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Seismic time-frequency masking for suppression of seismic speckle noise

Andrey Bakulin', Dmitry Neklyudov?, and llya Silvestrov’

ABSTRACT

Seismic speckle noise is the primary factor causing severe re-
flection distortions caused by small-scale near-surface scattering.
As in the case of speckle noise in optics and acoustics, determin-
istic velocity model-building techniques cannot recover these
heterogeneities which are much smaller than a wavelength. Con-
ventional processing techniques struggle to perform when multi-
plicative noise remains unsuppressed. Although local and global
stacking mitigates the effects of speckle noise, it leads to a severe
loss of higher frequencies reducing the vertical resolution of the
seismic data. The foundation for attacking speckle noise is a re-
cently proposed mathematical model that includes two concurrent
random multiplicative noise types: type 1 defining residual statics
and type 2 describing random frequency-dependent phase pertur-
bations that mimic small-scale near-surface scattering. Using this
model, we have developed seismic time-frequency masking to
suppress speckle noise on prestack data. The time-dependent
and non-surface-consistent nature of scattering noise dictates

window-based approaches borrowed from local stacking tech-
niques. Separate manipulation of phase and amplitude spectra
is achieved through modified time-frequency masking inspired
by speech processing. A beamformed data set from local stacking
is used as a guide for designing phase and amplitude masks that
are directly applied to raw data in the time-frequency domain.
The phase mask allows the restoration of coherency by repairing
phase distortions caused by near-surface scattering. The ampli-
tude mask corrects power spectrum (PS) distortions caused by
multiplicative and additive noises. An amplitude mask is imple-
mented using a data-driven minimum statistic approach that
estimates the noise PS in each local window. The minimum sta-
tistics approach is adapted from speech processing using beam-
formed data as an initial signal estimate and as a guide to
designing an improved amplitude mask. Synthetic and field data
examples suggest significant improvements in coherency and sig-
nal-to-noise ratio after the suppression of multiplicative noise,
which makes the data processable by conventional techniques
subsequently.

INTRODUCTION

Land and shallow marine environments with complex near sur-
faces are associated with challenging seismic data quality (Reilly
et al., 2010; Meunier, 2011; Bakulin et al., 2020a; Stork, 2020).
In particular, desert environments exhibit some of the most difficult
data, land and marine (Bagaini et al., 2010; Reilly et al., 2010). The
vast majority of the previous land studies have focused on improved
sampling and removal of the elastic noise (surface waves, guided
waves, etc.). Such studies implicitly assume that underlying reflec-
tions maintain coherency, whereas the signal wavelet experiences
relatively smooth (and surface-consistent) changes (Ji et al.,
2010; Meunier, 2011; Regone et al., 2015; Bakulin et al., 2018b).
The introduction of single-sensor data in desert environments

reveals significant frequency-dependent distortions initially attrib-
uted to variable geophone coupling (Bagaini and Barajas-Olalde,
2004). Subsequently, Reilly et al. (2010) speculate that subseismic
heterogeneity (at a scale not captured in current velocity models)
could be a more plausible explanation for shallow marine seismic
data in desert environments. They show that time-variant statics
could effectively compensate reflected events for some of these dis-
tortions and deliver improved time and depth imaging. Khalil and
Gulunay (2011) demonstrate the severe complications and need to
correct intraarray statics in single-sensor land data even when ana-
lyzing direct arrivals. Bakulin et al. (2021, 2022a) thoroughly re-
view desert land data with single sensors and small arrays. They
introduce a multiplicative random speckle noise model to describe
the effects of small-scale near-surface scattering. The multiplicative
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random noise model formalized not only time-variant non-surface-
consistent statics from Reilly et al. (2010) but also introduced ran-
dom frequency-dependent phase perturbations typical for speckle
noise due to volumetric scattering well known in optics, acoustics,
and ultrasound (Abbot and Thurstone, 1979; Damerjian et al., 2014;
Goodman, 2020). Recognizing speckle noise in seismic data was
a significant milestone because it enables transferring the vast
knowledge of speckle noise mitigation techniques from outside geo-
physics. We stress that multiplicative noise implies that our signals
(direct arrivals and reflections) become distorted. Caused by small-
scale heterogeneity in the near-surface layer, such distortions lead to
a fast wavelet variation over short distances resulting in a loss of
local coherency. Distortions are time-variant and non-surface-con-
sistent (Bakulin et al., 2022a). As a result, standard approaches of
surface-consistent deconvolution (Cary and Lorentz, 1993) and
coupling corrections (Bagaini and Barajas-Olalde, 2004) cannot ad-
dress seismic speckle scattering noise. This paper introduces a new
seismic time-frequency masking (STFM) technique (Bakulin et al.,
2021) that could effectively mitigate speckle noise on prestack data.
STFM is inspired by time-frequency masking from speech process-
ing (Yilmaz and Rickard, 2004; Wang, 2008a). However, it has sev-
eral critical distinctions, such as using locally stacked data as a
“pilot” to design all masks and addressing multiplicative noise that
is not present in speech.

The paper follows a simple structure. First, we summarize the new
multiplicative noise model that describes the effects of near-surface
scattering on prestack seismic data. Then, because local stacking is an
essential element of the workflow, we summarize the transformation
of speckle noise during stacking presented in detail by Bakulin et al.
(2022a, 2022b). Then, we set a goal to design a signal estimation
scheme that eliminates a significant amount of multiplicative noise
by introducing STFM inspired by speech processing. The phase
masking component of STFM was raised in an ad hoc manner by
Bakulin et al. (2020b). However, its full justification requires invok-
ing the speckle noise model that only appeared later (Bakulin et al.,
2022a). In this study, we reintroduce phase masking on a more solid
mathematical footing and demonstrate how it addresses the loss of
coherency and fast wavelet variation caused by speckle noise. Then,
we describe a new version of amplitude masking designed to sup-
press amplitude noise. The idea of amplitude masking guided by
local stacking was introduced by Bakulin et al. (2020c, 2021) but
was not fully developed. This study presents a complete algorithm
with all computational details. Then, we evaluate the proposed STFM
procedure on a controlled synthetic example to validate the algo-
rithm. Finally, we apply the developed algorithm to field seismic data
from desert environments.
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Figure 1. (a) Origin of seismic multiplicative noise caused by seismic speckle born in
the near-surface scattering layer and (b) conceptual depiction of local ensemble used for

prestack data enhancement.
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SEISMIC SPECKLE NOISE CAUSED BY
SMALL-SCALE SCATTERING

Near-surface noise is usually invoked as a qualitative explanation of
land data complexity. Without understanding a specific mechanism,
such an explanation is not particularly useful. Inspired by studies of
optical and ultrasonic speckle noise, Bakulin et al. (2022a, 2022b)
suggest that seismic data experienced similar distortions and referred
to them as “seismic speckle noise.” Figure 1 summarizes the speckle
mechanism as near-ballistic forward scattering caused by closely
packed heterogeneities in the near-surface layer. We stress that it is
not an interference with near-surface arrivals or diffractions as in
the case of additive noise. In contrast, multiplicative noise is the dis-
tortion of the signal itself scattering on small-scale heterogeneities.
Many forward-scattered waves with close paths generate a complex
interference pattern in the vicinity of the ballistic arrival (Figure 1a).
Speckle noise is controlled by the local distribution of tightly packed
scatterers around the wavepath of interest. The noise rapidly varies
when the wavepath shifts (Fink and Derode, 1998). Because the
wavepath changes every time we perturb either the offset or azimuth
of sources and receivers, speckle noise characteristics vary spatially,
often unpredictably. Likewise, even with a fixed source and receiver
position, the wavepath through the near-surface scattering layer could
differ for each reflector (Figure la). As a result, speckle noise char-
acteristics also vary with time. Each 3D (x-y-f) window of prestack
data (x-y-t or two spatial and one time directions) is likely to contain
a unique field of speckle noise not observed in any other window. In
summary, speckle noise cannot be described by surface-consistent and
time-invariant operators currently used in conventional processing.

