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SUMMARY

Through our research, we help optimize seismic survey design
selection by developing quantitative tools to evaluate seismic
amplitude fidelity and establish signal-to-noise ratio (SNR)
thresholds for robust quantitative analysis in complex near-
surface environments. Utilizing the SEAM Arid model to sim-
ulate desert near-surface features, we develop various tools,
including amplitude standard deviation and quality factor met-
rics, to aid in the optimal selection from six acquisition ge-
ometries. We correlate these metrics with stack-based SNR
volumes from Bakulin et al. (2022a) to assess seismic data
suitability for certain quantitative interpretation objectives. Fi-
nally, we successfully apply these tools to Non-Uniform Opti-
mal Sampling (NUOS) field data from the Powder River Basin,
investigating compressive sensing seismic amplitude fidelity.

INTRODUCTION

One way to assure the suitability of seismic data for quanti-
tative analysis is to optimize the acquisition survey design to
ensure the resulting data has a sufficient signal-to-noise ratio
(SNR) for its interpretation objective. Land seismic data acqui-
sition comes with numerous challenges, but perhaps the great-
est of all is near surface complexity that in many cases causes
significant seismic amplitude information loss due to its effect
on seismic wave propagation. The small- to large-scale hetero-
geneities in complex near-surface environments cause signifi-
cant scattering of the seismic wavefields (Sato et al., 2012; Xie
et al., 2020). In such situations, all aspects of seismic analysis
are affected, from acquisition, to processing, to data interpre-
tation, and a good measure of the seismic data quality is its
SNR.

Acquisition geophysicists have an established way of estimat-
ing SNR during the design of seismic acquisition surveys using
the Signal-Strength Estimate (SSE) as a function of frequency
(f) from Meunier and Gillot (2000), and Meunier (2011),

SSE( f ) = SS( f ) ·
√

SD ·NR ·RA, (1)

where SS is the source strength, SD is the source density, i.e.,
the number of shot points per surface unit, NR is the number of
receivers per shot point, and RA is the number of receivers per
shot point. SSE is then converted to theoretical signal-to-noise
ratio, SNRt, in decibels using,

SNRt
dB = 20log10(SSE). (2)

But for long, acquisition relied heavily on this theoretical SSE
estimation without a quantitative validation of its accuracy from
the processing side.

To close this loop between acquisition and processing, and to
provide a quantitative validation to the SSE equation, Bakulin
et al. (2022a) proposed a data-driven experimental SNR es-
timation method (SNRe), which computes stack-based SNR
using semblance (S). The formula for SNRe estimation is,

SNRe =
S

1−S
, (3)
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) ,di j = si +ni j, (4)

where, si = s(ti) is signal, ni j = n(ti,x j) is noise, i is time sam-
ple index, N is the total number of time samples, j is trace
index, and M is the total number of traces.

This experimental SNRe estimation has successfully validated
the theoretical SNRt from the SSE equation (Bakulin et al.,
2022b), and provided a quantitative and objective feedback
from processing that addresses whether the acquisition design
achieved its SNR objectives.

However, the feedback loop can be fully closed when inter-
pretation geophysicists provide specific quantitative seismic
data requirements that suits their objectives. Therefore, the
objective of this study is to investigate different acquisition ge-
ometries for their ability to preserve the amplitude information
needed for robust quantitative interpretation, and correlate our
findings to the stack-based SNR estimations. As a result, de-
signing optimal acquisition surveys can be tailored to the inter-
preters’ goals by setting a target SNR value that is sufficient for
interpretation, and an acquisition geometry that is suitable for
complex near-surface environments, leading to a more stream-
lined process between acquisition, processing, and interpreta-
tion.

METHODOLOGY

For the first part of the study, we were provided with six seis-
mic stacks of the SEAM Arid model simulating six different
acquisition geometries. We first examined equalizing the am-
plitude ranges of the different seismic volumes to facilitate a
one-to-one comparison. We then performed conventional seis-
mic interpretation and attribute analysis to identify and map
the structural and amplitude-dependent features, mainly target-
ing two shallow channel systems and two deep shale geobody
accumulations. Subsequent qualitative and quantitative analy-
ses were performed to assess amplitude information preserva-
tion and identify potential signal compromise areas.

Amplitude Standard Deviation
As part of our quantitative analysis of the data, we used the
seismic interpretation and attribute analysis to develop the first
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Figure 1: Extracted values of RMS attributes at 2700m deep
geobodies level in geometries G1 to G3, cross plotted against
the reference. The R2 values correlate well with how success-
ful the attribute mapped the geobodies.

quantitative assessment tool by calculating the standard devia-
tion of the amplitudes relative to the reference seismic volume
with the best overall SNR. The standard deviation measures
the dispersion of amplitudes for each seismic stack in relation
to the reference, and, thus, the higher the standard deviation,
the lower the amplitude information preservation of the data.
However, the significance of the standard deviation is not its
value, but its fraction of the mean. For example, a standard
deviation of 5 when the mean is 10 is much more significant
than a standard deviation of 5 when the mean is 50. Therefore,
in our analysis we divide the standard deviation by the mean,
giving us the percentage of standard deviation in relation to the
reference, which is also known as the Coefficient of Variation
(CV).

Quality Factor Metric
The quality factor metric provides an objective measure of suc-
cess of each seismic stack in mapping the subsurface features
using seismic attributes. This metric is inspired by Ourabah et
al. (2015), who similarly compared prestack seismic attributes
of different acquisition geometries to a reference volume with
the highest acquisition density. In our case, we used the seis-
mic stack with the highest SNR as the reference, and com-
pared its attributes for each of the subsurface features with the
attributes of the other seismic stacks. The comparison is done
by cross plotting the extracted values from the seismic attribute
surfaces, and the quality factor would be the R2 value from the
cross plots, ranging between 0 and 1, where 1 is the highest
correlation factor and 0 is the lowest. The example in figure 1
shows cross plots of extracted values of RMS attributes at the
geobodies level (@ 2700m depth) in all seismic stacks against
the reference stack. The R2 values correlate well with how
successful the attribute mapped the geobodies.

