpolation strategy (c). The corresponding traveltimemaps obtained
from the enhanced data are displayed in (e) and (f), respectively.
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Figure 18. Mean values of first-break picks from the original data (blue) and the data after NLBF with different estimation strategies: the «2+ 2+ 1»
approach without (brown) and with interpolation (yellow); the «dips + curvatures» approach with interpolation (purple). Interpolation parameters
are kt= 12, kx= ky= 2.

We apply nonlinear beamforming to this data using the
«2 + 2 + 1» strategy both with and without parameters
interpolation and the «dips + curvatures» strategy with
interpolation. The data quality improves dramatically after
NLBF in all the cases compared to the original raw data
(figure 17). The «dips + curvatures» strategy provides a
higher quality enhancement that results in more coherent
and clear events than the «2 + 2 + 1» strategy. The cor-
responding first arrivals maps obtained using the enhanced
data show a more reliable shape on far offsets than the orig-
inal raw data (figure 17). This time, the traveltimes follow
actual enhanced first arrivals and not the mute function (fig-
ures 17 and 18). Themore detailed comparison of mean val-
ues in figure 18 shows that the data quality after enhance-
ment using the «2+ 2+ 1» approach with interpolation de-
grades faster than the same approach but with interpolation.
The «dips + curvatures» strategy with interpolation helps
obtain the most reliable picks in this case that tend to ap-
proach the longest offset available in the data. Moreover, the
observed improvements are directly related to the estimated
parameters’ enhanced quality (figure 19). Table 4 illustrates
that the required computational time is comparable between
the «dips+ curvatures» strategy with interpolation kt= 12,
kx = ky = 2 (14 hours 30 minutes), and «2 + 2 + 1» with-
out interpolation kt = kx = ky = 1 (16 hours 19 minutes).
At the same time, the quality of the former one is better. We
conclude that the«dips+ curvatures» approach gives us the
best trade-off in data quality and computation speed.

5. Conclusions

Data-enhancement algorithms based on local stacking,
such as nonlinear beamforming, are computationally ex-

pensive. They require local coherency search on massive
spatial/temporal grids in 3D prestack data cubes. Efficient
implementation of such algorithms poses an inevitable
trade-off between the algorithm’s computational perfor-
mance and the achieved quality of the enhanced data. We
compare several existing and new estimation strategies for
nonlinear beamforming currently in wide use to process data
from the desert environment with complex near surfaces.
Specifically, we examine the conventional «2 + 2 + 1» esti-
mation strategy versus the new sequential strategy evaluating
dips and then curvatures. Synthetic and real-data examples
show that sequential estimation of dips and curvatures
with interpolation provides an optimal trade-off between
computational speed and data quality. Table 4 summarises
our semiquantitative assessment and ranking of various
estimation strategies for practical applications. The new
strategy, dubbed «dips + curvatures», has proven to be
significantly more robust when applied to real data with a
low signal-to-noise ratio. This robustness is achieved using
the entire undecimated data ensemble for both estimation
steps instead of decimated ‘fat’ lines along each coordinate
as in the «2 + 2 + 1» approach. Using two challenging 3D
land seismic datasets, we demonstrate that the new strategy
outperforms the conventional «2 + 2 + 1» approach and
provides results closer to the reference data obtained with
the 5D brute force approach currently out of computational
reach for massive seismic volumes. To compensate for larger
ensemble sizes and a more expensive optimisation scheme
in the «dips + curvatures» approach, we propose param-
eter computation on a coarser grid in space and in time,
followed by interpolation back to the original grid. With a
not-too-aggressive grid decimation followed by straightfor-
ward linear parameter interpolation, we achieve significant
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Figure 19. Maximum semblance (left) and dip parameters A (middle) and B (right) obtained using various estimation strategies: the «2 + 2 + 1»
(a, b, c) and the sequential estimation of dips and curvatures (d, e, f). Observe the more geologically plausible behavior of parameters (d, e, f) with
images resembling arrivals on the enhanced data (figure 17c). In contrast, (a, b, c) showmore erratic and unstable behavior caused by limitations of the
«2+ 2+ 1» approach.

Table 4. Semiquantitative assessment and ranking of various estimation strategies for practical applications in terms of quality vs. performance.

Option Quality Performance Usage priority (qaulity vs. performance)

5D brute force Best achievable Not considered Quality reference
«2+ 2+ 1» Average Good 2
«Dips+ curvatures» Good Acceptable 4
«2+ 2+ 1» with interpolation Acceptable Good 3
«Dips+ curvatures» with interpolation Good Good 1

additional speedup making a new strategy computing
time/cost comparable to the conventional «2 + 2 + 1»
approach. Simultaneously, comparing parameters and data
quality obtained with «dips + curvatures» and a con-
ventional strategy, we find them similar for synthetic data
without noise.

In contrast, the new strategy delivers considerably bet-
ter enhanced data quality for real 3D land seismic data with
strong noise. This is also supported by synthetic data ex-
amples with different levels of real-data noise. Also, data
quality remains similar when comparing the «dips + curva-
tures» approachwith andwithout interpolation asmeasured
by a sensitive NRMS repeatability metric experiencing only
a slight reduction. Therefore, interpolating more accurately
computed parameters with a new strategy is highly robust,
unlike the conventional approach. Interpolation can still be
usable for aggressive decimation, but more advanced param-

eter interpolation schemes may be required. In summary, we
introduce an optimised version of theNLBF algorithm to en-
hance 3D seismic data based on the sequential estimation of
dips and curvatures on the sparse grid followed by an inter-
polation to dense original grid. Applications to challenging
3D land single-sensor datasets demonstrate clear advantages
in data quality and first-break picks derived from enhanced
data.
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