Optics and acoustics established a multiplicative model for
monochromatic speckle noise (Goodman, 2020). Bakulin et al.
(2022a, 2022b) introduce a mathematical model for a broadband
seismic trace with a general multiplicative noise. Let us denote
the recorded signal in the kth channel as

xi (1) = ri(2) * (1) + i (1), (1

where s(¢) is the clean signal, r(¢) is the multiplicative noise de-
fined as a random linear system, n;(¢) is the additive random noise,
“*¥” means the convolution, and k=1, ..., K (K is the number of
channels). In the Fourier domain, equation 1 could be rewritten as

Xi(@) = Ri(0)S(@) + Ny (@), 2

where X, Ry, S, and N are Fourier transforms of the time-domain
representations from equation 1. We further assume that additive
noise N(w) is uncorrelated between channels
and has a zero mean (E[N;(®)] = 0), where E
designates the math expectation operator. In ad-
dition, additive noise and signal are assumed to
be uncorrelated.

Signal transformation during stacking
in the presence of multiplicative noise

Speckle studies have proven that phase fluctu-
ations play a critical role. For example, Bakulin
et al. (2022a, 2022b) suggest a simple model of
multiplicative noise as random frequency-depen-
dent phase fluctuations occurring in each channel:
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Ri(w) = evl@), 3)

For each frequency w, random variables ¢, (w) are assumed to be
independent between all channels. Local stacking (averaging) of the
K traces in the frequency domain can be written as

K

§) = £ (@@ LN (@) @

k=1

For a limited number of traces used in the stacking, S (w) would be a
random variable for different trace ensembles. Its math expectation
could be written as

ES(0)] = S() [Z E[efww]} . )

Because each term acts as a filter on the signal, let us denote its math-
ematical expectation as

Py(w) = E[e)]. ©)

Using the notation x = ¢ (®),

o) = [ p

where P, is a probability density function of a random variable ¢, at
a given frequency w in the kth channel. Equation 7 suggests that if the
probability density function of the phase fluctuations of the multipli-
cative noise is even, i.e., P(x) = P(—x) (i.e., the expected value is
zero), then ®@; (w) becomes a real-valued filter. Using notation 6, we
recast equation 5 as

(x)e™dx, 7

ES(@)] = [S(@)]e [Zcbk @

where |S(w)| and g are the amplitude and phase spectra of the clean
signal, respectively. Bakulin et al. (2022a) suggest that if the statis-
tical properties of the near-surface layer do not vary rapidly, then all
channels involved in local stacking (Figure 1b) could be assumed to
have identical distributions. Hence, each channel represents a random
realization of the same variable ¢, (w) describing phase perturbations
leading to

E[S()] = [S(@)[e"*)d(w), ©)

where |S(w)| and g are the amplitude and phase spectra of the clean
signal, respectively. Important conclusions could be drawn without
specifying any other characteristics of the near-surface scattering
layer. First, stacking performs phase “cleanup” or averaging, thus
leading to either a clean signal phase (if ®(w) > 0) or a signal phase
rotated by 7 (if ®(w) < 0). Second, real-valued ®(w) could be in-
terpreted as an amplitude filtering describing the effect of stacking.
Bakulin et al. (2022a) introduce a specific form of ®(w) for two prac-
tically significant types of noise: (1) random phase perturbations and
(2) random time shifts (residual statics).

Type 1 multiplicative noise — Phase perturbations with normal
distribution

If phase perturbations ¢ (w) have the same normal Gaussian dis-
tribution with zero mean and standard deviation o,,(w), then the
mathematical expectation can be expressed as

{ré(rﬂ)

E[S(0)] = |S(w)|eis@ e (10)

The stacked phase spectrum in equation 10 coincides with the clean
signal phase. Therefore, if standard deviations remain independent
of frequency, amplitude reduction is the same across the entire fre-
quency band. In contrast, the loss of signal amplitude during stack-
ing could increase with frequency if we assume that the standard
deviation increases with frequency.

Type 2 multiplicative noise — Residual statics with normal
distribution

Residual statics (random time shifts 7)) was recast as the second
type of multiplicative noise (Bakulin et al., 2022a), with

Rk(a)) — e—ia)‘rk. (11)

If static corrections are normally distributed with zero mean and
standard deviation o7, then

2
w22

E[S(w)] = [S(w)[e™ (") =", (12)

Likewise, the phase spectrum of the stack mathematical expecta-
tion (equation 12) is identical to the clean signal. In contrast, am-
plitude experiences an exponential decay with frequency. Berni
and Roever (1989) present an alternative derivation of exponential
amplitude loss without using a multiplicative model but make sim-
ilar assumptions of normal Gaussian distribution of intra-array
residual statics.

Combination of types 1 and 2 noise

Bakulin et al. (2022a) demonstrate that the joint action of types 1
and 2 noises consistently explains three main field observations typ-
ical for any challenging prestack land data from areas with complex
scattering near the surface:

1) Reflections and direct arrivals on prestack data are often clut-
tered and not trackable throughout the entire gathers.

2) After local stacking, coherent reflections appear; however, the
absolute level of amplitude spectra is significantly reduced
(=15 to 20 dB or more) across the entire frequency range.

3) There is always an exponential loss of higher frequencies
after local stacking.

Taking into account a combination of both types of multiplicative
noise (equations 3 and 11) acting simultaneously, and assuming that
7 and @ (w) are independent and randomly distributed with a nor-
mal distribution and standard deviations o,, and o, we can derive
the stack mathematical expectations as

~ . 2
E[S(w)] = |S(w)|e’?s@ e~ e 7. (13)
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The phase of the clean signal is recovered after stacking, whereas
the amplitude loss factor becomes a product of two terms — one
caused by phase perturbations and another by residual statics.

Figure 2 visualizes amplitude decay induced by each type of
multiplicative noise resulting from local stacking. Expressed in log-
arithmic scale (decibels), residual statics with a standard deviation
o, produces amplitude loss increasing as a square of frequency f:

A, = —171.45 - (fo,)? dB. (14)
This equation agrees with the Baeten and van der Heijden (2008)
formula. Amplitude reduction is proportional to a square of the
standard deviation (Figure 2a).

In contrast, type 1 noise (phase perturbations with a normal dis-
tribution) leads to a frequency-independent amplitude loss that is
also proportional to a square of the standard deviation:

A, =-4343- (aé), (15)
under the assumption that ¢, is independent of frequency.

In summary, phase perturbations scramble the signal (observation
1) and reduce the overall amplitude level (observation 2). In con-
trast, residual statics explain the accelerating loss of higher frequen-
cies (observation 3), as Bakulin et al. (2022a, 2022b) explained.

How can we correct prestack seismic data for these complex non-
surface-consistent and time-dependent multiplicative noises super-
imposed with the regular additive noise? First, let us show in the
following section that the window-based infrastructure of local
stacking algorithms is the proper foundation for such corrections.

FROM LOCAL ENSEMBLE WINDOW
TO ENTIRE VOLUME

The preceding considerations apply to a limited extent of a 3D
x-y-t window containing a piece of a single-reflection event contami-
nated by a multiplicative noise as illustrated by the synthetic and real-
data examples in Bakulin et al. (2022a). However, speckle noise
varies with space and time. Therefore, if we set a task to denoise
the phase using equation 13, we must do this in the window-by-win-
dow fashion, scanning all three directions of the prestack seismic vol-
ume. Fortunately, such an infrastructure with 3D window-based x-y-¢

a) Residual statics b)

Phase perturbations

Bakulin et al.

ensembles has already been set up in local stacking approaches
(Buzlukov and Landa, 2013; Bakulin et al., 2018b). More specifi-
cally, Bakulin et al. (2020a) describe how the ensembles carved
around the main reflection events are designed and handled during
nonlinear beamforming (NLBF), one of the advanced local stacking
approaches frequently used in a desert environment with the complex
near-surface (Bakulin et al., 2018a). We would use this existing infra-
structure without any modification. We remind you that NLBF pro-
vides an output prestack volume of the same size as a raw input
volume. Figure 3 summarizes at the highest level that each time win-
dow on beamformed data is obtained as a local stacking conducted on
a 3D x-y-t ensemble of prestack data approximating equation 13.
Such a beamformed sum is individually manufactured at every time
window, and every x and y coordinate inside the 3D x-y-f ensemble.