RESULTS

Throughout the study, we correlate SNR values with seismic
analyses across structural interpretation, amplitude dependent
features identification, and amplitude fidelity assessments. This
correlation across various steps addresses a central question in
our study: Can stack-based SNR estimations indicate the seis-
mic volume’s suitability for robust quantitative interpretation?

Figure 2: Detection of a channel at 1700m depth using a sum
of amplitudes attribute over the six tested geometries. The
channel was successfully detected only in G2, G3, G4, and
G6, where they all have SNR values higher than 6 dB.

One example is correlating SNR with the channel detection at-
tributes across the six geometries in figure 2. The figure shows
a direct correlation between high SNRs of around 6 dB or more
with successful detection of the channel. Another example is
from the results of the standard deviation calculations in fig-
ure 3A, which demonstrate the trend of the standard deviations
from the shallowest horizon (Horizon 1) to the deepest horizon
(Horizon 6) for all seismic stacks. The trend is the same for all
seismic stacks as they start with high standard deviations in
the shallow section and drop to low standard deviations in the
deep section. Figure 3B shows how SNR has an opposite trend
to standard deviation, where high SNR correspond to low stan-
dard deviations, and vice versa. Generally, figure 3 shows that
with low standard deviations we tend to have high SNR values,
suggesting a correlation between the two metrics, and, thus, a
correlation between SNR and amplitude information preser-
vation. We tested this observation in figure 4, by taking the
average standard deviations per horizon per volume and plot-
ting them against the corresponding SNR values. The figure
illustrates a clear correlation between standard deviations and
SNR, with an R2 correlation of 0.89.

For the second quantitative assessment, the results from one of
the quality factor metric generation is seen in figure 5, which
shows quality factor values for each attribute mapping the deep
channels at 1700m depth in the different geometries. Using
the results in the figure, we can objectively measure how well
each attribute mapped the desired feature. For example, we ob-
serve that G6 and G2 have the highest quality factors for their
attribute mapping with varying degrees of success, while G3
has a relatively high quality factor in two attributes only. The
quality factor can also help analyze the performance of certain
attributes in mapping features, and the risk of any drilling de-
cision made based on these attributes. We’ve generated similar
plots for each subsurface target and correlated the results with
the SNR values along the target level and found a high direct
correlation between the quality factor metric and SNR.

We implemented these metrics on field data from the Pow-
der River Basin, where we estimated a cross-correlation-based
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Figure 3: (A) The trend of the standard deviations from the
shallowest horizon (Horizon 1) to the deepest horizon (Hori-
zon 6) for all seismic stacks. (B) The trend of SNR from
the shallowest horizon to the deepest horizon for all seismic
stacks. SNR values are high where standard deviations are
low, and vice versa.

Figure 4: Cross plot of average standard deviations against av-
erage SNR for each horizon in each seismic stack, showing
a good R2 correlation of 0.89. This suggests a correlation be-
tween SNR and amplitude information preservation does exist.

SNR to mimic the stack-based SNR we had in the SEAM Arid
study. The results from the SNR estimations show higher SNR
in the west compared to the east of the survey, which also cor-
responded to better acoustic impedance inversion results in the
west compared to the east. As for the calculation of standard
deviation, we correlated the dispersion of the seismic trace am-
plitudes at the well locations in relation to the reference, which
in this case is the synthetic seismogram. As a result, we found
that the high SNR wells had the lowest standard deviations
with an average of 34%, while the low SNR wells had high
standard deviations of around 80%. We see similar trends be-
tween the standard deviation and SNR values in field data com-
pared to the trends from the SEAM Arid model shown in figure
3, which boosts our confidence in those SNR estimations being
good indicators to amplitude information preservation.

CONCLUSIONS

The implications of our findings are significant for determin-
ing the optimal survey designs for quantitative seismic anal-
ysis in complex near-surface environments. Our study con-
firms the value of data-driven volumetric estimations of SNR
in predicting the suitability of a seismic survey for robust seis-
mic interpretation. This could facilitate more automated feasi-
bility studies of different acquisition geometries, leading to a
more streamlined collaboration between acquisition, process-
ing, and interpretation. We provided quantitative metrics for
optimizing seismic survey designs tailored to interpreter goals
by setting a target SNR value that is sufficient for interpreta-
tion, and an acquisition geometry that is suitable for complex
near-surface environments. As can be seen in figure 6, we de-
termined that effective mapping of structural and amplitude-
dependent features requires a minimum SNR of 6 dB, as SNR
values below this threshold tend to obscure amplitude infor-
mation. We also found that areas with low standard deviation
of amplitudes relative to the reference volume are associated
with successful mapping of subsurface features and high SNR
values. we also observed that the quality factor metric sug-
gests the significance of dense acquisition designs for accurate
mapping of amplitude-dependent features in shallow targets,
whereas all tested acquisition geometries were proficient in
mapping deeper targets due to high reflectivity. Finally, we ob-
served a correlation between the stack-based SNR estimations
and the quantitative metrics, demonstrating that stack-based
SNR provides valuable insights into the suitability of seismic
data for robust quantitative seismic interpretation.
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Figure 5: Quality factor values for each attribute mapping the deep channels at 1700m depth in the six seismic stacks. G6 and G2
have the highest quality factors for their attribute mapping, while G3 has a relatively high quality factor in two attributes only.

Figure 6: Performance of each geometry in detecting the major subsurface targets, along with their corresponding SNR values.