In the past, beamformed or locally stacked data were the final out-
put of the data enhancement process. However, although summation
may be an optimal signal estimator (for phase and amplitude) in the
presence of additive noise, equation 13 suggests it is no longer the
case for multiplicative noise. Instead, it implies that summation is
only the optimal estimator for the signal phase, not the amplitude.
As a result, we now want to recover the signal phase from beam-
formed data while designing a different estimation procedure for sig-
nal amplitude spectra that may correct for exponential frequency
filtering caused by two types of multiplicative noise. Such targeted
manipulation of local amplitude and phase can be conveniently
achieved using the STFM technique described in the next section.

SEISMIC TIME-FREQUENCY MASKING

The loss of coherency of reflected events caused by seismic
speckle noise due to scattering creates a significant challenge for seis-
mic processing (Bakulin et al., 2022a). Although arrival-time infor-
mation of seismic events is encoded in the phase spectrum (Lichman,
1999), their extraction becomes nearly impossible in the presence of
severe phase fluctuations caused by speckle noise. Likewise,
smoothly varying local phase along the reflected event is an implicit
underlying requirement for most seismic processing and interpreta-
tion steps. A similar observation about the primacy of the phase was
made for the perception of photographic images in a seminal paper by
Oppenheim and Lim (1981).

Equation 13 provides a recipe for restoring the clean signal phase.
Bakulin et al. (2022a) present numerical experi-
ments confirming reliable phase estimation with

-20
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-35

Amplitude decay (dB)

-40

local ensembles containing only tens and hundreds
of traces. Such ensembles are typical for super-
grouping (Bakulin et al., 2018b) and NLBF
(Bakulin et al., 2020a). Therefore, let us set the

first goal to restore the clean signal phase while

., leaving the amplitude alone. Bakulin et al.

™, (2020b, 2020c, 2021) dub such a method “phase
", substitution.” However, they do not justify why lo-
N cal stacking may lead to a signal phase restoration.
v They introduce time-frequency masking from

20 40 60 80 100 120 ‘450 0.5 1 1.5

Frequency (Hz)

Figure 2. (a) Frequency-dependent amplitude decay during stacking caused by residual
statics with the normal distribution of various standard deviations (o7 = 2, 4, and 8 ms).
(b) Frequency-independent amplitude decay during stacking caused by phase perturba-
tions with normal distribution. The amplitude decay in decibels versus standard

deviation ¢, (in radians) is shown.

2

Standard deviation (rad)

25 3 speech processing as an additional instrument that
allows the concise and convenient formulation of
such time-dependent trace manipulation. In speech
processing, the typical assumption is that a regis-
tered single-channel signal x(#) may be described
as a superposition of the useful signal s(¢) and ad-

ditive noise: x(¢) = s(¢) + n(t). For example, s(7)
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could be a primary speech of interest, whereas n(r) denotes interfering
speech or external noises. Frequency components of the signal (pri-
mary speech) and noise properties rapidly vary with time and are thus
nonstationary. However, in short windows, signal and noise spectra
may possess a certain separation of sorts allowing more efficient sig-
nal estimation or speech extraction (Yilmaz and Rickard, 2004). Be-
cause the mechanics of a windowed Fourier transform is suitable for
manipulating localized phases and amplitudes, let us describe it in
more detail. Applying the discrete short-time Fourier transform
(STFT) to x(#), we obtain a complex-valued 2D time-frequency
(TF) spectrum X(k,I) = |X(k,I)|explig.(k,1)]. Here, |X(k,1)|
and ¢, (k, [) are amplitude and phase TF spectra, with k and / denoting
the discrete indices for the frequency bin and time frame, respectively.
Time-frequency mask (TFM) is defined as a filter M (k, [) applied to
noisy speech to obtain the best possible signal estimate of the TF spec-
trum S(k, [) of the clean speech:

A

Sk, 1) = M(k. 1) - X (k. 1). (16)

Most speech studies consider the spectral phase unimportant for noise
reduction (Wang and Lim, 1982). As a consequence, TFM is typically
a real-valued function, 0 < M(k, /) <1 (Yilmaz and Rickard, 2004;
Wang, 2008b), designed based on signal and noise considerations.
Here, M is close to one in the TF spectrum part where the signal is
dominant. In contrast, it is close to zero when noise is prevalent. For
additive noise, “amplitude TFM” (that does not modify the phase)
could be justified as an optimal filter under some conditions when
using the standard mean-square error (MSE) metric between the de-
sired and estimated signal time series (Yilmaz and Rickard, 2004). As
a result, the estimated signal inherits the phase of a noisy recording.
Recent studies suggest that MSE may not fully describe a human
voice quality assessment, and better signal phase estimation could
improve speech perception (Koutsogiannaki et al., 2014). However,
amplitude TFMs remain dominant in speech processing.

TFM “mechanics” is suitable for estimating seismic signals con-
taminated by multiplicative and additive noise. We introduce STFM
as a specific TFM variant novel in three aspects:

1) STFM is designed to attack multiplicative noise in addition to
the additive noise handled by normal TEM.

2) STEM is usually a complex-valued mask that could be di-
vided into a phase mask (needed to address phase distortions
caused by multiplicative noise) and an amplitude mask.

3) The design of the phase and amplitude parts of STFM is guided
by a twin prestack seismic volume (the
same size and number of traces) represent-
ing beamformed or locally stacked data.

Before introducing various masks, let us de-
fine the TF spectra for input seismic trace x(r)
and corresponding beamformed trace s(f) ob-
tained via local stacking as depicted in Figure 3.
After applying STFT to x(t) and s(r), we obtain
complex-valued TF spectra:

X (k,I)=F (x(t)) (original trace TF spectrum),
S(k,l)=F(s(t)) (beamformed trace TF spectrum).

X(k. 1) = Xk, )| exp(igx (k. 1)),
S(k, 1) = [S(k, )] exp(igs(k, 1)), (18)

where | - | denotes amplitude TF spectra, whereas @y and ¢y are
phase TF spectra of raw and beamformed traces, respectively.

Phase masks addressing multiplicative noise

As mentioned previously, phase masking aims to reduce multi-
plicative noise distortions in the phase TF spectrum only without
modifying the amplitude TF spectra. Let us introduce the phase sub-
stitution mask (PSM):

PSM(k, I) = expli{ps(k. [) —x (k. D)}, (19)

where @y and @g are TF phase spectra of the original and beam-
formed traces, respectively. Equation 16 suggests that, after applying
PSM to data contaminated by seismic speckle noise, we obtain new
seismic volume where the (local) phase was replaced by the beam-
formed phase from time-dependent local pilots (Figure 3). However,
the amplitude spectra of the raw data are preserved. Bakulin et al.
(2020b, 2020c, 2021, 2022b) demonstrate that phase substitution re-
stores the prestack reflections’ coherency and makes them visible and
trackable. Such demonstrations were presented for synthetic data
generated by the finite-difference (FD) modeling and real field data.
Furthermore, data after phase substitution become processable by
conventional time and depth processing algorithms.

Local summation leads to estimating the clean signal phase, as-
suming that multiplicative noise with supposed properties is the only
complicating factor (equation 13). On real data, such an assumption
may not be perfectly fulfilled because of the following:

e The stationarity of the speckle noise within an ensemble
could not be guaranteed or verified. Small-scale geologic
heterogeneity may or may not result in distributions assumed
(with fixed standard deviations o, for phase perturbation and
o, for residual statics).

¢ Optimal ensemble size and optimal sampling of traces within
an ensemble needed for estimating the signal are also not
granted.

As a result, equation 16 may provide guidance and insight but
may not be an absolute truth in all cases. Fortunately, TFM mechan-
ics and beamformed volume allow straightforward extensions. For

3D ensemblesused Ly

for local stacking Windows are cut along the signal moveout

Target sample atjthe!
trace

Time ’

Local stacking
....... (NLBF)

Trace index

Figure 3. Schematic explaining the structure of two volumes with raw and beamformed

(17) data after local stacking: (a) locally stacked trace (at a select fixed location) is generated
from 3D ensembles of neighboring traces in a window-by-window fashion; (b) beam-

Complex TF spectra of the traces are represented

forming of local ensembles is done along the signal trajectories estimated directly from

as the data as explained by Bakulin et al. (2020a).
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example, a phase-correction mask (PCM) (Bakulin et al., 2020b,
2020c),

PSM(k, [) = sign[cos{ps(k, 1) — px(k,1)}],  (20)
performs a subset of most necessary modifications already done by
PSM but overall does a much less severe transformation of the input
phase. If original and beamformed data are in phase (phase differ-
ence is less than +7/2) at a fixed frequency, no correction is made
(PCM = 1). If they are out of phase (difference more than +7/2),
then the phase at this frequency is flipped (PCM = —1). In contrast
to conventional phase-sensitive masks from speech processing of
the form cos{@s — @y} (Erdogan et al., 2015), the proposed phase
(sign) correction mask is amplitude-preserving because amplitude
spectra are not modified.

It was shown on synthetic and real data that PSM and PCM
significantly increase the coherency of the challenging prestack data
with often similar results by visual inspection (Bakulin et al., 2020b,
2020c). The events become difficult to track when multiplicative
noise leads to a phase flipping on the original data. PCM only inter-
feres with correcting those most drastic areas while leaving the re-
maining raw phase untouched. The same job is also done by PSM,
which always returns the beamformed phase. In simple terms, a PCM
can be considered a “minimal” phase change (also included in PSM)
required to restore the coherency scrambled by speckle noise.

Transformed data after phase masking

Let us examine intermediate prestack volume after applying only
phase masking to establish a more apparent conceptual connection
between speech and seismic processing. It has a corrected local
phase @ (k, [) that has been “cleaned” to approximate the signal
phase. Yet, amplitude spectra were untouched, meaning that multi-
plicative and additive noise are fully embedded. Because all manip-
ulations are done with the local phase using STFT, we can describe
traces §;(f) after phase masking as

$i(0) = (Is] + |Ael) * explif@eor (k. D}, 21)

|Ax| = |res + ne| = s, (22)
where A becomes a cumulative noise that remains in the amplitude
spectra. Phase distortions caused by multiplicative noises were
mitigated by phase masking. However, the amplitude of the phase-
corrected traces remains contaminated by additive and multiplica-
tive noises.

Equation 21 resembles a typical speech processing problem,
where contaminated amplitude spectra require cleaning. In contrast,
the phase is already an acceptable representation of the signal phase
and hence does not require further estimation. A typical speech
processing task is cleaning the amplitude spectrum through a TFM
amplitude mask to separate clean speech from noise or concurrent
speech (Wang, 2008b; Liang et al., 2013). We emphasize that the
amplitude mask design only involves the power spectra of data as
well as estimated noise. Therefore, the final result after applying the
amplitude and phase masks remains the same irrespective of the
order of the mask application (i.e., first the phase mask then ampli-
tude, first the amplitude mask then phase, or both masks applied
together). There is a considerable variety of amplitude TFMs in
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speech processing (Kim, 2022). This is an active area of ongoing
research, with machine learning-based TFMs also entering the com-
petition (Erdogan et al., 2015). This study aims to introduce TFM-
based approaches to seismic processing. As a result, we only de-
scribe an initial amplitude TFM that we found helpful for process-
ing the field seismic data from the desert environment.

However, before discussing the amplitude mask applied to raw
data, let us address why we do not attempt to directly recover the
signal amplitude using equation 13.

Why not deconvolve stacked amplitude via deterministic
“speckle amplitude compensation”?

Equation 13 suggests an alternative route to reconstructing the
signal amplitude via deterministic deconvolution similar to inverse
Q filtering (Wang, 2008b). Provided standard deviations o, and o,
are obtained or estimated, theoretically, the signal amplitude could
be reconstructed using a deterministic compensation scheme:

o2a?

Seorr(@) = S(w)e e

NN

(23)

Although such a scheme restores higher frequencies, prestack data
themselves maintain an overly smoothed appearance similar to
beamformed data after local stacking. An oversmoothed appearance
is not liked by data processors. Such behavior is readily understood
because the input is stacked amplitude, not the raw amplitude.
Please recall that local stacking approaches often require apertures
of 100-400 m with hundreds or even thousands of traces in an en-
semble (Bakulin et al., 2018b, 2020a). Although such apertures ap-
pear necessary for processors to restore coherency (phase cleanup),
they seem excessive for the amplitudes that become oversmoothed.
Another reason to remain cautious about deterministic compensa-
tion is to recall that equation 13 relies on several idealistic assump-
tions that may be difficult to verify for real data.

Inverse Q filtering applies corrections to the original input traces,
not the locally stacked pilots. They perform smooth energy adjust-
ments within the original amplitude spectra. They do not eliminate
any local details from the input data themselves. In the case of
speckle noise, we have already introduced phase masks to correct
for local phase perturbations. PCM preserves many local details of
the phase and only interferes where noise leads to a polarity change.
Could there be a similar approach to locally “clean” the original
amplitude spectra from the damaging effects of the noise instead
of substituting the averaged stack amplitude? Such an approach
is perfectly feasible with the amplitude time-frequency masking that
follows in the footstep of speech processing. Next, we describe one
new method that designs a local amplitude STFM mask applied to
the raw amplitude TF spectra of the original data. Similar to PCMs,
STFM amplitude masks only use beamformed data as a guide for
designing the local filter. Likewise, deterministic compensation can
be additionally used for improved signal estimation during mask
construction. However, in the end, the final STFM is applied to
the original raw amplitude before beamforming.

Amplitude TFM and minimum statistics approach to
suppress seismic noise

Some early amplitude masks were so-called ideal binary masks
where TFM = 1 in speech-dominated areas and TFM = 0 in noise-
dominated areas (Yilmaz and Rickard, 2004; Kim, 2022). Such
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binary or “hard” masks are not helpful for seismic processing where
signal and noise overlap in most areas. Later studies proposed a
variety of “soft” masks where 0 < TFM < 1 (Liang et al., 2013;
Kim, 2022). One of the most widespread soft amplitude TFM is
the ideal rationale mask (IRM). One possible realization of IRM
is defined as

|Sese (k. D)2
|Sesl k l |2 + |Nesl(k l)|27

IRM(k, 1) (24)

where |S.q(k, 1)|? and Ny (k. 1)|? are the power spectra of signal
and noise, respectively. One can easily observe that IRM could be
written in terms of a localized signal-to-noise ratio (S/N). In other
words, the IRM can be considered the instantaneous version of the
Wiener filter. IRM design requires an evaluation of the signal and
noise power spectrum (PS). The speech-processing community has
developed multiple noise estimation algorithms. One popular algo-
rithm, called the minimum statistics (MS) approach, was pioneered
by Martin (1994) and enhanced by Doblinger (1995) and Martin
(2001), among others. When the noise PS is estimated, the clean
speech PS is calculated by spectral subtraction (Boll, 1979) as
[Sesc(k, 1)|> = | X (k, I)|> = | Negt(k, )|*. Using these localized esti-
mates of signal and noise, IRM (equation 24) can be computed,
and the signal estimation performed using equation 16 with the
IRM mask as an amplitude TFM. This represents a standard scheme
used in speech signal processing (Kim, 2022). Such an approach is
completely data-driven because no prior knowledge about the
speech is required. We stress that phases are not corrected as being
perceived as unimportant for noise reduction in speech (Wang and
Lim, 1982).

The MS method is grounded on two experimental observations
(Martin, 1994, 2001):

* Noise and clean speech (signal) are commonly statistically
independent. As a result, the PS of the noisy signal can be
represented as a sum of the power spectra of clean speech
and noise: |X(k, 1)|? = [S(k, D)|* + |[N(k, D)|?.

*  The noise PS could often become equal to that of noisy
speech. For example, this occurs during speech pauses. Like-
wise, this also happens between words and syllables. As a
result, the PS of the noise can be approximated by evaluating
the minimum energy of the original noisy speech inside each
frequency bin.

One can make an analogy between a speech record and a seismic
trace. As in speech, many target arrivals are separated by calm peri-
ods (Figure 4). Therefore, we can empirically justify the second
assumption from the MS method for seismic data processing. In-
spired by speech processing, we suggest the subsequently modified
workflow that uses a beamformed prestack volume as an initial
guess and as a guide for an improved signal amplitude estimation.

Step 1. Windowed Fourier transform

Here, x(¢) and s(¢) are transformed into a TF domain using STFT.

Step 2. Prepare input for MS

Bakulin et al. (2022a) present the typical spectra of real data be-
fore and after beamforming. The beamformed spectrum experiences
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significant bias downward and accelerating loss of higher frequen-
cies, as schematically shown in Figure 5a. Such a behavior is a
manifestation of the multiplicative speckle noise described by equa-
tion 13. We postulate that the beamformed spectrum in red is cer-
tainly a signal. In contrast to speech processing, we apply the MS
approach to the difference between the original and beamformed
power spectra:

R(k. D] = [X(k. D] = |S(k. D). (25)

Any negative values occurring after spectral subtraction are zeroed
out to ensure |R|?> > 0. We may refer to |R(k, [)| as a residual PS
because it contains a significant amount of attenuated signal mixed
with noise. Therefore, we shall try to recover the residual signal
from this mixture and then recombine it with the beamforming am-
plitude. In other words, we shall try to carve out a portion of that
shaded difference (Figure 5a) due to the signal.

A more advanced version of this step is to replace S with S,
from equation 23:
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Figure 4. Seismic trace with (in red) and without (in blue) added
white Gaussian noise: (a) large window 1-4 s; (b) magnified into
smaller window highlighting intervals where the signal amplitude is
close to zero, whereas the noise amplitude dominates. Such inter-
vals or “breaks” can be analogous to pauses in speech, providing a
local estimate of the noise.

a) Attenuated signal b)
components
mixed with noise

Beamformed

Raw data after correction
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Figure 5. (a) Typical amplitude spectra before and after beamforming
with reduced overall levels and accelerating loss of higher frequencies
(Bakulin et al., 2022a) with the shaded area graphically showing
residual PS |R(k,[)|, an input to the minimum statistic method;
(b) an improved estimate of the residual spectrum |R, (k, /)| obtained
after performing deterministic speckle compensation using equa-
tion 23.
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|Rcorr(k’ l)|2 = |X(k’ l)|2 - |Scorr(k7 l)‘z (26)
In essence, we assume that local stacking suppressed the additive noise
but suffered from exponential decay (equation 23) which we attempt to
undo to derive a better mask. Such an additional step requires an a
priori estimation of speckle noise parameters, i.e., standard deviations
o, and o, from equation 23. More studies are required to directly es-
tablish the derivation of speckle noise parameters from the data. In this
study, a simple trial-and-error estimation is performed to ensure that
the corrected beamformed spectrum in Figure 5b remains reasonably
flat and below the raw spectra. Such a ballpark estimation is similar to
attenuation estimates invoked in the inverse Q filtering (Wang, 2008b).
Data examples reveal that a reasonably wide range of ¢, and o, leads
to similar signal estimates after STFM, suggesting the stability and low
sensitivity of this additional step. However, further speckle compen-
sation done during mask estimation leads to an improved perception
by processors compared with the basic version using equation 25.

Step 3. Noise estimation with the MS method

To estimate noise PS, the MS approach is applied to |R(k, [)|?
(or |Reorr(k, 1)|?). MS approach may be described in a simplified
form as follows. At each frequency k’, the PS of the noise is
approximated as |Neg(k’,1)|> = min [R(k’, [+ Atys)|*. In other
words, noise is assumed constant and approximated by the mini-
mum energy value in the interval with a width of 2Atyg. The noise
is independently estimated at each frequency k.

The time interval length used for the minimum tracking in step 3
of the workflow is an important parameter. In Figure 6, the residual
PS of a field trace for one particular frequency of 20 Hz (in blue) is
presented. For comparison, we display two versions of the noise PS
for an IRM construction with different time intervals of 40 ms
(in red) and 120 ms (in black) used for minimum tracking. If a
shorter time interval is used, noise PS estimation will be closer
to residual PS. This is because more residual PS components will
be treated as noise. As a result, IRM will provide a result close to the
initial signal guess (beamformed data). On the other hand, suppose
a more extended time interval is used for minimum tracking. In that
case, the output result of IRM filtering will be closer to the original
data. In other words, IRM will pass more residual PS components to
the output.

16

14

12

10

Power spectrum

Time (s)

Figure 6. Residual PS computed for a field trace at a frequency of
20 Hz (shown in blue) and noise power spectra estimated by
tracking the minimum energy in 40 ms (in red) and 120 ms (in
black) intervals.
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Step 4. Reestimation of the signal power

Reevaluate the signal PS by spectral subtraction with a revised noise
estimate from the previous step |Seq (k,1)|* =X (k,1)[> = |Neg (k,1)|?.

Step 5. Signal estimate smoothing

At each frequency k, perform smoothing of [Sey(k,[)|? in the
time direction using simple rank one recursion: |S.(k,[)|*> =
BlSes(k; 1= D)2+ (1= B)|Se(k, D>, p=0.7-095.  Such
smoothing is typical for speech processing (Martin, 1994, 2001),
and we also find it useful for seismic data.

Step 6. Calculation and application of the amplitude IRM mask
Compute IRM (equation 24) using estimated |Se (k,[)]> and
|Nesi(k, I)|?. Then, use equation 16 to perform filtering of the origi-

nal trace TF spectrum using IRM.

Step 7. Inverse windowed Fourier transform

Using a cleaned amplitude spectrum, recover the time-domain
signal estimate by applying an inverse STFT §(¢) = ISTFT[S(k, [)].

In contrast to speech processing, where TFM is directly applied
to the noisy signal PS, STFM utilizes the MS method on the residual
PS. Such an adaption incorporates robust a priori information avail-
able for multichannel data. Specifically, local stacking provides a
reliable average signal estimate (Bakulin et al., 2018a, 2020a) that
could be further corrected and enhanced using equation 23 to com-
pensate for speckle noise. Therefore, it is reasonable to assume that
a beamformed PS has to be fully included in the final signal esti-
mate and supplemented by a residual recovered signal from the dif-
ference (equations 25 and 26). Let us demonstrate that such a goal is
achieved with the proposed modification of the minimum statistic
approach. To do this, let us consider two extreme cases of Aty — 0
and Afyg — oo in more detail.

If Atyis — 0, then the entire shaded area in Figure 5 is considered
an additional residual signal and noise estimate in the MS approach
|Nesi(k’, 1)]* = 0. Therefore, IRM = 1 in equation 16, which im-
plies that IRM does not modify the amplitude spectra of the input
data. As a result, we arrive at the data after the phase masking de-
scribed by equation 21.

If Atyg = oo, then the entire PS spectra difference |R(k, )|* =
|X(k,D)|*> = |S(k, [)|* is considered as noise throughout the entire
MS workflow. After signal PS reestimation (step 4), we obtain
Bealk. DI = [X(k. D = [X (kD + S, )P = |S(k. ). Am-
plitude TFM will have a form IRM = |S(k, [)|/|X(k,[)|. Substitu-
tion in equation 1 gives

~

S(k, 1) = IRM(k, 1) - X (k. 1) = (IS(k. D /|1X(k, ) )| X (k. D)
xexp(igy(k, 1)) = [S(k, )| exp(ig. (k. D). (27)

In other words, only the beamformed spectrum is recognized as a
final signal estimate. In contrast, the PS difference spectrum (the
shaded area in Figure 5) is assumed to have zero residual signal.

Therefore, the amplitude STFM mask, by design, provides an
output amplitude spectrum (estimated signal) that is situated
between beamformed (in red) and original spectra (in blue) in
Figure 5.
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SYNTHETIC EXAMPLE WITH RANDOM
MULTIPLICATIVE AND ADDITIVE NOISE

Phase masking improvements have been demonstrated on syn-
thetic data obtained with FD modeling with a cluttered near-surface
layer (Bakulin et al., 2020b, 2020c, 2022a). FD modeling replicated
all three experimental observations seen on the field data (Bakulin
et al., 2022a). PSM and PCM heal the distortions to a large extent
and improve coherency. However, in those cases, there was no
ground truth to compare. Although we can see fewer distortions
after STFM, the resulting wavefield does not correspond to data
obtained with a homogeneous near-surface layer. Instead, the cor-
rected wavefield corresponds to new data in a “smoother” model
with some smaller heterogeneities removed but the remaining
medium-scale heterogeneity preserved. We cannot obtain a math-
ematical description for this smoother model at this stage and hence
can only perform a qualitative assessment.

However, such a quantitative assessment is highly desired to as-
sess the performance of the newly proposed amplitude masking
scheme. As a result, in this study, we focus on a controlled synthetic
example where multiplicative noise is introduced using equations 3
and 11 so the results can be more easily judged. However, in con-
trast to previous studies, our primary focus is validating the IRM
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amplitude mask’s ability to accurately recover attenuated higher
frequencies. Furthermore, the IRM mask is data-driven and does
not rely on any specific knowledge about the speckle noise model.

Let us apply STFM to such a controlled synthetic example with
random multiplicative and also additive noises. Figure 7a displays the
Klauder wavelet that represents the autocorrelation of the typical vi-
broseis sweep in land seismic data. Sweep parameters are v; = 2 Hz
(minimum frequency), v, = 80 Hz (maximum frequency), T = 12s
(time duration). Blackman window function was used as a taper. The
amplitude spectrum is a nearly constant function between 5 and
75 Hz (Figure 7b). The total time duration of the wavelet is approx-
imately 160 ms.

Figure 8a shows a clean signal trace with three distinct arrivals,
each described by a Klauder wavelet of different polarities. A clean
data ensemble consists of 100 repetitions of this trace resulting in
three flat events embedded within the 5 s traces. To simulate real-
istic non-surface-consistent seismic speckle noise, each 100 ms
window from the clean ensemble was subject to a combination
of multiplicative noises of types 1 and 2 described by equations 3
and 11, respectively. We stress that each channel experiences a
unique realization of types 1 and 2 multiplicative noises. Likewise,
different time windows of a fixed channel also experience various
realizations of multiplicative noises. Only statistical parameters,

e.g., standard deviations o, and o,, remain con-
stant throughout the ensemble. Finally, additive

Gaussian white noise with the level of —1 dB
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is also superimposed (different for each channel).
As a result, contaminated traces exhibit variable
distortions for each of the three arrivals making
them difficult to recognize on a single trace (Fig-
ure 8b) and are easier to identify in the ensemble
(Figure 8c, only 50 traces out of 100 are shown).
In addition, signals experience not only a varia-
tion in the arrival time but also an evident rapid
wavelet variation due to phase perturbations
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Figure 7. Klauder wavelet used in the synthetic experiments: (a) time domain and
(b) amplitude spectra. Zero-phase Klauder wavelet represents autocorrelation of a typ-

ical vibroseis sweep used in land seismic data.
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(Figure 8c).

Let us estimate the clean signal and contrast
beamforming approach versus STFM using a
100-trace noisy ensemble as an input. STEM
consists of the PSM (equation 19) and IRM
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Figure 8. (a) Clean input trace (in blue) consisting of three events, each with a Klauder wavelet; (b) after contamination with multiplicative and
additive noise (in green), signals become scrambled and more difficult to locate; and (c) final ensemble of traces used for STFM application. Multi-
plicative noises are random and nonstationary, with parameters ¢, = 4 ms and 6, = 7/3, whereas Gaussian white noise has —1 dB. Red beam-
formed trace on (a) has lost higher frequencies, but all three events have become accurately positioned, validating phase cleanup during stacking.
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amplitude mask based on the preceding MS approach. Figure 9 dis-
plays two different signal estimates in three different domains. The
clean signal (ground truth) is shown in blue. Arrivals of the noisy
trace shown in green (Figure 9a or single realization from Figure 8c)
are shifted by variable (non-surface-consistent) residual statics and
damaged by unique (for each arrival) phase distortions and additive
noise. As for the phase, Figure 9c validates that local stacking per-
forms excellent phase “cleanup,” i.e., the stacked phase approaches
the true signal phase (without multiplicative distortions) as pre-
dicted by theory (Bakulin et al., 2022a). In terms of amplitude, the
beamforming estimates in red are clearly suboptimal (Figure 9a):
the amplitude of all three arrivals is diminished, whereas vertical
resolution is low. The same conclusion is evident in Figure 9b,
which reveals the accelerating loss of higher frequencies due to
residual statics. The STFM estimate (in black) corrects for residual
statics, restores the amplitude level, and returns higher frequencies
while also suppressing additive noise (Figure 9a and 9b). Moreover,
these goals are perfectly achieved for all three target events despite
time and spatially varying multiplicative noises (Figure 9a). Fig-
ure 9b shows that the amplitude spectra of the noisy input and clean
signal have similar magnitudes making it impossible to distinguish
the signal from the noise. It also highlights the treacherous role of
the multiplicative speckle noise that redistributes the energy and
scrambles the time-domain representation (Figure 8b and 8c). Un-
like absorption, which attenuates higher frequencies directly on
each measured trace, in the speckle noise case, “attenuation” only
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happens when ensembles are stacked to generate local pilots (Fig-
ures 2 and 5). The practical dilemma is as follows. Speckle noise
complexity and unpredictability severely limit signal identification
on individual traces (see Figure 8c; Bakulin et al., 2022a). In con-
trast, the signal can be extracted through the local stacking of en-
sembles. However, stacking introduces exponential attenuation of
the signal amplitudes as per equations 10 and 12. STFM performs
a detective balancing act of locating the signal and undoing the
effects of multiple scattering on a single trace by assimilating the
cumulative information from nearby traces. Recall that nearby
traces experience conceptually similar distortions but with entirely
different random realizations. STFM can be analogous to restoring a
broken vase from small fragments. In the case of additive noise, the
only challenge is to identify the order of the pieces that would fit
and restore the vase. In the case of multiplicative noise, it is as if
each chip underwent random scraping or alteration on all sides,
making it challenging to fit them into their intended positions.
Therefore, one has to reinstate each fragment to its original shape
with additional material or glue to make a complete vase without
holes. Beamforming identifies the order of the damaged pieces,
whereas STFM, guided by the established order, goes on to reverse
the local alterations to make the fragments fit again.

Because we know the true signal in the synthetic example, the
S/N for each estimation step can be computed using a simple sub-
traction of the clean signal as a direct measure of noise. The S/N
increases from —3.6 dB on the input to 3.4 dB on the beamforming
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Figure 9. Comparison of (a) time domain, (b) amplitude spectra, and (c) phase spectra for a synthetic example. The green curve corresponds to
one of the input traces from the contaminated input ensemble (Figure 8c). Signal estimate from beamforming (the red) suffers from reduced
amplitude and attenuated higher frequencies. STFM estimate (the black) recovers a closer amplitude estimate and restores higher frequencies
as observed in (a) and (b). The phase spectrum obtained after local stacking provides an excellent approximation to the clean signal phase. Note
that on (c), the STFM and beamformed phase curves (black and red, respectively) are identical, making only the red curve visible. The STFM
parameters are as follows: STFT window length 160 ms, window shift 12 ms (92.5% window overlap), minimum statistic window for noise
estimation 2Atys = 24 ms, § = 0.5, and beamformed spectrum was corrected using equation 23 with o, = 4 ms and 6,, = 7/4 and used for

the MS estimate (equation 26).
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estimate and 7 dB on the STFM estimate. In addition to a higher
S/N, STEM delivers the tremendous new benefit of a full fre-
quency band.

The success of the IRM mask (equation 24) hinges on accurately
estimating the noise and signal’s local TF amplitude spectra. Because
such estimation is purely data-driven in the MS approach, let us
evaluate how well the MS works on this controlled example. Fig-
ure 10 compares ground-truth noise spectra with the MS estimates.
The blue curve shows the TF slice of the ground-truth synthetic noise
for one of the traces computed at 20 Hz. Ground truth is calculated by
subtracting the known clean signal spectrum (Figure 8a) from the
noisy input (Figure 8b). It absorbs multiplicative and additive noise
components. Other curves in Figure 10 show noise estimates ob-
tained at step 3 of the MS flow with various sizes of estimation
half-window Atys. The first conclusion is that all estimates provide
a relatively good tracking of the actual total noise in the amplitude
spectra. The second conclusion in this synthetic example is that noise
estimation accuracy improves when the window shrinks.

In the following two sections, let us validate STFM performance
on real data using two different 3D land data sets from the desert
environment.

Target arrivals window

== Ground truth

Amplitude

0.8 1 1.2 1.4 1.6 1.8 2 4 24
Time of the frame (s)

Figure 10. Comparison of ground-truth amplitude TF slice at 20 Hz

(the blue) versus various estimates obtained using the MS approach
with different window lengths 2Afyg (the other colors).
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FIRST REAL DATA EXAMPLE FROM A DESERT
ENVIRONMENT (PROCESSING)

The first example is from the late processing stage of legacy data
with 72-geophone groups. The data set was subject to traditional time
processing with noise attenuation, statics, deconvolution, etc. How-
ever, reflected events are still faint. Representative common-midpoint
(CMP) gather after NMO is displayed in Figure 11a. Traces from all
azimuths are depicted as a function of the offset. Severe scattering
noise results in largely invisible reflections with low coherency, sim-
ilar to Figure 8c. Apart from a low S/N, this gather exhibits a near-
offset noise cone with a visible imprint of high amplitudes likely left
after conventional processing (denoted by the white oval). Figure 11b
shows the same CMP gather after enhancement with NLBF. Local
ensembles of approximately 200 neighboring traces are used during
beamforming with the apertures approximately 150 m X 150 m in
CMP and offset domains. After beamforming, reflections become
trackable in the entire offset range. However, the high-frequency con-
tent of the signal is attenuated due to speckle scattering noise, and
amplitudes are considerably decreased. Figure 11c shows input data
after applying only the PCM from equation 20. The coherency of
reflections improves, but the noise cone imprint persists. In contrast,
Figure 11d shows the data after applying only an amplitude IRM
mask (equation 24) based on the MS approach with Aty;g = 40 ms.
Reflections start to pop up more clearly; however, wavelet and phase
distortions cannot be fixed by IRM. A combination of the phase
(PCM) and amplitude (IRM) masks provides the most optimal result
(Figure 11e).

Let us examine the effect of each mask in more detail using a
smaller window between 1.4 and 3.0 s from a processed CMP
gather. Input data after standard processing remain distorted in
terms of amplitude and phase (Figure 12a). The trapezoid marks
the noise cone’s approximate location with an elevated amplitudes
imprint after prior processing. Beamforming provides an excellent
estimation of the signal resulting from local summation, but it is
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Figure 11. CMP gather (after NMO correction) processed by various approaches: (a) original gather after conventional processing; (b) gather
after NLBF; (c) gather after applying PCM only (no amplitude mask); (d) gather after applying amplitude mask only (no phase corrections);
(e) gather after applying amplitude and phase correction masks (PCM + IRM). The residual noise cone is encircled. STFM parameters are as
follows: STFT window length 160 ms, window shift 12 ms, minimum statistic window for noise estimation 2A#yg = 24 ms, f = 0.5, and
beamformed spectrum was corrected using equation 23 with 67 = 4 ms and 6, = 7/4 and used for the MS estimate (equation 26).
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overly smooth. As a result, the noise cone is largely eliminated
(Figure 11b). Application of the PCM considerably improves coher-
ency (Figure 12c¢), but the amplitude imprint remains untouched, as
expected. Amplitude-only mask (IRM) can improve the S/N, so
signal amplitudes stand up more clearly in places where the phase
coherency is already acceptable (Figure 12b). However, IRM cannot
improve coherency where significant phase distortions break it. There-
fore, IRM alone does little to improve reflected events continuity in
this example. Complete STFM application with phase and amplitude
masks achieves the most optimal result (Figure 12d). STFM with

&
~

b)
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PCM + IRM clears the noise cone and makes reflections coherent
without oversmoothing. The final critical benefit of the STFM is
the preservation of the higher frequencies, as shown in Figure 13, pre-
senting averaged amplitude spectra of the entire CMP gathers. Beam-
forming provides the best visual S/N (Figure 11b) but attenuates
frequencies above 40 Hz and oversmooths the data. STFM does less
harsh noise suppression with less smoothing (Figure 11e) while keep-
ing much more signal amplitudes above 40 Hz (Figure 13, in black).

Band-pass-filtered gathers (40-80 Hz) in Figure 14 prove that
energy preserved by STFM above 40 Hz does represent the re-
flected signals. Indeed, they are perfectly consis-
tent with events previously recovered through
NLBF with dominant frequencies below 40 Hz.

Original

Time window 1.6 s

Amplitude mask (IRM)

At first glance, low amplitudes of the beamformed
data above 40 Hz may imply a less reliable phase
recovery at higher frequencies. However, such
skepticism is not justified. First, equations 12—15
confirm that drastic amplitude roll-off is fully ex-
pected in the presence of speckle scattering noise.

Second, controlled numerical experiments cor-

]
~

Phase mask (PCM)

Complete STFM

roborate that the estimation of the clean signal
(PCM + IRM)

phase through stacking remains robust up to the
highest frequency in the spectra (Bakulin et al.,
2022a).

S

Figure 12. The target window from the NMO-corrected CMP gathers: (a) original data after
conventional processing; (b) data after application of the IRM amplitude mask (no phase

REAL DATA EXAMPLE FROM A
DESERT ENVIRONMENT (IN-FIELD
QUALITY CONTROL)

corrections); (c) data after PCM; (d) data after applying amplitude IRM and phase PCM

masks. Amplitude mask only improves the S/N in places with good coherency as seen on
(b). In contrast, phase mask repairs the coherency damaged by speckle scattering noise as
observed on (c). Complete STFM with phase and amplitude masks delivers the most dra-
matic improvements as observed on (d), because improved coherency reveals increased S/N
uniformly across the entire window, including places where IRM alone, seen on (b), did not
appear to achieve good denoising. In addition, STFM successfully reduces the impact of the
residual noise cone, as observed on the original data in (a) and outlined by the trapezoid.

= Original
== Beamformed
- STFM

Roll-off of higher
frequencies

Amplitudedrop

Amplitude (dB)
|
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Figure 13. Comparison of average amplitude spectra from prestack
gathers from Figure 11a, 11b, and 11e. Time (in blue) is shown in
Figure 11. Observe a typical amplitude drop of approximately
—12 dB and exponential loss of higher frequencies on beamformed
data similar to the sketch of Figure Sa. STFM mitigates the ampli-
tude drop and preserves higher frequencies.

The second example uses a 3D land data set
and focuses on in-field quality control (QC). The
3D data were acquired using orthogonal geom-
etry. Receiver sampling is 25 m along the lines
and 150 m between the lines. Likewise, shot
sampling is 25 m along the source lines and
100 m between the lines. Despite using nine geo-
phone arrays and two vibrators in a source group,
data quality is extremely challenging due to high levels of near-sur-
face scattering noise (Figure 15a). As a result, in-field QC using the
traditional approach is ineffective. Gathers after linear noise re-
moval alone (Figure 15a) do not indicate the presence of the re-
flected events at either primary or secondary targets. Likewise, the
brute stack produced from such data shows a highly speckled ap-
pearance with few faint reflectors (Figure 16a). Furthermore, in cer-
tain parts of the image (the right and bottom sides) of Figure 16a,
reflectors disappear beneath intense scattering noise. Please note
that the generation of brute stack hinges on legacy NMO functions
from a previous survey. In contrast to an earlier example, the ap-
plication of STFM here employs the most straightforward local
stacking approach of supergrouping (Bakulin et al., 2018a) which
also uses the same legacy NMO for local summation. After 4D
supergrouping with the apertures of 600 m x 600 m, we observe
clear reflected events throughout the entire time span (Figure 15b).
However, amplitude spectra inserts reveal the domination of low
frequencies with the rapid decay of higher frequencies. Similar
behavior is observed on the brute stack of supergrouped data (Fig-
ure 16b). Most reflection events are lit up but dominated by lower
frequencies (Figure 17, the red curve). The application of STFM
with the PSM and IRM results in cleaned gathers that preserve
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higher frequencies, but the existing noise is not completely elimi-
nated (Figure 15c). Likewise, the brute stack of data after STFM
shows significant improvement in vertical resolution (Figure 16c¢).
Brute stack with STFM reveals a much more balanced spectrum
(Figure 17, the black curve) that is below the original data (in blue)
and above the beamformed spectrum (in red). Because legacy NMO
information is almost always available, such a data-driven workflow
with STFM based on supergrouping can be easily implemented in
the field. Supergrouping is the simplest form of local stacking that is
computationally inexpensive. It does not perform an estimation of
local coherency as implemented in more advanced methods de-
ployed for final processing, such as, for example, NLBF
(Bakulin et al., 2020a). As a result, a new in-field QC workflow

V383

with STFM can robustly answer critical questions for real-time
QC of prestack and stacked data with low S/N:

e Are prestack reflections present from primary and secondary
targets?

e What is the achieved frequency band for those signals?

e Can a robust time stack be produced from the specific field
acquisition geometry at hand?

e What s the processable frequency band for the time window
of the primary and secondary target?

Any in-field QC based on depth imaging suffers similarly from
scattering noise (Bakulin et al., 2022a). Therefore, preprocessing

&
~

Original

Time window 1.6 s

Figure 14. Same as Figure 12 but after band-pass
filtering 40-80 Hz. Coherent reflections are revealed
in (b—d) that remain untrackable in (a) due to seis-
mic speckle noise. Reflections on (b—d) match
events shown in Figure 12b-12d, respectively.
The fact that band-passed reflections stand out on
their own suggests that STFM achieved the goal
of recovering a signal above 40 Hz, where beam-

forming struggled.
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~

PCM+IRM

a) 10 km b) ) C)

2s

s e —

Figure 15. Comparison of prestack seismic gathers
at different stages: (a) raw field data, (b) data after
applying 4D supergrouping with apertures of
600 m x 600 m, and (c) data after STFM with a
phase substitution PSM mask and IRM amplitude
mask. The inserts show amplitude spectra with their
own normalization. Local stacking with super-
grouping reveals underlying reflections but suffers
from the loss of higher frequencies, as seen on (b).
STFM greatly improves coherency and preserves
higher frequencies while avoiding amplitude over-
smoothing typical for local stacking. STFM param-
eters are as follows: STFT window length 160 ms,
window shift 12 ms, minimum statistic window for
noise estimation 2Afyg = 24 ms, = 0.5, and
beamformed spectrum was corrected using equa-
tion 23 with 6, =4 ms and o, = 7/4 and used
for MS estimate (equation 26).

Figure 16. Brute stacks produced with different
processing: (a) standard approach with only linear
noise removal, (b) same but with additional super-
grouping, and (c) same as (a) but with the additional
application of STFM. Observe the speckled appear-
ance on (a) due to massive scattering noise. Super-
grouping and STFM provide significant
improvements in coherency, as shown in (b) and
(c); however, STFM preserves higher frequencies
and avoids oversmoothing.

Original data Local stacking (supergrouping)

STFM (PSM + IRM)> '
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Figure 17. Averaged amplitude spectra of the brute stacks from
Figure 16. Similar to the sketch in Figure Sa, a massive amplitude
drop and accelerating loss of higher frequencies are observed on
locally stacked data (the red). STFM (the black) partially compen-
sates for the amplitude loss and retains the higher frequencies.

data with the STFM workflow is equally applicable and valuable for
any QC based on depth imaging. We do not claim that STFM flow
replaces the standard time or depth processing. However, we dem-
onstrate that STEM flow enables significantly more robust fast-
track processing by addressing scattering noise. Such an advantage
is of paramount importance in geologic environments with a com-
plex near surface containing abundant small-scale scatterers; such is
the case for the desert environment of the Middle East (Ramdani,
2022).

Data with small arrays and single sensors from the desert environ-
ment are characterized by low coherency and a greatly reduced S/N
of —30 to —60 dB or less (Bakulin et al., 2022c). Speckle noise is the
primary culprit for such behavior. Therefore, doing QC, processing,
or imaging of such data require algorithms such as STFM to address
scattering noise currently not cured by the standard processing tool-
box. After STFM, such data become processable with more tradi-
tional workflows.

CONCLUSION

We introduced a new STFM approach to suppress multiplicative
speckle noise caused by small-scale near-surface scattering. We
focused on two types of multiplicative noise: residual statics and
random phase perturbations. Although residual statics introduces
an arrival time variation, phase perturbations distort the waveforms
and break the event coherency. In the absence of a priori noise in-
formation, it is almost impossible to correct for multiplicative noise,
thus severely limiting the efficiency of standard processing flows
relying on local coherency and wavelet stability along the events.
Local stacking of nearby traces suppresses multiplicative noise and
provides a reliable estimate of the clean signal phase. However,
stacked amplitude suffers from the accelerating loss of higher
frequencies and oversmoothing. Because scattering noise is time-
varying and non-surface-consistent, local stacking in small win-
dows along the reflected event provides the required prerequisites
to attack multiplicative speckle noise. It delivers local pilots at every

Bakulin et al.

point of the 3D prestack volume of interest. Those pilots change
with the time and spatial coordinates, providing local “guides” that
could be used to remove multiplicative noise. The amalgamation of
these pilots was a previous best estimate of the enhanced data
through local stacking or beamforming. If only additive noise is
of concern, such a local stacking estimate is optimal. However, in
the presence of multiplicative noise, the beamforming pilots are
compromised because the signal phase and amplitude follow a dif-
ferent transformation. Their independent unraveling is required to
undo speckle noise effects. Therefore, we invoke time-frequency
masking from speech processing to perform separate manipulations
of phase and amplitude TF spectra.

Because the previous study proved that the stacked phase provides
an estimate of the clean signal phase, we introduce two different phase
masks. PSM replaces the raw phase with the beamformed phase. A
more subtle PCM uses a beamformed phase as a guide to correct the
raw phase only for polarity reversals. Phase masking compensated for
local distortions caused by speckle noise; however, amplitude noise
remains. We further introduce one type of amplitude TF filter called
the ideal ratio mask that suppresses noise in the PS. This study only
describes the data-driven IRM based on the MS method borrowed
from speech processing. We modified it to use beamformed amplitude
information as a guide. A combination of phase and amplitude masks
using local stacking as the guide was called STFM.

Controlled synthetic examples validated the accurate recovery of
clean signals in the presence of residual statics, phase perturbations,
and additive white noise. In addition, culminating field examples
with severe speckle noise from a desert environment revealed the
critical role played by STFM in making data processable for con-
ventional algorithms.

Just like speech processing, it is possible to introduce many other
versions of phase and amplitude masks. However, this study is not
focused on covering their variety. Instead, it presents the STFM con-
cept based on an additional guide from local stacking or beamform-
ing. Such a concept and construct are novel for speech and seismic
processing. Furthermore, we stress the critical role of phase masks in
efficiently counteracting the seismic speckle noise caused by small-
scale scattering that existing processing approaches cannot cure.

DATA AND MATERIALS AVAILABILITY

Data associated with this research are confidential and cannot be
released.
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